Свечи зажигания изолятор: Почему образуется коричневый ободок на изоляторе свечи зажигания. Что это означает? – K-News

Желтый налет на изоляторе свечи зажигания. Причины появления

Рано или поздно, но все водители сталкиваются с регулярной проблемой замены свечей. И те, кто не привык пользоваться услугами автомехаников и предпочитает разобраться во всем сам, очень часто становятся свидетелями образования нагара на свечах зажигания. Желтый налет на изоляторе свечи зажигания, или коричневый налет на свечах образовывается по определенным причинам, и их характер довольно часто отличается друг от друга. В этой статье мы попытаемся разобраться в них, а также объясним, как избежать такой участи в будущем.

Оглавление:

  • Особенности использования свечей зажигания
  • Нагар на изоляторах свечей зажигания
  • Коричневый налет на свечах
  • Желтый цвет налета на свечах зажигания
  • Заключение
Коричневый налет на изоляторе свечи

Особенности использования свечей зажигания

Для начала следует разобраться в том, почему свечи зажигания подвержены подобным угрозам. Дело в том, что в процессе эксплуатации автомобиля именно они ответственны за создание искры, необходимой для воспламенения воздушно-топливной смеси. Так как условия работы этого приспособления «тяжелые», со временем свечи зажигания подвергаются деформациям, и постепенной потере собственных свойств.

Читайте также: Как определить неисправности свечей зажигания. Симптомы и признаки неисправности свечей

Подобное устройство день за днем подвергается постоянному воздействию как химических факторов (влияние на свечу реактивов и веществ химического происхождения), так и физических. Находясь в условиях постоянного теплового окружения, свечи зажигания «потерпают» от температуры сгораемой смеси, и собственноручно созданной искры.

Нагар на свечах зажигания

Нагар на изоляторах свечей зажигания

Очень часто, при смене свечей можно наблюдать загрязнение на ободках свечного изолятора (в норме, чаще всего представленным белым корпусом, в заводском виде). Следствий у этой проблемы есть несколько, и их степень определяется по характеру имеющейся деформации.

Одним из таких примеров может быть прорыв газов/продуктов горения. Чаще всего это случается по вине производителя (серийный брак, использования дешевого сырья при производстве).

Коричный налет на изоляторе появляется в следствии коронного разряда. Этот процесс подразумевает ионизацию воздуха, окружающего свечу зажигания, при длительном воздействии которого у последней наблюдается ослабление изоляционной функции корпуса. Стоит отметить, что появлению налёта способствует и нарушение целостности самого изолятора. У свечей с трещиной между изолятором и корпусом свечи образовывается зазор, благодаря которому свеча постепенно портиться и начинает пробивать.

Налету подвержены даже иридиевые аналоги

Не всегда, к слову, свеча с коричневым налетом на изоляторе сигнализирует о каком-то нарушении. Многие производители на упаковках своих товаров отмечают, что коричневый, или темно-коричневый налет может появляться в следствии пригорания зажигательной смеси, прилипшей к корпусу изолятора.

Читайте также: Иридиевые свечи зажигания, преимущества и недостатки

Коричневый налет на свечах

Некоторые водители автомобилей, использующих бензиновое топливо добросовестно подходят к выбору заливаемой «основы». Ни для кого не секрет, что первые поколения топливного ряда не отличаются «чистотой», и очень часто содержат большое количество примеси и отложений, невидимые для невооруженного взора. Тем не менее воздействие как на свечи, так и на всю движимую составляющую автомобиля они имеют.

Топливо низкого качества довольно часто является виновником засорения присадок. На практике, такое влияние проявляется коричневым нагаром на изоляторе свечи зажигания. Инжектор автомобиля, в связи с засорением, не способен справится со своими обязанностями, и бензин начинает полностью заливать свечу. Электрод стандартной свечи не способен выжечь весь бензин, которые его окружает, и часть его оседает на стенках самого устройства зажигания.

Образовавшийся нагар на свечах

На деле, постоянное нахождение во влажных условиях ведет к неисправностям свечей зажигания. Ранее осевший на стенках бензин высыхает, и вырабатываемая искра подвергает еще большему тепловому воздействию саму систему зажигания. Образованный коричневый нагар на изоляторе свечи зажигания и есть продукт повторного использования бензина.

Очень часто, водители, столкнувшиеся с подобной проблемой, жалуются на то, что двигатель начинает «троить». Не исключено, что никаких проблем с эксплуатацией не возникнет, и о подобном инциденте водитель авто узнает только во время прохождения очередного ТО.

Желтый налёт на свечах

Желтый цвет налета на свечах зажигания

Другой проблемой, которая подстерегает владельцев автомобилей, использующих топливную основу низкого качества является «трудный старт». На деле это проявляется желтым налетом на свечах зажигания. Основной причиной подобной ситуации является недостаточное количество топливной основы в зажигательной смеси. Желтые ободки изолятора сигнализируют о превышающих показателях свинца в заправляемом бензине.

Ничего страшного в такой ситуации не прогнозируется, и необоротных изменений от недолгого использования дешевого топлива не предвидится. Другое дело, если подобная проблема было проигнорирована. В таких ситуациях, водителей, помимо проблем со свечами ожидают системные нарушения всей силовой установки.

Решить данную проблему можно легко и просто. Эксперты советуют перейти на другой вид топлива, заменить масло, и предварительно детально промыть топливную систему. Проделав подобные манипуляции, не забудьте заменить и сами свечи – на старых всё еще будут находиться частички свинца, и повторное использование таких свечей приведет к повторному загрязнению.

Наглядный пример образовавшегося налёта

Заключение

Обращайте огромное внимание на собственные свечи, во время их периодичной замены. Имеющийся на них налет – это первый индикатор возможных нарушений в двигателе автомобиля. В норме, после проводимой диагностики нагар на свечах отсутствует или имеет слегка сероватый цвет. Следует помнить, что почти все нарушения со свечами зажигания связаны с использованием некачественного топлива. Коричневый изолятор свечи, или другого цвета сигнализируют о срочной замене топливной основы.

Устройство свечи зажигания

При всем разнообразии конструкций, любая искровая свеча зажигания (рис.9) включает 8 себя керамический изолятор, металлический корпус, электроды и контактную головку для соединения с высоковольтным проводом.

Центральный электрод установлен в канале изолятора, имеющем переменный диаметр. Головка электрода опирается на коническую поверхность канала изолятора в месте перехода от большего диаметра к меньшему. Рабочая часть центрального электрода выступает на величину от 1.0 до 5.0 мм из изолятора. Закрепление электрода в канале изолятора и герметизацию этого соединения осуществляют с использованием стеклогерметика. Он представляет собой смесь специального технического стекла и порошка металла. Стекло должно иметь коэффициент термического расширения одинаковый с этим коэффициентом у керамики. В этом случае герметизирующая пробка не разрушится при изменениях температуры в процессе эксплуатации. Порошок могалла (медь или свинец) добавляют в стекло для придания ему электрической проводимости.

Рис. 9 — Устройство искровой свечи зажигания: 1 — контактная гайка: 2 — оребрение изолятора (барьеры для тока уточки): 3 — контактный стержень: 4 — керамический изолятор: 5 — металлический корпус, б — пробка стеклогерметика. 7 — уплотнительное колыю: 8 — теплоотводящая шайба: 9 — центральный электрод. 10 — тепловой конус изолятора: 11 — рабочая камора: 12 боковой электрод -массы-: h — искровой зазор

Сборку сердечника (изолятора в сборе с центральным электродом и контактным стержнем) осуществляют в следующем порядке. Электрод устанавливают в канале изолятора и сверху засыпают порошкообразный стеклогерметик или укладывают ого в виде таблетки. Затем в канал изолятора устанавливают контактную головку. До запрессовки стеклогерметик занимает больший объем, чем после этой операции, и контактный стержень не может полностью войти в канал изолятора Он примерно на треть длины выступает над изолятором.

Заготовку нагревают до температуры 700-900 «С и с усилием в несколько десятков килограммов контактный стержень вводят о размягченный под воздействием температуры стеклогерметик. При этом он затекает в зазоры между каналом изолятора, головкой центрального электрода и контактной головкой. После остывания стеклогерметик затвердевает и надежно закрепляет обе детали в канале изолятора Между торцами электрода и контактной головки образуется герметизирующая пробка высотой от 1.5 до 7,0 мм, полностью перекрывающая канал изолятора от прорыва газов

В случае необходимости встроить в цепь центрального электрода электрическое сопротивление для подавления электромагнитных помех применяют резистивный стеклогерметик. После остывания герметизирующая пробка приобретает электрическое сопротивление необходимой величины.

Сердечник устанавливают в корпусе свечи так, что он соприкасается своей конической поверхностью с соответствующей поверхностью внутри корпуса. Между этими поверхностями устанавливают герметизирующую -теплоотводящую» шайбу (медную или стальную).

Закрепление сердечника осуществляют завальцовкой буртика корпуса на поясок изолятора. Герметизацию по соединению изолятор — корпус осуществляют методом осадки корпуса в нагретом состоянии (термоосадкой).

Боковой электрод -массы» прямоугольного сечения приваривают к торцу корпуса и изгибают в сторону центрального. На цоколь корпуса с упором в плоскую опорную поверхность устанавливают уплотнительное кольцо, предназначенное для герметизации соединения свеча — двигатель.

На резьбовую часть контактного стержня устанавливают контактную гайку, если это требуется конструкцией наконечника высоковольтного провода. В некоторых свечах контактный стержень не имеет резьбовой головки, она сразу же штампуется в форме контактной гайки.

ИЗОЛЯТОР

Для обеспечения бесперебойности искрообразования изолятор должен обладать необходимой электрической прочностью даже при высокой рабочей температуре. Напряжение, прикладываемое к изолятору в процессе работы двигателя, равно напряжению пробоя искрового зазора. Это напряжение возрастает с увеличением давления и величины зазора и уменьшается по мере возрастания температуры. На двигателях с классической системой зажигания используются свечи с искровым зазором 0.5-0,7 мм. Максимальная величина напряжения пробоя в этих условиях не превышает 12-15 кВ (амплитудное значение). На двигателях с электронными системами зажигания установочный искровой зазор составляет 0,8-1,0 мм. В процессе эксплуатации он может увеличиться до 1,3-1,5 мм (у обеих систем). При этом напряжение пробоя может достигать 20-25 кВ.

Конструкция изолятора относительно проста — это цилиндр с осевым отверстием для установки центрального электрода.

в средней части изолятора имеется утолщение, так называемый -поясок- для соединения с корпусом. Ниже пояска расположена более тонкая цилиндрическая часть — -дульце-, переходящая в тепловой конус. В месте перехода от дульца к тепловому конусу расположена коническая поверхность, предназначенная для установки между изолятором и корпусом герметизирующей теплоотводящей шайбы. Выше пояска расположена -головка’, а в месте перехода от пояска к головке расположено плечико под завальцовку буртика корпуса при сборке свечи.

Допустимая, с учетом коэффициента запаса прочности, толщина стенок определяется электрической прочностью материала изолятора. По отечественным стандартам изолятор должен выдерживать испытательное напряжение от 18 до 22 кВ (действующее значение), что больше амплитудного в 1.4 раза Длина головки изолятора определяется напряжением поверхностного перекрытия и выполняется в пределах от 15 до 35 мм. У большинства автомобильных свечей эта величина около 25 мм. Дальнейшее увеличение малоэффективно и приводит к снижению механической прочности изолятора. Для исключения возможности электрического пробоя по поверхности изолятора его головку снабжают кольцевыми канавками (барьерами тока) и покрывают специальной глазурью для защиты от возможного загрязнения.

Функцию защиты от поверхностного перекрытия со стороны камеры сгорания выполняет тепловой конус. Эта важнейшая часть изолятора при относительно небольших размерах выдерживает без перекрытия по поверхности указанное выше напряжение.

Первоначально в качестве материала изолятора применяли обычный фарфор. но такой изолятор плохо сопротивлялся тепловому воздействию и имел низкую механическую прочность.

С увеличением мощности двигателей потребовались изоляторы более надежные. чем фарфоровые. Продолжительное время применяли слюдяные изоляторы. Однако при использовании топлив с присадкой свинца слюда разрушалась. Изоляторы снова стали изготавливать керамическими, но не из фарфора, а из особо прочной технической керамики.

Наиболее распространенной и экономически целесообразной для производства изоляторов является технология изостатического прессования, когда из заранее подготовленных компонентов изготавливают гранулы необходимого состава и физических свойств. Из гранул при высоком давлении прессуют заготовки изоляторов, шлифуют до необходимых размеров с учетом усадки при обжиге, а затем однократно обжигают.

Современные изоляторы изготавливают из высокоглиноземистой конструкционной керамики на основе оксида алюминия. Такая керамика, содержащая около 95% оксида алюминия, способна выдержать температуру до 1600 ‘С и имеет высокую электрическую и механическую прочность.

Важнейшим преимуществом керамики из оксида алюминия является то, что она обладает высокой теплопроводностью. Это существенно улучшает тепловую характеристику свечи, так как через изолятор проходит основной поток тепла, поступающий в свечу через тепловой конус и центральный электрод (рис. 10).

КОРПУС

Металлический корпус предназначен для установки свечи в двигатель и обеспечивает герметичность соединения с изолятором. К его торцу приваривается боковой электрод, а в конструкциях с кольцевым искровым зазором корпус непосредственно выполняет функцию электрода «массы».

Корпус изготавливают штамповкой или точением из конструкционных малоуглеродистых сталей.

внутри корпуса имеется кольцевой выступ с конической поверхностью. на которую опирается изолятор. На цилиндрической части корпуса выполнена кольцевая проточка, так называемая термоосадочная канавка. В процессе сборки свечи верхний буртик корпуса завальцовывают на поясок изолятора. Затем его нагревают и осаживают на прессе, при этом термоосадочная канавка подвергается пластической деформации, и корпус плотно охватывает изолятор. В результате термоосадки корпус оказывается в напряженном состоянии, что обеспечивает герметичность свечи на весь срок службы.

Рис. 10. Тепловые потоки в изоляторе свечи

ЭЛЕКТРОДЫ

Как сказано выше, для улучшения эффективности воспламенения электроды свечи должны быть как можно более тонкими и длинными, а искровой зазор должен иметь максимально допустимую величину. С другой стороны, для обеспечения долговечности электроды должны быть достаточно массивными.

Поэтому, в зависимости от требований к мощности, топливной экономичности и токсичности двигателей, с одной стороны, и требований к долговечности свечи с другой стороны, к каждому типу двигателя разрабатывалась своя конструкция электродов.

Появление биметаллических электродов позволило в определенной степени решить эту проблему, так как такой электрод имеет достаточную теплопроводность. В отличие от обычного «монометаллического» он при работе на двигателе имеет меньшую температуру и соответственно больший ресурс. В тех случаях, когда требуется увеличить ресурс, применяют два электрода «массы- (рис.11). На свечах зарубежного производства с этой целью применяют три и даже четыре электрода. Отечественная промышленность выпускает свечи с таким количеством электродов только для авиационных и промышленных газовых двигателей. Следует отметить, что с увеличением числа электродов снижается стойкость к образованию нагара и затрудняется очистка от нагара.

К материалу электродов предъявляются следующие требования высокая коррозионная и эрозионная стойкость: жаростойкость и окалиностойкость: высокая теплопроводность; достаточная для штамповки пластичность. Стоимость материала не должна быть высокой Наибольшее распространение в отечественной промышленности для изготовления центральных электродов свечей зажигания получили жаростойкие сплавы: железо-хромтитан, никель-хром-железо и никельхром с различными легирующими добавками

Рис. 11. Свеча А26ДВ-1 с двумя боковыми электродами «массы-

Боковой электрод «массы» должен обладать высокой жаростойкостью и стойкостью к коррозии. Он должен обладать хорошей свариваемостью с обычной конструкционной сталью, из которой изготавливают корпус, поэтому применяют сплав никель — марганец (например. НМц-5). Боковой электрод должен обладать хорошей пластичностью для обеспечения возможности регулирования искрового зазора.

С целью снижения гасящего влияния электродов при доработке свечей на электродах выполняют канавки, в электроде -массы» выполняют сквозные отверстия. Иногда боковой электрод разделяют на две части, превращая одноэлектродную свечу в двухэлектродную.

ВСТРОЕННЫЙ РЕЗИСТОР

Искровой разряд является источником электромагнитных помех, в том числе радиоприему. Для их подавления между центральным электродом и контактной головкой устанавливают резистор, имеющий при температуре 25±10 ‘С электрическое сопротивление от 4 до 13к0м. В процессе эксплуатации допускается изменение величины этого сопротивления в диапазоне 2-50 кОм после воздействия температуры от -40 до +300 ‘С и импульсов высокого напряжения.

ДОПОЛНИТЕЛЬНЫЙ ИЗОЛЯТОР

Даже небольшие потери энергии зажигания приводят к ослаблению искры со всеми неприятными последствиями: ухудшение пуска, неустойчивая работа на холостом ходу, потеря мощности двигателя, перерасход топлива, рост токсичности отработавших газов и т. д. Если поверхность изолятора покрыта нагаром, грязью или просто влагой, происходит утечка тока «на массу». Она обнаруживается в темноте в виде коронного разряда по поверхности изолятора. Утечка по загрязненной поверхности теплового конуса изолятора в камере сгорания двигателя может привести к отказу в искрообразовании. Наиболее радикальным способом повышения электрической прочности изоляции является установка между корпусом и контактной головкой свечи дополнительного изолятора в виде керамической втулки. Таким образом, свеча приобретает двойную защиту от утечек тока «на массу».

Данное техническое рошенио защищено патентом и реализовано у нас в стране ЗАО «Автоконинвест» (Москва).

ФОРКАМЕРНЫЕ СВЕЧИ

Рис. 12. Форкамерная свеча зажигания

Известны различные варианты устройства свечи, у которых рабочая камера выполнена в виде форкамеры. Их используют с целью улучшения сгорания рабочей смеси. Форкамерные свечи подобны свечам для спортивных форсированных двигателей, где электроды для защиты от перегрева установлены глубоко внутри рабочей камеры корпуса. Отличие заключается в том. что отверстие. соединяющее рабочую камеру (форкамеру) с цилиндром двигателя, делают специальной формы. При сжатии свежая смесь поступает в форкамеру, искровой разряд возникает в области вихревого потока, и образование первичного очага воспламенения становится интенсивнее. Благодаря этому обеспечивается быстрое распространение пламени в форкамере. Давление быстро возрастает и выбрасывает факел пламени, проникающий в камеру сгорания двигателя и интенсифицирующий воспламенение даже сильно обедненной рабочей смеси.

При перетекании горящих газов из форкамеры в цилиндр двигателя, в связи с турбулизацией горючей смеси, ускоряется и становится более эффективным процесс сгорания. Это. в свою очередь, может привести к улучшению показателей, характеризующих топливную экономичность и токсичность отработавших газов.

Недостатки форкамерных свечей заключаются в том, что велико гасящее влияние электродов, а стойкость к образованию нагара мала. Вентиляция форкамеры затруднена и горючая смесь в ней содержит повышенное количество остаточных газов. При перетекании горящих газов из форкамеры в цилиндр возникают дополнительные тепловые потери. Один из вариантов форкамерной свечи представлен на рис. 12. 


О свечах!

Автомобильные свечи несомненно являются важнейшим элементом всего ДВС (двигатель внутреннего сгорания). Нет искры — не работает двигатель! Казалось бы, из-за такой мелочи, такой механизм не работает… Свечи, как впрочем, и все в этом мире — не вечны, на их рабочих поверхностях со временем образуется нагар, и если его не устранить вовремя есть возможность в один прекрасный день отправиться на работу на такси… Я думаю, намек понятен!? Устройство свечи. Свеча состоит из десяти основных деталей:

 

 

УСТРОЙСТВО СВЕЧИ

 

     

ТЕПЛОСТОЙКОСТЬ СВЕЧИ.

 

     Большинство производителей свечей применяют нумерацию арабскими цифрами для идентификации изолятора. Эти цифры обозначают тепловое число т.е. теплостойкость свечи. Теплостойкость свечи определяется способностью выделять на головку двигателя тепло принимаемое на рабочей части свечи под воздействием продуктов сгорания.

 

      Обычно теплостойкость регулируется изменением длины теплового конуса изолятора. Свечи с длинным изолятором называются горячими. С коротким изолятором холодными.

 

   

       

У горячих свечей площадь нагрева больше в следствии длинного изолятора.  Дорожка у бега тепла тоже длинная. Поэтому температура теплового корпуса изолятора увеличивается.

У холодных свечей площадь нагрева маленькая. И температура теплового корпуса изолятора уменьшается из-за короткой дорожки бега тепла.

На свечах Denso тепловое число обозначено от 9~37. Меньшие цифры обозначают горячие свечи, а большие холодные.

Для легковых автомобилей обычно используются цифры 16 или 20, а для гоночных от 27 и выше.

   

РАЗЛИЧНЫЕ КОНСТРУКЦИИ СВЕЧЕЙ.  

 

Не проекционные свечи. 
Применяются для мотоциклов с двухтактным двигателем и для двигателей общего назначения. Для предотвращения прилипания остатков сгорания к изолятору он отведён от торца корпуса (внутрь).

Проекционные свечи.  
Изолятор выдвинут на 1,5 мм за торец корпуса.  Большинство легковых автомобилей применяют свечи такого типа. Благодаря выдвинутому изолятору в проекционных свечах они легко нагреваются при пробеге на низких скоростях и легко охлаждаются втягиваемой топливовоздушной смесью на высоких скоростях. Их можно широко применять при различных условиях пробега.

Экстра-проекционные свечи. 
Изолятор выдвинут на 2,5 мм за торец корпуса. Такие свечи применяются в большинстве автомобилей TOYOTA.

Выступающие свечи. 
Центральный электрод далеко выступает наружу. Благодаря далеко выступающему электроду искровой разрядник глубоко входит в камеру сгорания, пламя распространяется быстро, что позволяет достичь возгоранию более обеднённой топливовоздушной смеси.

 

Высокотехнологичные свечи:


1. Свечи с U-образным желобком U-Groove

 

2. Платиновые долговечные свечи Plantinum Long Life

3. Иридиевые супер-долговечные Iridium Long Life. 

4. Иридиевые свечи IRIDIUM POWER с самым маленьким в мире диаметром электрода 0,4 мм.

5. Высокачественные долговечные свечи IRIDIUM TOUGH с иридиевым электродом 0,4 мм и платиновым заземляющим электродом .

        Свечи с U-образным желобком.

 

     В связи с введением контроля над выхлопными газами возникла необходимость применения двигателей работающих на обеднённых топливовоздушных смесях и свечей обеспечивающих превосходное воспламенение и полное сгорание.

 

     Способность свечи стабильно и надёжно воспламенять топливовоздушную смесь можно повысить, увеличив искровой промежуток, либо уменьшить диаметр центрального электрода за счёт применения при его изготовлении благородных металлов.

 

Но большой искровой промежуток приводит к увеличению требуемого напряжения, а применение благородных металлов к увеличению стоимости свечи. Всех этих недостатков лишена свеча Denso с U-образным желобком обладающая высокими характеристиками воспламенения топливовоздушной смеси.

 

 

Сравним процесс роста ядра пламени в обычных свечах и в свечах с заземляющим электродом, имеющим желобок.

 

                    

Обычная свеча       Свеча с U-образным желобком

 

      В обычной свече ядро пламени возникающего от электрического разряда растёт и закантачивает центральный и заземляющий электрод, образуя искровой промежуток. Поскольку температура электродов ниже, чем в ядре пламени температура последнего поглощается и препятствует росту пламени. Это называется погашающим эффектом электродов.

 

     В отличие от этого свеча с заземляющим электродом имеющим U-образный желобок размещённым в разрядной части заземляющего электрода погашающий эффект снижается, поддерживается рост ядра пламени, и тем самым делается возможным более полное сгорание топливовоздушной смеси. Это позволяет достичь экономии топлива и большей чистоты выхлопных газов.

      Долговечные свечи Plantinum Long Life.

    Новым направлением в области производства двигателей является несменяемость деталей.

 

     К свечам предъявляется требование выдерживать пробег не менее 100 тыс. км. Что бы решить эту трудную проблему разработаны специальные диски из платинового сплава, обладающие высокой устойчивостью к окислению и воздействию электрического разряда. Эти диски привариваются к концу центрального электрода и к разрядной части заземляющего электрода на противоположной стороне от центрального электрода, что создаёт постоянный разряд между платиновыми дисками. Такое конструктивное решение позволило обеспечить ресурс свечи равный 100 тыс. км.

     Такие платиновые свечи впервые в мире были использованы на автомобилях высокого класса TOYOTA 1982 году. С тех пор ведущие автопроизводители Мира используют эти платиновые свечи.

 

 

   

Иридиевые супер-долговечные Iridium Long Life.

 

    Это качественно новые свечи реализовавшие ресурс равный 200 тыс. км. и обладающие высокой степенью воспламенения.

 

    Для повышения воспламеняемости свечи наиболее эффективным является уменьшение диаметра центрального электрода, но достижения одновременного уменьшения диаметра центрального электрода и повышения долговечности свечи было довольно сложной задачей. Разработаны иридиевые сплавы обеспечив высокую температуру плавления, устойчивость к окислению и высокую износостойкость применив электрод диаметром 0,7 мм долговечную конструкцию. Сложная задача одновременного уменьшения диаметра и достижения долговечности была решена.

 

 

     Свечи IRIDIUM POWER.

 

 

    Отличительной особенностью их является применение иридиевого электрода с самым маленьким в мире диаметром 0,4 мм.

 

 

DENSO добилось успеха в разработке иридиевого сплава обеспечив высокую температуру плавления, устойчивость к окислению и высокую износостойкость применив электрод диаметром 0,4 мм.

 

    В свечах IRIDIUM POWER, благодаря соединению ультратонкого иридиевого электрода с коническим заземляющим U-образным электродом, сведён к минимуму погашающий эффект электрода и обеспечено более надёжное сгорание и высокая воспламеняемость. Благодаря такому надёжному сгоранию стали возможными быстрый запуск, устойчивый ровный холостой ход и превосходное наращивание скорости.

 

 

     Кроме того, высокое тепловое число свечей IRIDIUM POWER делает их наиболее подходящими для гоночных соревнований.

 

 

    

     Свечи IRIDIUM TOUGH.

     Эти свечи так же как IRIDIUM POWER имеют высокую воспламеняемость и кроме того рассчитаны на потребителей требующих долговечности свечей наравне с платиновыми. Для центрального электрода, так же как в свечах IRIDIUM POWER, используется ультратонкий иридиевый электрод диаметром 0,4 мм, но в заземляющем элетроде применено платиновое покрытие, что позволяет достичь ресурса равного 100 тыс. км. пробега на равне с платиновыми свечами.

 

 

 

    В настоящее время это наиболее подходящие свечи для потребителей пользующиеся машинами со стандартным оснащением платиновыми свечами и требующих дальнейшего повышения качества.

   

    Свечи супер-воспламенения (игла к игле).

    DENSO выпустила свечи типа «сверх воспламенение» с центральным иридиевым электродом 0,55 мм и боковым платиновым электродом 0,7 мм. Поскольку при работе свечи температура электродов ниже, чем в ядре пламени, температура последнего поглощается и препятствует росту пламени. Это называется погашающим эффектом электродов. В данном типе свечей погашающий эффект снижается, поддерживается рост ядра пламени и тем самым делается возможным более полное сгорание топливовоздушной смеси.

    Преимущества:

—      Устойчивость к образованию нагара

—     Самоочищение в холодных условиях

—      Начальные потери на охлаждение существенно снижены

  

    

     Свечи типа ТТ.

Также разработаны свечи типа ТТ — это свечи зажигания с двойным выступом (с двумя иглами), с центральным электродом из никеля с уменьшенным диаметром 1.5 мм и боковым электродом с наконечником так же уменьшенного диаметра в 1.5 мм.

          Основные преимущества:

·  Свечи зажигания с высокой поджигающей способностью

·  Достигнутая эффективность зажигания близка к иридиевым свечам сегмента премиум

·  Конструкция не требует применения дорогостоящих драгоценных металлов, таким образом, достигнута лучшая эффективность за меньшие деньги

·  Самая лучшая никелевая свеча для запуска в холодных условиях (даже при экстремально холодных условиях)

·  Экономия топлива

·  Меньше выбросы

·  Приемистость и эффективность


 

 

   

Обнаружение неисправностей.

    Свеча является единственной деталью из электрооборудования двигателя входящей в камеру сгорания её можно сравнительно легко вынимать и легко вставлять. При возникновении неполадок с двигателем для обнаружения неисправности следует проверить состояние свечей.

 

Нормальное загрязнение.  При использовании свечей в нормальном режиме тепловой конус изолятора будет белого или светло-коричневого цвета, а износ искрового промежутка сравнительно невелик.

Углеродное загрязнение. Если эксплуатировать свечи в жёстких или ненормальных условиях на рабочей части свечи возникнут различные явления. Например, при повторяющихся поездках с низкой скоростью образуются углеродистые отложения.

Загрязнение свинцом.   Из-за наличия в бензине свинцовых присадок возникают свинцовые загрязнения или оплавления, если по тепловому числу свечи не соответствуют данному двигателю или если нормальный процесс сгорания нарушен. 

Перегревание. Очень белый изолятор с мелкими черными отложениями и преждевременная эрозия электрода. Это происходит, когда свеча недостаточно затянута, двигатель недостаточно прогрет, зажигание слишком раннее.

Раннее зажигание. Расплавленный или прожженный  центральный или боковой электрод, раковины в изоляторе и металлические отложения на изоляторе.

   

 Установка свечей. 

 

 

1. Сначала установите свечу и без усилия закрутите её до упора.

 

2. Затем затяните свечу специальным свечным ключом на указанный момент в таблице.


 

Рекомендуем применять правильный момент затяжки:


 

  

 

Хотя свечи сравнительно легко вынимать и вставлять, неправильное обращение с ними может вызвать поломку свечи или двигателя.

 

 

Если свеча привинчена слабо, то контакт между свечёй и головкой цилиндра ухудшается не достигается достаточно теплопроводность, а в худшем случае свеча может расплавиться.

Если же свеча привинчена сильно, может поломаться винтовая часть.


    

Последствия чрезмерной затяжки свечей:

 

     Когда уплотнительному кольцу уже некуда больше сжиматься, происходит деформация корпуса свечи, она вытягивается, а шестигранник остается на месте. Резьбовая часть при закручивании уходит глубже в головку блока цилиндров. Изолятор начинает свободно прокручиваться в корпусе, нарушается герметичность свечи. Ухудшается отвод тепла от центрального электрода, в таком состоянии свеча не очищается и перестает работать. При продолжении закручивания свечи она разрушается – резьбовая часть отделяется от корпуса.

 

www.japanmotorservice.com/articles/svechi/

Краткая история минеральных изоляторов свечей зажигания

Сегодня мы рассмотрим то, о чем, я знаю, вы все задавались вопросом в течение многих лет. Что ж, удивляться тому, что просветление по этому волнующему вопросу уже здесь!

ПОЧЕМУ НУЖНЫ ИЗОЛЯТОРЫ СВЕЧ ЗАЖИГАНИЯ?

История технологий — это действительно круто. Надеюсь, вы получите от этого столько же заряда, сколько и я.

В 1902 году Готтлоб Хонольд и Роберт Бош построили первую настоящую систему зажигания от магнето с первыми в мире высоковольтными свечами зажигания. Хотя с тех пор было внесено много улучшений, основные принципы зажигания газовых двигателей, разработанные Хонольдом и Бошем, остались прежними.

Конструкция свечи зажигания

С 1902 года общая конструкция высоковольтных свечей зажигания состоит из трех частей:

  • Центральный электрод. Это проводящий материал, обычно металл, который переносит электрический заряд в камеру сгорания бензинового двигателя.
  • Изолятор. Он оборачивается вокруг центрального электрода и изолирует его.
  • Корпус вилки или кожух. Это токопроводящая оболочка вокруг изолятора и центрального электрода. Второй электрод крепится к корпусу вилки. Между центральным и вторым электродом всегда имеется воздушный зазор.

Когда заряд подается на центральный электрод свечи зажигания, этот заряд пролетает через воздушный зазор между электродами в виде искры. Если момент правильный, то искра воспламенит топливно-воздушную смесь в цилиндре двигателя. Таким образом, свеча зажигания — это то, что зажигает горение в бензиновом двигателе внутреннего сгорания. Само собой разумеется, важно, чтобы свеча зажигания работала хорошо.

Часть рабочего колодца включает эффективную изоляцию. Плохо, если электричество может перейти от центрального электрода к токопроводящему корпусу вилки в другом месте, кроме электродов. Следовательно, материал, используемый в качестве изолятора, имеет решающее значение для хорошей работы свечи зажигания.

Фарфоровые изоляторы свечей зажигания

В первых изоляторах свечей зажигания использовался так называемый огнеупорный фарфор. Это керамика, изготовленная из высококачественной глины, способной выдерживать действительно высокие температуры. Глинисто-минеральный каолинит является основным ингредиентом. Если вы видели лабораторную посуду из белой керамики, используемую для нагревания и плавления предметов, то это один из примеров огнеупорного фарфора. В Соединенных Штатах компания Coors была одним из крупнейших производителей огнеупорного фарфора.

Огнеупорный фарфор был логичным первым выбором для изоляторов свечей зажигания, но у него были некоторые проблемы, которые были быстро обнаружены. Примечательно, что фарфор был хрупким. При нагревании он также не расширялся так сильно, как металл в электроде или корпусе свечи. В результате самые ранние фарфоровые изоляторы недолговечно ломались.

Слюдяные изоляторы свечей зажигания

Одним из первых материалов, используемых для добавления или замены фарфора, была слюда.

  • Слюда представляет собой силикатный минерал, отличающийся сочетанием термостойкости, гибкости и прочности.
  • Разновидность этого минерала, называемого книжной слюдой, веками использовалась для изготовления окон печей.
  • Книжную слюду было легко достать и она стоила недорого.

Слюда использовалась в свечах зажигания вплоть до Второй мировой войны. Пример слюды в свече зажигания показан на рисунке ниже:

Слюдяная свеча зажигания из автомобильного руководства 1930-х годов. Цифры соответствуют следующим частям свечи зажигания:
1) Центральный электрод,
2) Терминальная гайка,
3) Изолятор, или электродная гайка,
4) Изолятор кольца с микой
5). 6) Монтажная гайка,
7) Медно-асбестовая шайба,
8) Корпус заглушки,
9) Боковой электрод.

Стеатитовые изоляторы свечей зажигания

Одной из проблем, связанных с использованием слюды в качестве изолятора, было образование углеродистых отложений, которые нарушали проводимость электричества через центральный электрод. Кроме того, слюда не так хорошо изолировала от блуждающих электрических токов, как фарфор.

Одним из других минералов, используемых для компенсации недостатков слюды и фарфора, был стеатит. Большинство людей знают стеатит под его общим названием мыльного камня. Это камень, который в основном состоит из талька. Поскольку она не такая прочная и гибкая, как слюда, ее часто использовали со слюдой, например, в конструкции свечи зажигания, показанной ниже:

Свечи зажигания Lodge были английской маркой. Они являются еще одним примером использования изолятора на минеральной основе. В этих довоенных заглушках использовалась как слюда, так и стеатит.

Андалузит-силлиманитовые изоляторы

Силлиманит использовался в качестве изолятора только в свечах зажигания марки Champion с 1921 по 1945 год. , недалеко от Долины Смерти в Калифорнии.

Андалузит имеет химическую формулу Al 2 SiO 5 . Когда вы нагреваете этот минерал, он превращается в минеральную форму силлиманита, которая также имеет химическую формулу Al 9.0104 2 SiO 5 . Разница между этими двумя минералами заключается в том, что силлиманит является превосходным материалом как для тепло-, так и для электроизоляции. Он превосходит фарфор, слюду, стеатит и их комбинации.

Месторождение андалузита на шахте Чемпиона было единственным в своем роде минеральным телом. Ни у кого в мире не было ничего подобного. По сути, у Champion была монополия на этот материал.

Свечи зажигания с силлиманитовой изоляцией были лучшими из доступных. В каждом гоночном автомобиле и почти в каждом двигателе самолета по всему миру использовались свечи Champion из-за их надежности и долговечности.

Еще одна шахта по добыче андалузита и силлиманита в конце концов открылась за пределами Лавлока, штат Невада, для производства изоляторов для свечей зажигания. Он тоже принадлежал и управлялся Champion.

КОНЕЦ ИЗОЛЯТОРОВ ДЛЯ СВЕЧ ЗАЖИГАНИЯ НА МИНЕРАЛЬНОЙ ОСНОВЕ

Другим производителям свечей зажигания было наплевать на доминирование Champion и его монополию на андалузит и силлиманит. В 1930-х годах как Siemens в Германии, так и AC Spark Plugs в США первыми использовали спеченный оксид алюминия в качестве изоляционного материала. Спеченный оксид алюминия имеет почти такое же тепловое расширение, как и металлические части вилки, а также в три раза большую прочность и изоляционную способность по сравнению с силлиманитом. Как только Вторая мировая война закончилась, спеченный оксид алюминия заменил все изоляторы свечей зажигания на минеральной основе, потому что это действительно превосходный материал для работы.

Шахта Champion в округе Инио, штат Калифорния, и по сей день остается одним из самых известных мест добычи полезных ископаемых среди энтузиастов.

Все изображения, использованные в этой статье, являются общественным достоянием.

Твитнуть

Следуй за мной

Свеча зажигания | Mein Autolexikon

Если рассматривать базовую конструкцию свечи зажигания, то за последние 50 лет в ней не произошло серьезных изменений. Как всегда, свеча зажигания состоит из металлического сердечника, заключенного в керамический изолятор…

Функция

Свеча зажигания играет важную роль в бензиновых двигателях. Он отвечает за воспламенение топливно-воздушной смеси. Качество этого зажигания влияет на несколько факторов, которые имеют большое значение как для вождения, так и для окружающей среды. К ним относятся плавность хода, производительность и эффективность двигателя, а также выбросы загрязняющих веществ.

Если учесть, что свеча зажигания должна воспламеняться от 500 до 3500 раз в минуту, становится ясно, насколько велик вклад современной технологии свечей зажигания в соблюдение действующих норм выбросов и снижение расхода топлива.

Воспламенение (воспламенение)

Если рассматривать базовую конструкцию свечи зажигания, то за последние 50 лет в ней не произошло серьезных изменений. Как всегда, свеча зажигания состоит из металлического сердечника, помещенного в керамический изолятор. Он, в свою очередь, окружен металлическим кожухом с резьбой, которая ввинчивается в головку блока цилиндров, и обычно имеет шестигранную секцию наверху, в которой размещается гнездо свечи зажигания и позволяет устанавливать или снимать свечи зажигания с помощью искры. штекерный ключ.

 

Основное назначение конструкции заключается в обеспечении замыкания электрической цепи при высоком напряжении на свече зажигания искрой, которая проскакивает от среднего электрода к заземлителю.

Соединение

Соединение выполнено в виде соединения SAE или резьбы 4 мм. Кабель зажигания или стержневая катушка подключается к разъему. В обоих случаях связанное здесь высокое напряжение должно передаваться на другой конец свечи зажигания.

Керамический изолятор выполняет две задачи. Его основное назначение – изоляция, благодаря чему он предотвращает прорыв высокого напряжения на массу автомобиля (= минус) и отводит теплоту сгорания к головке блока цилиндров. Волнообразные барьеры тока утечки на внешней стороне изолятора предотвращают утечку напряжения на массу автомобиля. При этом они удлиняют путь, который нужно пройти, и увеличивают электрическое сопротивление, тем самым обеспечивая, чтобы энергия шла по пути наименьшего сопротивления — пути через средний электрод. Чтобы обеспечить электромагнитную совместимость (ЭМС) и, следовательно, безотказную работу бортовой электроники, внутри свечи зажигания для подавления помех используется расплав стекла. Средний электрод стандартной свечи зажигания состоит в основном из никелевого сплава.

Искра должна перескочить с конца этого электрода на заземляющий электрод. Металлический корпус прочно соединен с головкой блока цилиндров с помощью резьбы и, таким образом, играет важную роль в отводе тепла, отводя большую часть тепла, образующегося при сгорании, через это соединение. Уплотнительное кольцо предотвращает выход продуктов сгорания через свечу зажигания даже при высоком давлении сгорания. При этом предотвращается потеря давления. Кроме того, он отводит тепло к головке блока цилиндров и выравнивает различные свойства расширения головки блока цилиндров и корпуса свечи зажигания. Внутренние уплотнения создают газонепроницаемое соединение между изолятором и металлическим корпусом, обеспечивая оптимальную герметизацию.

Заземляющий электрод стандартной свечи зажигания изготовлен из никелевого сплава. Он представляет собой противоположный полюс среднего электрода при нормальной работе.

Температура и тепловой поток

Современная свеча зажигания должна быть адаптирована индивидуально для соответствия требованиям различных конструкций двигателей и условий движения. Поэтому не может быть одной свечи зажигания, которая без проблем работала бы во всех двигателях. Из-за различий в развитии температуры в соответствующих камерах сгорания в разных двигателях необходимы свечи зажигания с разным калильным числом. Этот рейтинг тепла выражается с использованием так называемого числа рейтинга тепла. Эти тепловые характеристики представляют собой среднюю температуру, измеренную на электродах и изоляторах, соответствующую нагрузке двигателя в каждом случае.

Свечам зажигания требуется специальное температурное окно, чтобы они работали наилучшим образом. Нижним порогом этого окна является температура свечи зажигания 450°C, известная как температура самоочищения. Начиная с этого температурного порога частицы углерода, скопившиеся на кончике изолятора, сгорают.

Если рабочая температура постоянно находится ниже этой точки, электропроводящие углеродные частицы могут накапливаться, образуя отложения до тех пор, пока напряжение воспламенения не потечет по углеродному слою к массе автомобиля вместо образования искры. При температуре свечи зажигания 850 °C и выше изолятор нагревается настолько, что на его поверхности может происходить неконтролируемое воспламенение, известное как калильное зажигание. Такое неконтролируемое, ненормальное сгорание может привести к повреждению двигателя.

Тепловыделение

Тепловыделение сильно различается от двигателя к двигателю. Например, двигатели с турбонаддувом нагреваются значительно сильнее, чем двигатели без наддува. Поэтому для каждого двигателя существует своя свеча зажигания, которая может отводить точно определенное количество тепла к головке блока цилиндров и обеспечивает поддержание оптимального температурного диапазона. Тепловой рейтинг дает информацию о термической стойкости свечи зажигания. У каждого производителя свечей зажигания есть свой способ выражения калильного числа.

Почти 60 % тепла рассеивается через корпус и резьбу свечи зажигания. Уплотнительное кольцо проводит к головке блока цилиндров немногим менее 40 %.

Небольшой оставшийся процент (составляющий 100%) вытекает через средний электрод. Изолятор поглощает тепло в камере сгорания и проводит его внутрь свечи зажигания. Везде, где он соприкасается с корпусом, передается тепло. Увеличивая или уменьшая площадь этой контактной поверхности, можно определить, проводит ли свеча зажигания больше или меньше тепла через корпус. Площадь контактной поверхности больше у свечей зажигания с более высокой термической стойкостью. Для свечей зажигания с меньшей термической стойкостью он меньше.

Охрана окружающей среды

Сегодня, как никогда раньше, защита окружающей среды находится в центре внимания, когда речь идет об автомобилях. Особое внимание уделяется выхлопным газам.

Стандартные свечи зажигания, в частности, подвержены нормальному износу. Когда она перескакивает с заземляющего электрода на средний электрод свечи зажигания, каждая искра удаляет с электродов микроскопически мельчайшие частицы. Как следствие, расстояние между электродами увеличивается на протяжении многих тысяч пройденных километров и возрастает риск пропусков зажигания. Каждый раз, когда свеча зажигания дает осечку, ценный бензин впрыскивается, но не сгорает. В результате происходит значительное увеличение загрязнения окружающей среды из-за увеличения потребления только на километр. Кроме того, несгоревшее топливо в каталитическом нейтрализаторе может воспламениться со взрывом, вызывая повреждения, которые не позволяют каталитическому нейтрализатору обезвреживать опасные вещества, такие как окись углерода, оксид азота и углеводороды, и требуют его замены.

Амортизация

Транспортное средство представляет собой очень сложный технический товар, функция которого может поддерживаться только в том случае, если все компоненты находятся в идеальной гармонии. Регулярное техническое обслуживание необходимо для поддержания этого состояния гармонии и для двигателя, который является одной из самых сложных частей автомобиля. Это включает в себя использование высококачественных свечей зажигания, технические характеристики которых помогают приводу работать без проблем и, таким образом, обеспечивают длительный срок службы.

Безопасность

Свечи зажигания в идеальном рабочем состоянии необходимы для безопасной эксплуатации автомобиля. Поэтому свечи зажигания следует заменять не позднее, чем по истечении интервала замены, предписанного производителем двигателя.

Важно:

Для установки свечей зажигания требуется точно измеренный крутящий момент. Это требует использования специального инструмента, известного как динамометрический ключ.

Если свеча зажигания недостаточно затянута, давление в поршне будет сбрасываться, и свеча зажигания может перегреться. Также существует риск разрушения керамического изолятора свечи зажигания. Это может привести к повреждению поршня и, как следствие, к повреждению двигателя. И наоборот, если установлен слишком высокий крутящий момент, свеча зажигания может оторваться, что может привести к необходимости замены головки блока цилиндров. Даже если этого не произойдет, слишком туго закрученная свеча зажигания может перегреться во время работы, что приведет к повреждению двигателя.

Как работают свечи зажигания?

Уэйн Скраб, automedia.com

Свеча зажигания — это, казалось бы, простое устройство, хотя на него возложена пара разных, но важных заданий. Прежде всего, он создает (буквально) искусственная молния в камере сгорания (головка блока цилиндров) двигателя. Электрическая энергия (напряжение), которую он передает чрезвычайно высока, чтобы создать искру и «зажечь огонь» внутри контролируемый хаос камеры сгорания. Здесь напряжение на свеча зажигания может быть от 20 000 до более чем 100 000 напряжения.

Свечи зажигания с тепловыми характеристиками

Хотя она инициирует искру для воспламенения, свеча зажигания не выдерживает его. Это помогает отводить тепло от сгорания камеры в водяную рубашку головки блока цилиндров.

Способность свечи зажигания отводить тепло от камеры сгорания. определяется «тепловым диапазоном» свечи зажигания. Температура обжига конец свечи зажигания должен находиться на достаточно высоком уровне, чтобы предотвратить загрязнение, но достаточно низкое, чтобы предотвратить преждевременное зажигание. Производители свечей зажигания называют это «тепловыми характеристиками». Тепловые характеристики, или тепловой диапазон свечи зажигания, не имеет ничего общего с количеством передаваемой энергии от системы зажигания через свечу зажигания. Диапазон нагрева свечи зажигания составляет область, в которой свеча зажигания функционирует термически.

Холодные свечи зажигания по сравнению с горячими свечами зажигания

«Холодные» свечи зажигания обычно имеют короткий путь теплового потока. Это приводит к очень быстрая скорость теплопередачи. Кроме того, короткий носик изолятора встречающаяся на холодных свечах зажигания имеет небольшую площадь поверхности, что не позволяет для массивного поглощения тепла.

С другой стороны, «горячие» свечи зажигания имеют более длинный носик изолятора. а также более длинный путь теплопередачи. Это приводит к гораздо более низкой скорости передача тепла окружающей головке блока цилиндров (и, следовательно, водяному пиджак).

Тепловой диапазон свечи зажигания должен быть тщательно выбран, чтобы создать оптимальные тепловые характеристики. Если диапазон нагрева не правильный, вы можно ожидать серьезных неприятностей. Как правило, соответствующий пусковой конец температура (примерно) 900-1450 градусов. Ниже 900 градусов, углерод возможно засорение. Выше этого перегрев становится проблемой.

Повышение напряжения на свече зажигания

С точки зрения работы свеча зажигания подключена к высоковольтной генерируется катушкой зажигания (посредством обычного распределителя или способ электронного средства). Когда электричество течет от катушки, напряжение разница развивается между центральным электродом и заземляющим электродом на свеча зажигания.

Из-за «зазора» свечи зажигания в сочетании с воздушно-топливной смесью (которая действует как изолятор) внутри зазора свеча зажигания не может сразу Огонь.

При повышении напряжения примерно до 20 000 вольт разрыв в пределах свеча зажигания может быть «пробита» и она загорается. Со снятой свечой зажигания от головки блока цилиндров и надлежащим образом заземленным на огонь, вы можете услышать окончательный щелчок. Если условия достаточно темные, вы можете увидеть искру.

Щелчок, который вы слышите, — это, по сути, миниатюрный раскат грома. Искра, которую вы наблюдаете, похожа на миниатюрную форму молнии.

В камере сгорания интенсивное тепло, создаваемое свечой зажигания создает небольшой огненный шар в промежутке. Огненный шар или горение «ядро» расширяется, и цилиндр (по крайней мере, в теории) испытывает полное горение.

Конструкция свечи зажигания

С точки зрения конструкции свечи зажигания могут быть не такими простыми, как вы. считать. По сути, это прецизионное оборудование.

Благодаря людям из Champion Spark Plug мы можем предоставить вам полная разбивка различных функций вилки. Имейте в виду, что огромное большинство свечей зажигания предлагают аналогичные (хотя и не обязательно идентичные) строительство.

На прилагаемых фотографиях вы можете видеть, что многие из вышеперечисленных свечей зажигания функции на самом деле выглядят. Проверь их.

Ребра: Ребра изолятора обеспечивают дополнительную защиту от вторичного напряжения или искры. перекрытие, а также помогает улучшить сцепление резинового колпачка свечи зажигания против корпуса вилки.

Корпус изолятора отлит из алюмооксидной керамики. Чтобы изготовьте эту часть свечи зажигания сухим формованием под высоким давлением используется система. После того, как изолятор отформован, его обжигают в печи до температура, превышающая температуру плавления стали. Результат этого процесса в компоненте, который отличается исключительной диэлектрической прочностью, высокими тепловыми электропроводность и отличная устойчивость к ударам.

Изолятор: Корпус изолятора отлит из алюмооксидной керамики. Чтобы изготовьте эту часть свечи зажигания сухим формованием под высоким давлением используется система. После того, как изолятор отформован, его обжигают в печи до температура, превышающая температуру плавления стали. Результат этого процесса в компоненте, который отличается исключительной диэлектрической прочностью, высокими тепловыми электропроводность и отличная устойчивость к ударам.

Стрелка показывает изолятор свечи зажигания. Как упоминалось выше, это изготавливается из керамики на основе оксида алюминия. Наружная поверхность ребристая, чтобы обеспечить рукоятка для чехла свечи зажигания и одновременно добавить защиту от искровое перекрытие (перекрестный огонь).

Шестнадцатеричный: Шестигранник обеспечивает контактную точку для торцевого ключа. Шестнадцатеричный размер в основном однороден в отрасли и обычно связан с искрой размер резьбы штекера.

Оболочка: Стальная оболочка изготавливается с точными допусками с использованием специального холодного процесс экструзии. В некоторых типах свечей зажигания используется стальная заготовка. (прутковый прокат) для изготовления оболочек.

Покрытие: Скорлупа почти всегда покрыта металлом. Это повышает долговечность и обеспечивает для защиты от ржавчины и коррозии. Стальной корпус изготовлен с точностью до допуски с использованием специального процесса холодной экструзии или, в других специализированных корпуса, выточенные из стальной заготовки. Шестигранник на корпусе позволяет использовать торцевой ключ для установки или снятия вилки.

Прокладка: В некоторых свечах зажигания используются прокладки, в то время как другие примеры «без прокладок». прокладка, используемая на свечах зажигания, представляет собой фальцованную стальную конструкцию, обеспечивающую плавное поверхность для герметизации. В безпрокладочных свечах зажигания используется коническое седло. оболочка, которая герметизируется через малый допуск, встроенный в свечу зажигания.

Темы: Резьба свечей зажигания обычно накатывается, а не нарезается. Это соответствует спецификации, установленные SAE вместе с Международным Ассоциация стандартов.

Заземляющий электрод: Существует ряд различных форм и конфигураций заземляющих электродов, но по большей части они изготавливаются из стали, легированной никелем. заземлитель должен быть устойчив как к искровой эрозии, так и к химическому воздействию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *