Формула мощности в физике
Содержание:
Определение и формулы мощности
Определение
Мощностью некоторой силы является скалярная физическая величина, которая характеризует скорость произведения работы данной силой. Мощность часто обозначают буквами: N, P.
$$P=\frac{\Delta A}{\Delta t}(1)$$В том случае, если за равные малые промежутки времени выполняется разная работа, то мощность является переменной во времени. Тогда вводят мгновенное значение мощности:
$$P=\lim _{\Delta t \rightarrow 0} \frac{\delta A}{\Delta t}=\frac{d A}{d t}$$где $\delta A$ – элементарная работа, которую выполняет сила, $\Delta t$ – отрезок времени в течение, которого данная работа была выполнена. Если мгновенная мощность не является постоянной величиной, то выражение (1) определяет среднюю мощностьза время $\Delta t$.
Мощность силы можно определить как скалярное произведение силы на скорость, с которой движется точка приложения рассматриваемой силы:
$$P=\bar{F} \bar{v}=F_{\tau} v$$где $\bar{v}_{i}$ – скорость перемещения точки, к которой приложена сила $\bar{F}_{i}$.
В случае поступательного движения твердого тела со скоростью $\bar{v}$ мощность можно определить при помощи формулы:
$$P=\overline{F v}(6)$$где $\bar{F}$ – главный вектор внешних сил.
Если твердое тело совершает вращение вокруг точки О или вокруг неподвижной оси, которая проходит через точку О, то формулой для счет мощности можно считать выражение:
$$P=\bar{M} \bar{\omega}(7)$$где $\bar{M}$ – главный момент внешних сил по отношению к точке О, $\bar{omega}$ – мгновенная угловая скорость вращения тела.
Единицы измерения мощности
Основной единицей измерения мощности силы в системе СИ является: [P]=вт (ватт)
В СГС: [P]=эрг/с.
1 вт=107 эрг/( с).
Примеры решения задач
Пример
Задание.
Какова мощность (P(t)), развиваемая силой, если она действует на тело, которое имеет массу m и под воздействием приложенной силы движется поступательно.{5}\right)$Слишком сложно?
Формула мощности не по зубам? Тебе ответит эксперт через 10 минут!
Пример
Задание. Какова мгновенная мощность силы тяжести на высоте h/2. если камень массы m падает с высоты h. Сопротивление воздуха не учитывать.
Решение. Сделаем рисунок.
В качестве основы для решения задачи используем формулу для мгновенной мощности вида:
$$P=\bar{F} \cdot \bar{v}(2.1)$$Сила, действующая на тело – сила тяжести. Она направлена по оси Y, выражение для ее проекции на ось Y запишем как:
$$F=m g(2.2)$$В начальный момент времени тело имело скорость равную нулю, тогда скорость тела в проекции на ось Y можно вычислить, используя выражение:
$$v=v_{0}+g t=g t(2.3)$$где v
Найдем момент времени, в который тело окажется на половине высоты (y=h/2), применим уравнение, которое описывает равноускоренное движение (из начальных условий y0=0, v0=0):
$$y=y_{0}+v_{0} t+\frac{g t^{2}}{2}=\frac{g t^{2}}{2}=\frac{h}{2} \rightarrow t=\sqrt{\frac{h}{g}}(2.{3} h}$Читать дальше: Формула плотности вещества.
Мощность тока?. Формула мощности ? электрического тока. Как найти мощность?
Автор Даниил Леонидович На чтение 6 мин. Просмотров 16.5k. Опубликовано Обновлено
Благосостояние и комфорт современного общества зависит всецело от высокотехнологичных гаджетов. Люди уже не представляют жизни без «умных» устройств. Микроэлектроника поглотила наш быт дома и на работе. Функционирует оборудование исключительно от электричества. Такие устройства обладают рядом преимуществ, как и недостатков — чувствительность к перепадам эл. напряжения.
Если в офисе компании эту проблему способен устранить штат квалифицированных сотрудников, то дома часто приходится рассчитывать исключительно на собственные силы. Покупая новое оборудование в дом, необходимо учитывать технические характеристики устройства. Производитель указывает такую информацию для покупателей на шильдике, расположенном на задней стенке гаджета.
Формула мощности представляет собой произведение силы тока на напряжение. Если знать этот параметр, то для пользователя складывается четкое представление, сколько электричество девайс будет потреблять и не вызовет ли проблем с электроснабжением.
Что такое мощность в электричестве: просто о сложном
Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий.
Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.
Мощность электрического токаПроанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе.
Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.
Наука подразделяет электрическую мощность на:
- активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
- реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.
Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.
Как рассчитать электрическую мощность в быту
Теоретическая электротехника рассматривает показатели как мгновенные величины, которые зафиксированы в некоторый временной отрезок. Если мгновенная мощность постоянной сети остается неизменной в любой точке цепи и во всех интервалах времени, то для переменной этот показатель будет всегда неодинаковым.
Отсюда получим формулы для расчета мощности (P):
- U*I;
- I2*R;
- U*I*cos(фи).
В интернете сейчас есть онлайн-калькуляторы, которые сами посчитают и выдадут результат. Пользователю нужно лишь подставить значения характеристик, которые находятся на шильдике устройства.
Как измерить электрическую мощность дома
Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрофикации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.
Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.
Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах.
ВаттметрВо время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.
Почему реактивное сопротивление схемы влияет на мощность переменного тока
Потеря энергии в переменной цепи обусловлена наличием реактивного сопротивления, которое подразделяют на индуктивное и емкостное. В процессе работы оборудования часть энергии передается формируемым электрическим или магнитным полям.
Это приводит к уменьшению полезной работы, потере электроэнергии и превышению силовых нагрузок устройств.
Формулы расчета мощности для однофазной и трехфазной схемы питания
Выше уже была представлена формула для одной фазы: P=U*I*cos(фи).
Отсюда следует, что в трехфазной сети показатель равен тройной мощности однофазной, соединенной в треугольник: P=3*U*I*cos(фи). На практике же инженеры пользуются формулой P=1,73*U*I*cos(фи).
Как работает схема трехфазного электроснабжения
Принцип работы трехфазной схемы электроснабжения заключается в одновременном задействовании четырех питающих кабелей, один из которых нулевой. Ток одинаковой частоты вырабатывается одним генератором и сдвинут по отношению друг к другу по времени на фазовый угол равный 120 градусам.
Как узнать ток, зная мощность и напряжение
Для вычисления тока электросети по мощности и напряжению используют формулы:
- I=P/U – постоянный ток;
- I=P/(U*cos(фи)) — однофазная сеть;
- I=P/(1,73*U*cos(фи)) — трехфазная сеть.
Для простоты расчетов значение фи принимают равной 0,95.
Как узнать напряжение, зная силу тока
Для расчета напряжения используют формулы:
U=P/I – постоянный ток;
U=P/(I*cos(фи)) — однофазная сеть;
U=P/(1,73*I*cos(фи)) — трехфазная сеть.
Из выражения видно, что напряжение прямо пропорционально напряжению и обратно пропорционально силе тока.
Как рассчитать мощность, зная силу тока и напряжение
Силовую характеристику электроустановок рассчитывают по формуле:
P=U*I – постоянный ток;
P=U*I*cos(фи) – переменный ток однофазной сети.
P=1,73*U*I*cos(фи) — трехфазная сеть.
В статье приведены упрощенные формулы расчета активной мощности электросети, которые дают приблизительные результаты.
Для получения точных результатов, необходимо учитывать также реактивное и обычное сопротивление, а также потери.
Интересная инфа по теме
Заключение
Мощность электрического тока — один из важных параметров, который обязан знать каждый человек. Такая необходимость обусловлена безопасностью электросети (лимит на одновременное подключение нескольких приборов). Во время работы оборудования происходит нагрев не только внутренней схемы, но и проводки. Зная предельные возможности сети, всегда можно избежать неприятных ситуаций, связанных с ее перегревом и возможным коротким замыканием.
Мощность электрического тока — Основы электроники
Обычно электрический ток сравнивают с течением жидкости по трубке, а напряжение или разность потенциалов — с разностью уровней жидкости.
В этом случае поток воды, падающий сверху вниз, несет с собой определенное количество энергии. В условиях свободного падения эта энергия растрачивается бесполезно для человека. Если же направить падающий поток воды на лопасти турбины, то последняя начнет вращаться и сможет производить полезную работу.
Работа, производимая потоком воды в течение определенного промежутка времени, например, в течение одной секунды, будет тем больше, чем с большей высоты падает поток и чем больше масса падающей воды.
Точно так же и электрический ток, протекая по цепи от высшего потенциала к низшему, совершает работу. В каждую данную секунду времени будет совершаться тем больше работы, чем больше разность потенциалов и чем большее количество электричества ежесекундно проходит через поперечное сечение цепи.
Мощность электрического тока это количество работы, совершаемой за одну секунду времени, или скорость совершения работы.
Количество электричества, проходящего через поперечное сечение цепи в течение одной секунды, есть не что иное, как сила тока в цепи. Следовательно, мощность электрического тока будет прямо пропорциональна разности потенциалов (напряжению) и силе тока в цепи.
Для измерения мощности электрического тока принята единица, называемая ватт (Вт).
Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В.
Для вычисления мощности постоянного тока в ваттах нужно силу тока в амперах умножить на напряжение в вольтах.
Если обозначить мощность электрического тока буквой P, то приведенное выше правило можно записать в виде формулы
P = I*U. (1)
Воспользуемся этой формулой для решения числового примера. Требуется определить, какая мощность электрического тока необходима для накала нити радиолампы, если напряжение накала равно 4 в, а ток накала 75 мА
Определим мощность электрического тока, поглощаемую нитью лампы:
Р= 0,075 А*4 В = 0,3 Вт.
Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно.
В этом случае мы воспользуемся знакомым нам соотношением из закона Ома:
U=IR
и подставим правую часть этого равенства (IR) в формулу (1) вместо напряжения U.
Тогда формула (1) примет вид:
P = I*U =I*IR
или
Например, требуется узнать, какая мощность теряется в реостате сопротивлением в 5 Ом, если через него проходит ток, силой 0,5 А. Пользуясь формулой (2), найдем:
P= I2*R = (0,5)2*5 =0,25*5 = 1,25 Вт.
Наконец, мощность электрического тока может быть вычислена и в том случае, когда известны напряжение и сопротивление, а сила тока неизвестна. Для этого вместо силы тока I в формулу (1) подставляется известное из закона Ома отношение U/R и тогда формула (1) приобретает следующий вид:
Р = I*U=U2/R (3)
Например, при 2,5 В падения напряжения на реостате сопротивлением в 5 Ом поглощаемая реостатом мощность будет равна:
Р = U2/R=(2,5)2/5=1,25 Вт
Таким образом, для вычисления мощности требуется знать любые две из величин, входящих в формулу закона Ома.
Мощность электрического тока равна работе электрического тока, производимой в течение одной секунды.
P = A/t
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
формула, мгновенный и средний расчет силы.
Термин «мощность» в физике имеет специфический смысл. Механическая работа может выполняться с различной скоростью. А механическая мощность обозначает, как быстро совершается эта работа. Способность правильно измерить мощность имеет важное значение для использования энергетических ресурсов.
Физический смысл мощности
Разные виды мощности
Для формулы механической мощности применяется следующее выражение:
N = ΔA/Δt.
В числителе формулы затраченная работа, в знаменателе – временной промежуток ее совершения. Это отношение и называется мощностью.
Существует три величины, которыми можно выразить мощность: мгновенная, средняя и пиковая:
- Мгновенная мощность – мощностной показатель, измеренный в данный момент времени. Если рассмотреть уравнение для мощности N = ΔA/Δt , то мгновенная мощность представляет собой ту, которая берется в чрезвычайно малый промежуток времени Δt. Если имеется построенная графическая зависимость мощности от времени, то мгновенная мощность – это просто считываемое с графика значение в любой взятый момент времени. Другая запись выражения для мгновенной мощности:
N = dA/dt.
- Средняя мощность – мощностная величина, измеренная за относительно большой временной отрезок Δt;
- Пиковая мощность – максимальное значение, которое мгновенная мощность может иметь в конкретной системе в течение определенного временного промежутка. Стереосистемы и двигатели автомобилей – примеры устройств, способных обеспечить максимальную мощность, намного выше их средней номинальной мощности. Однако поддерживать эту мощностную величину можно в течение короткого времени. Хотя для эксплуатационных характеристик устройств она может быть более важной, чем средняя мощность.
Важно! Дифференциальная форма уравнения N = dA/dt универсальна. Если механическая работа выполняется равномерно в течение времени t, то средняя мощность будет равна мгновенной.
Из общего уравнения получается запись:
N = A/t,
где A будет общая работа за заданное время t. Тогда при равномерной работе вычисленный показатель равен мгновенной мощности, а при неравномерной –средней.
Формулы для механической мощности
В каких единицах измеряют мощность
Стандартной единицей для измерения мощности служит Ватт (Вт), названный в честь шотландского изобретателя и промышленника Джеймса Ватта. Согласно формуле, Вт = Дж/с.
Существует еще одна единица мощности, до сих пор широко используемая, – лошадиная сила (л. с.).
Интересно. Термин «лошадиная сила» берет свое начало в 17-м веке, когда лошадей использовали для поднятия груза из шахты. Одна л. с. равна мощности для поднятия 75 кг на 1 м за 1 с. Это эквивалентно 735,5 Вт.
Мощность силы
Уравнение для мощности соединяет выполненную работу и время. Поскольку известно, что работа выполняется силами, а силы могут перемещать объекты, можно получить другое выражение для мгновенной мощности:
- Работа, проделанная силой при перемещении:
A = F x S x cos φ.
- Если поставить А в универсальную формулу для N, определяется мощность силы:
N = (F x S x cos φ)/t = F x V x cos φ, так как V = S/t.
- Если сила параллельна скорости частицы, то формула принимает вид:
N = F x V.
Мощность вращающихся объектов
Процессы, связанные с вращением объектов, могут быть описаны аналогичными уравнениями. Эквивалентом силы для вращения является крутящий момент М, эквивалент скорости V – угловая скорость ω.
Если заменить соответствующие величины, то получается формула:
N = M x ω.
M = F x r, где r – радиус вращения.
Для расчета мощности вала, вращающегося против силы, применяется формула:
N = 2π x M x n,
где n – скорость в об/с (n = ω/2π).
Отсюда получается то же упрощенное выражение:
N = M x ω.
Таким образом, двигатель может достичь высокой мощности либо при высокой скорости, либо, обладая большим крутящим моментом. Если угловая скорость ω равна нулю, то мощность тоже равна нулю, независимо от крутящего момента.
Видео
Оцените статью:Как найти мощность, зная силу тока, напряжение и сопротивление
В физике достаточно много внимания уделено энергии и мощности устройств, веществ или тел. В электротехнике эти понятия играют не менее важную роль чем в других разделах физики, ведь от них зависит насколько быстро установка выполнит свою работу и какую нагрузку понесут линии электропередач. Исходя из этих сведений подбираются трансформаторы для подстанций, генераторы для электростанций и сечение проводников передающих линий. В этой статье мы расскажем, как найти мощность электрического прибора или установки, зная силу тока, напряжение и сопротивление.
Определение
Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:
P=dA/dt
Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.
Электрическая мощность равна произведению тока на напряжение или:
P=UI
Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.
Формулы для расчётов цепи постоянного тока
Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:
P=UI
Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:
P=U2/R
Также можно выполнить расчет, зная ток и сопротивление:
P=I2*R
Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.
Для переменного тока
Однако для электрической цепи переменного тока нужно учитывать полную, активную и реактивную, а также коэффициент мощности (соsФ). Подробнее все эти понятия мы рассматривали в этой статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.
Отметим лишь, что чтобы найти полную мощность в однофазной сети по току и напряжению нужно их перемножить:
S=UI
Результат получится в вольт-амперах, чтобы определить активную мощность (ватты), нужно S умножить на коэффициент cosФ. Его можно найти в технической документации на устройство.
P=UIcosФ
Для определения реактивной мощности (вольт-амперы реактивные) вместо cosФ используют sinФ.
Q=UIsinФ
Или выразить из этого выражения:
И отсюда вычислить искомую величину.
Найти мощность в трёхфазной сети также несложно, для определения S (полной) воспользуйтесь формулой расчета по току и фазному напряжению:
S=3UфIф
А зная Uлинейное:
S=1,73*UлIл
1,73 или корень из 3 – эта величина используется для расчётов трёхфазных цепей.
Тогда по аналогии чтобы найти P активную:
P=3UфIф*cosФ=1,73*UлIл*cosФ
Определить реактивную мощность можно:
Q=3UфIф*sinФ=1,73*UлIл*sinФ
На этом теоретические сведения заканчиваются и мы перейдём к практике.
Пример расчёта полной мощности для электродвигателя
Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.
Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:
- Pна валу=160 кВт = 160000 Вт
- n=0,94
- cosФ=0,9
- U=380
Тогда найти активную электрическую мощность можно по формуле:
P=Pна валу/n=160000/0,94=170213 Вт
Теперь можно найти S:
S=P/cosφ=170213/0,9=189126 Вт
Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.
Расчет для параллельного и последовательного подключения
При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.
Здесь Iобщий равен:
I=U/(R1+R2)=12/(10+10)=12/20=0,6
Общая мощность:
P=UI=12*0,6=7,2 Ватт
На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:
U=IR=0,6*10=6 Вольт
И выделяется по:
Pна резисторе=UI=6*0,6=3,6 Ватта
Тогда при параллельном подключении в такой схеме:
Сначала ищем I в каждой ветви:
I1=U/R1=12/1=12 Ампер
I2=U/R2=12/2=6 Ампер
И выделяется на каждом по:
PR1=12*6=72 Ватта
PR2=12*12=144 Ватта
Выделяется всего:
P=UI=12*(6+12)=216 Ватт
Или через общее сопротивление, тогда:
Rобщее=(R1*R2)/( R1+R2)=(1*2)/(1+2)=2/3=0,66 Ом
I=12/0,66=18 Ампер
P=12*18=216 Ватт
Все расчёты совпали, значит найденные значения верны.
Заключение
Как вы могли убедиться найти мощность цепи или её участка совсем несложно, неважно речь идёт о постоянке или переменке. Важнее правильно определить общее сопротивление, ток и напряжение. Кстати этих знаний уже достаточно для правильного определения параметров схемы и подбора элементов – на сколько ватт подбирать резисторы, сечения кабелей и трансформаторов. Также будьте внимательны при расчёте S полной при вычислении подкоренного выражения. Стоит добавить лишь то, что при оплате счетов за коммунальные услуги мы оплачиваем за киловатт-часы или кВт/ч, они равняются количеству мощности, потребленной за промежуток времени. Например, если вы подключили 2 киловаттный обогреватель на пол часа, то счётчик намотает 1 кВт/ч, а за час – 2 кВт/ч и так далее по аналогии.
Напоследок рекомендуем просмотреть полезное видео по теме статьи:
Также читают:
Формула мощности электрического тока. Как узнать, найти, вычислить, рассчитать мощность.
Электрическая мощность является одной из наиболее важных и значимых характеристик, которая показывает величину, силу той электротехники, систем, цепей, что работают, выполняя ту или иную функцию. Естественно, как и любая другая физическая величина электрическая мощность должна иметь свою меру, благодаря которой появляется возможность ее рассчитывать, делая заведомо точные, экономичные, эффективные устройства, системы и т.д. Для расчетов существуют определенные формулы, по которым и находятся нужные значения мощности.
Формула мощности тока (электрического) достаточно проста и выражается как произведение напряжения на силу тока. То есть, чтобы найти электрическую мощность достаточно просто напряжение умножить на ток. Если воспользоваться законом ома, то ее можно найти и через сопротивление. В этом случае электрическая мощность будет равна силе тока в квадрате умноженный на сопротивление или же напряжение в квадрате деленное на сопротивление.
Напомню, что при использовании формул подразумевается применение основных единиц измерения физических величин. В нашем случае основными единицами будут:
Электрическая мощность — Ватт;
Сила тока — Ампер;
Напряжение — Вольт;
Сопротивление — Ом.
Исходя из этого формула мощности электрического тока будет звучать так — 1 Ватт равен 1 Вольт умноженный на 1 Ампер. Думаю вы смысл поняли. Меньшими единицами измерения мощности является милливатты (1000 мВт = 1 Вт), большими единицами являются киловатты и мегаватты (1 кВт = 1000 Вт, 1 МВт = 1000 000 Вт). Милливатты это достаточно маленькая мощность, ее используют в электронике, радиотехнике. К примеру мощность слухового аппарата измеряется именно в милливаттах. Мощность в ваттах можно встретить в звуковых усилителях, у небольших блоках питания, мини электродвигателях. Киловатты это мощность, которая часто встречается в бытовых и технических устройствах (электрочайники, электродвигатели, обогреватели и т.д.). Мегаватты это уже достаточно большая мощность, ее можно встретить на электроподстанциях, электростанциях, у потребителях электроэнергии размером с город и т.д.
Если говорить о формуле более научной, которая электрическую мощность тока выражает через работу и время, то она будет звучать так — электрическая мощность равна отношению работы тока на участке цепи ко времени, в течении которого совершается эта работа.
То есть, работа деленная на время будет определять мощность. Кроме этого часто путают такие величины как ватты и ватт-час. В ваттах измеряется электрическая мощность — скорость изменения энергии (передачи, преобразования, потребления). А ватт-час являются единицей измерения самой энергии (работы). В ватт-часах выражается энергия, произведенная (переданная, преобразованная, потребленной) за определенное время.
Мощность также разделяется на активную и реактивную. Активная мощность — часть полной мощности, что удалось передать в нагрузку за период переменного тока. Она равна произведению действующих значений напряжения и тока на cosφ (косинус угла сдвига фаз между ними). Электрическая мощность, что не была передана в нагрузку, а привела к некоторым потерям (на излучение, нагрев) называется реактивной мощностью. Она равна произведению действующих значений напряжения и тока на sinφ (синус угла сдвига фаз между ними).
P.S. Электрическая мощность является одной из главных величин и характеристик, используемые в электротехнике. Именно ее мы узнаем при покупки того или иного электрического устройства. Ведь она определяет силу, с которой электротехника может работать. К примеру электродрель. Если мы купим дрель недостаточной мощности, то она просто не сможет обеспечить нам нормальную работу при сверлении. Хотя гнаться за слишком большой мощностью также не следует, ведь это ведет к излишней трате электроэнергии, за которую вы будете платить. Так что у всего должна быть своя мера и мощность.
Как рассчитать мощность электрического тока?
Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.
Понятие электрической мощности и способы ее расчета
С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.
В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.
Через напряжение и ток
Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I
Где:
Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.
Через напряжение и сопротивление
Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома для участка цепи, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:
I = U/R
Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:
P = U*(U/R)=U2/R
Где,
- P – величина нагрузки;
- U – приложенная разность потенциалов;
- R – сопротивление нагрузки.
Через ток и сопротивление
Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.
Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:
U=I*R
после того как выражение подставить в формулу мощности, получим:
P = (I*R)*I =I2*R
Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.
Полная мощность в цепи переменного тока
Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:
Где,
- S – полная мощность
- P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
- Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.
Также составляющие вычисляются через тригонометрические функции, так:
P = U*I*cosφ
Q = U*I*sinφ
что активно используется в расчете электрических машин.
Рис. 1. Треугольник мощностейПример расчета полной мощности для электродвигателя
Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.
Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:
S = 3*Uф*Iф
В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:
Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.
Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.
Рис. 2. Шильд электродвигателяКак видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:
- полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
- коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
- тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
- напряжение, при соединении обмоток треугольником составит 220 В;
- сила тока при том же способе соединения – 13,3 А.
С таким перечнем характеристик можно воспользоваться несколькими способами:
S = 1,732*220*13,3 = 5067 Вт
Чтобы найти искомую величину, сначала определяем активную составляющую:
P = Pполезная / КПД = 3000/0.8 = 3750 Вт
Далее полную по способу деления активной на коэффициент cos φ:
S = P/cos φ = 3750/0.74 = 5067 Вт
Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.
Примеры задач
Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.
Рис. 3. Последовательная расчетная цепьКак видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:
P = U2/R = 81 / (10+20+30) = 1.35 Вт
Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:
Рис. 4. Параллельная схема подключенияКак видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:
Rобщ = (R1*R2) / (R1+R2) = (10*15) / (10+15) = 6 Ом
Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:
P = I2*R = 25*6 = 150 Вт
Видео по теме
Расчет электроэнергии | Закон Ома
Узнайте формулу мощности
Мы видели формулу для определения мощности в электрической цепи: умножая напряжение в «вольтах» на ток в «амперах», мы получаем ответ в «ваттах». Давайте применим это к примеру схемы:
Как использовать закон Ома для определения силы тока
В приведенной выше схеме мы знаем, что у нас напряжение батареи 18 В и сопротивление лампы 3 Ом.Используя закон Ома для определения силы тока, получаем:
Теперь, когда мы знаем ток, мы можем взять это значение и умножить его на напряжение, чтобы определить мощность:
Это говорит нам о том, что лампа рассеивает (выделяет) 108 Вт мощности, скорее всего, в форме света и тепла.
Повышение напряжения батареи
Давайте попробуем взять ту же схему и увеличить напряжение батареи, чтобы увидеть, что произойдет.Интуиция подсказывает нам, что ток в цепи будет увеличиваться с увеличением напряжения, а сопротивление лампы останется прежним. Аналогично увеличится и мощность:
Теперь напряжение батареи 36 вольт вместо 18 вольт. Лампа по-прежнему обеспечивает электрическое сопротивление 3 Ом для прохождения тока. Текущий сейчас:
Это понятно: если I = E / R, и мы удваиваем E, а R остается неизменным, ток должен удвоиться.Действительно, есть: теперь у нас 12 ампер тока вместо 6. А что насчет мощности?
Как повышение напряжения батареи влияет на мощность?
Обратите внимание, что мощность увеличилась так, как мы могли подозревать, но она увеличилась немного больше, чем ток. Почему это? Поскольку мощность является функцией напряжения, умноженного на ток, а напряжение и ток удвоены по сравнению с их предыдущими значениями, мощность увеличится в 2 x 2 или 4 раза.
Вы можете проверить это, разделив 432 Вт на 108 Вт и убедившись, что соотношение между ними действительно равно 4. Снова используя алгебру, чтобы манипулировать формулой, мы можем взять нашу исходную формулу мощности и изменить ее для приложений, где мы не знаем и того, и другого. напряжение и ток: если мы знаем только напряжение (E) и сопротивление (R):
Если мы знаем только ток (I) и сопротивление (R):
Закон Джоуля против.Закон Ома
Историческая справка: именно Джеймс Прескотт Джоуль, а не Георг Саймон Ом первым открыл математическую связь между рассеиваемой мощностью и током через сопротивление. Это открытие, опубликованное в 1841 году, имело форму последнего уравнения (P = I 2 R) и широко известно как закон Джоуля.
Однако эти уравнения мощности настолько часто связаны с уравнениями закона Ома, связывающими напряжение, ток и сопротивление (E = IR; I = E / R; и R = E / I), что они часто приписываются Ому.
ОБЗОР:
- Мощность измеряется в Вт , обозначается буквой «W».
- Закон Джоуля: P = I 2 R; P = IE; P = E 2 / R
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Попробуйте наш калькулятор закона Ома в разделе «Инструменты».
Напряжение, сопротивление току и электрическая мощность общие основные электрические формулы математические вычисления формула калькулятора для расчета энергии энергия работа уравнение степенной закон ватт понимание общая электрическая круговая диаграмма расчет электричества электрическая ЭДС напряжение формула мощности уравнение два разных уравнения для расчета мощности общий закон омов аудио физика электричество электроника формула колесо формулы амперы ватты вольт омы косинус уравнение звуковая инженерия круговая диаграмма заряд физика мощность запись звука вычисление электротехническая формула мощность математика пи физика взаимосвязь
напряжение ток сопротивление и электрическая мощность общие основные электрические формулы математические вычисления формула калькулятора для расчета энергии энергия работа уравнение мощность закон ваттс понимание общая электрическая круговая диаграмма расчет электричества электрическая ЭДС напряжение формула мощности уравнение два разных уравнения для расчета мощности общий закон Ома аудио физика электричество электричество формула tronics колесо формулы амперы ватты вольт омы косинус уравнение аудио инженерия круговая диаграмма заряд физика мощность звук запись вычисление электротехника формула мощность математика пи физика отношение взаимосвязь — sengpielaudio Sengpiel BerlinЭлектрический ток , Электроэнергия , Электрическое напряжение
Электричество и Электрический заряд
Наиболее распространенные общие формулы, используемые в электротехнике ● Основные формулы и Расчеты ●
Взаимосвязь физических и электрических величин (параметров)
Электрическое напряжение В , 162016, 901 901 удельное сопротивление R , импеданс Z , мощность и мощность P
Вольт В , ампер A, сопротивление и Сопротивление Ом Ом и Вт Вт
Номинальный импеданс Z = 4, 8 и 16 Ом (для громкоговорителей обычно считается сопротивление 9016). Р . Уравнение (формула) закона Ома: V = I × R и уравнение (формула) степенного закона: P = I × V . P = мощность, I или J = латиница: приток, международный ампер или интенсивность и R = сопротивление. В = напряжение, разность электрических потенциалов Δ V или E = электродвижущая сила (ЭДС = напряжение). |
Введите любые два известных значения и нажмите «вычислить», чтобы решить для двух других. Пожалуйста, введите только два значения. |
Используемый браузер, к сожалению, не поддерживает Javascript. Программа указана, но фактическая функция отсутствует. |
Колесо формул электротехники
В происходит от «напряжения», а E от «электродвижущей силы (ЭДС)». E означает также энергии , поэтому мы выбираем V . Энергия = напряжение × заряд. E = V × Q . Некоторым нравится лучше придерживаться E вместо V , так что сделайте это. Для R возьмите Z . |
12 самых важных формул: Напряжение В = I × R = P / I = √ ( P × R ) в вольт Ток I = V / = P / В = √ ( P / R ) в амперах A Сопротивление R = В / I = P / I = 2 В 2 / P в Ом Ом Мощность P = В × I = R × I 2 = В 2 / R в Вт Вт |
См. Также: The Formula Wheel of Acoustics (Audio)
The Big Формулы мощности Расчет электрической и механической мощности (прочности) |
|
Андре-Мари Ампре был французским физиком и математиком. Его именем названа единица измерения электрического тока в системе СИ — ампер . Алессандро Джузеппе Антонио Анастасио Вольта был итальянским физиком. Его именем названа единица измерения электрического напряжения в системе СИ — вольт . Георг Симон Ом был немецким физиком и математиком. Его именем названа единица измерения электрического сопротивления в системе СИ — Ом . Джеймс Ватт был шотландским изобретателем и инженером-механиком. Его именем названа единица измерения электрической мощности (мощности) в системе СИ — ватт . |
Мощность, как и все величины энергии, в первую очередь расчетное значение. |
Слово «усилитель мощности» используется неправильно, особенно в аудиотехнике. Напряжение и ток можно усилить. Странный термин «усилитель мощности» стал пониматься как усилитель, предназначенный для управления нагрузкой например, громкоговоритель. Мы называем произведение усиления по току и усилению по напряжению «усилением мощности». |
Совет: треугольник электрического напряжения V = I × R (закон Ома VIR)
Введите два значения , будет рассчитано третье значение. Треугольник мощности P = I × V (степенной закон PIV)
Введите два значения , будет рассчитано третье значение.
С помощью волшебного треугольника можно легко вычислить все формулы. Вы прячетесь с
пальцем значение, которое нужно вычислить. Два других значения показывают, как производить расчет.
Расчеты: Закон Ома — магический треугольник Ома
Измерение входного и выходного сопротивления
ПЕРЕМЕННЫЙ ТОК (AC) ~
В l = линейное напряжение (вольт), В p = фазное напряжение (вольт), I l = линейный ток (амперы), I p = фазный ток ( амперы)
Z = полное сопротивление (Ом), P = мощность (ватты), φ = угол коэффициента мощности, VAR = вольт-амперы (реактивные)
Ток (однофазный): I = P / V p × cos φ | Ток (3 фазы): I = P / √3 V l × cos φ или I = P /3 V p × cos φ |
Питание (однофазное): P = V p × I p × cos φ | Питание (3 фазы): P = √3 V l × I l × cos φ или P = √3 V p × I p × cos φ |
Полная мощность S вычисляется по Пифагору, активная мощность P и реактивная мощность Q . S = √ ( P 2 + Q 2 )
Формулы питания постоянного тока Напряжение В дюймов (В) вычисление из тока I дюймов (А) и сопротивления R дюймов (Ом): В (В) = I (A) × R (Ом) Мощность P в (Вт) рассчитывается исходя из напряжения В дюймов (В) и тока I дюймов (А): P (Вт) = В (В) × I (A) = V 2 (V) / R (Ω) = I 2 (A) R (Ω) Формулы питания переменного тока Напряжение В в вольтах (В) равно току I в амперах (А), умноженному на импеданс Z в омах (Ом): В (В) = I ( A) Z ((Ом) = (| I | × | Z |) и ( θ I + θ Z ) Полная мощность S в вольт-амперах (ВА) равна напряжению V в вольтах (В), умноженному на ток I в амперах (A): S (VA) = V (V) I (A) = (| V | × | I |) и ( θ V — θ I ) Реальная мощность P в ваттах (Вт) равна напряжению V в вольтах (В), умноженному на ток I в амперах (A), умноженному на коэффициент мощности (cos φ ): P (Вт) = V (V) × I (A) × cos φ Реактивная мощность Q в вольт-амперах, реактивная (VAR) равна напряжению V в вольтах (В), умноженному на ток I в амперах (A) на синус комплексного фазового угла мощности ( φ ): Q (VAR) = V (V) × I (A) × sin φ Коэффициент мощности (FP) равен абсолютному значению косинуса комплексного фазового угла мощности ( φ ): PF = | cos φ | |
Фактический коэффициент мощности, а не стандартный коэффициент смещаемой мощности 50/60 Гц
Определения электрических измерений | ||
Кол-во | Имя | Определение |
частота f | герц (Гц) | 1 / с |
сила F | ньютон (Н) | кг · м / с² |
давление p | паскаль (Па) = Н / м² | кг / м · с² |
энергия E | рабочий джоуль (Дж) = N · м | кг · м² / с² |
мощность P | Вт (Вт) = Дж / с | кг · м² / с³ |
электрический заряд Q | кулон (Кл) = A · с | А · с |
напряжение В | вольт (В) = Вт / д | кг · м² / A · с³ |
ток I | ампер (А) = Q / с | А |
емкость C | фарад (Ф) = C / V = A · с / В = с / Ом | A² · с 4 / кг · m² |
индуктивность L | генри (H) = Wb / A = V · s / A | кг · м² / A² · с² |
сопротивление R | Ом (Ом) = В / А | кг · м²A² · с³ |
проводимость G | сименс (S) = A / V | A² · с³ / кг · м² |
магнитный поток Φ | Вебер (Wb) = V · с | кг · м² / A · с² |
плотность потока B | тесла (T) = Вт / м² = V · с / м² | кг / А · с² |
Поток электрического заряда Q упоминается как электрический ток I. Сумма начисления за единицу времени изменение электрического тока. Ток протекает с постоянным значением I. в течение времени t , он переносит заряд Q = I × t . Для временно постоянной мощности соотношение между зарядом и током: I = Q / t или Q = I × t. Благодаря этой взаимосвязи основные единицы усилителя и второй кулон в Установлена Международная система единиц.Кулоновскую единицу можно представить как 1 C = 1 A × s. Заряд Q , (единица измерения в ампер-часах Ач), ток разряда I , (единица измерения в амперах A), время t , (единица измерения в часах час). |
В акустике используется « Акустический эквивалент закона Ома »
Соотношение акустических размеров, связанных с плоскими прогрессивными звуковыми волнами
Преобразование многих единиц, таких как мощность и энергия
префиксы | длина | площадь | объем | вес | давление | температура | время | энергия | мощность | плотность | скорость | ускорение | сила
[начало страницы]
Мощность и энергия | Клуб электроники
Энергетика и энергетика | Клуб электроникиМощность | Рассчитать | Перегрев | Энергия
Следующая страница: AC, DC и электрические сигналы
См. Также: напряжение и ток
Что такое мощность?
Мощность — это коэффициент использования или поставки энергии:
Мощность измеряется в ваттах (Вт)
Энергия измеряется в джоулях (Дж)
Время измеряется в секундах (с)
Электроника в основном связана с малым количеством энергии, поэтому мощность часто измеряется в милливаттах (мВт), 1 мВт = 0.001W. Например, светодиод потребляет около 40 мВт. а бипер потребляет около 100 мВт, даже лампа, такая как фонарик, потребляет всего около 1 Вт.
Типичная мощность, используемая в электрических цепях сети, намного больше, поэтому эта мощность может быть измеряется в киловаттах (кВт), 1 кВт = 1000 Вт. Например, в обычной сетевой лампе используется 60 Вт, а чайник потребляет около 3 кВт.
Расчет мощности по току и напряжению
Уравнения
Мощность = Ток × Напряжение |
Есть три способа написать уравнение для мощности, тока и напряжения:
где:
P = мощность в ваттах (Вт)
V = напряжение в вольтах (В)
I = ток в амперах (A)
или:
P = мощность в милливаттах (мВт)
V = напряжение в вольтах (В)
I = ток в миллиамперах (мА)
Треугольник PIV
Вы можете использовать треугольник PIV, чтобы запомнить эти три уравнения.Используйте его так же, как треугольник закона Ома:
- Чтобы рассчитать мощность , P : положите палец на P, это оставляет I V, поэтому уравнение P = I × V
- Чтобы рассчитать ток , I : положите палец на I, это оставляет P над V, поэтому уравнение I = P / V
- Для расчета напряжения, В : поместите палец на В, это оставляет P над I, поэтому уравнение V = P / I
Усилитель довольно большой для электроники, поэтому мы часто измеряем ток в миллиамперах (мА), а мощность в милливаттах (мВт).
1 мА = 0,001 А и 1 мВт = 0,001 Вт.
Расчет мощности с использованием сопротивления
Уравнения
Используя закон Ома V = I × R
мы можем преобразовать P = I × V в:
где:
P = мощность в ваттах (Вт)
I = ток в амперах (A)
R = сопротивление в Ом ()
В = напряжение в вольтах (В)
Треугольники
Вы также можете использовать треугольники, чтобы помочь с этими уравнениями:
Потраченная впустую мощность и перегрев
Обычно используется электроэнергия, например, зажигание лампы или двигателя.Однако электрическая энергия преобразуется в тепло всякий раз, когда ток проходит через сопротивление, и это может быть проблемой, если оно вызывает перегрев устройства или провода. В электроники эффект обычно незначителен, но если сопротивление низкое (провод или низкий резистора номинального значения, например) ток может быть достаточно большим, чтобы вызвать проблему.
Из уравнения P = I² × R видно, что для данного сопротивление мощность зависит от тока в квадрате , поэтому удвоение тока даст в 4 раза большую мощность.
Резисторы рассчитаны на максимальную мощность, которую они могут развить в них без повреждений, но номинальная мощность редко указывается в списках деталей, потому что подходят стандартные значения 0,25 Вт или 0,5 Вт. для большинства схем. Дополнительная информация доступна на странице резисторов.
Провода и кабели рассчитаны на максимальный ток, который они могут пропускать без перегрева. У них очень низкое сопротивление, поэтому максимальный ток относительно велик. Для получения дополнительной информации о текущий рейтинг см. на странице кабелей.
Энергия
Количество потребляемой (или подаваемой) энергии зависит от мощности и времени, в течение которого она используется:
Устройство малой мощности, работающее в течение длительного времени, может потреблять больше энергии, чем устройство высокой мощности работает непродолжительное время.
Например:
- Лампа мощностью 60 Вт, включенная на 8 часов, потребляет 60 Вт × 8 × 3600 с = 1728 кДж.
- Чайник мощностью 3 кВт, включенный на 5 минут, потребляет 3000 Вт × 5 × 60 с = 900 кДж.
Стандартной единицей измерения энергии является джоуль (Дж), но 1Дж — очень небольшое количество энергии для электросети. поэтому в научной работе иногда используются килоджоуль (кДж) или мегаджоуль (МДж).
Дома мы измеряем электрическую энергию в киловатт-часах (кВтч), которые часто называют просто «единицей». электричества, когда контекст ясен. 1 кВт-ч — это энергия, потребляемая электроприбором мощностью 1 кВт при включении на 1 час:
Например:
- Лампа мощностью 60 Вт, включенная на 8 часов, потребляет 0,06 кВт × 8 = 0,48 кВт · ч.
- Чайник мощностью 3 кВт, включенный на 5 минут, потребляет 3 кВт × 5 / 60 = 0,25 кВтч.
Возможно, вам потребуется преобразовать бытовую единицу кВтч в научную единицу энергии, джоуль (Дж):
1 кВтч = 1 кВт × 1 час = 1000 Вт × 3600 с = 3.6MJ
Следующая страница: Сигналы постоянного и переменного тока | Исследование
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.
electronicsclub.info © Джон Хьюс 2021 г.
Мощность
Количественная работа связана с силой, вызывающей смещение.Работа не имеет ничего общего с количеством времени, в течение которого эта сила вызывает смещение. Иногда работа выполняется очень быстро, а иногда — довольно медленно. Например, скалолазу требуется ненормально много времени, чтобы поднять свое тело на несколько метров вдоль скалы. С другой стороны, турист (который выберет более легкий путь в гору) может поднять свое тело на несколько метров за короткий промежуток времени. Эти два человека могут выполнять одинаковый объем работы, но путешественник выполняет ее значительно быстрее, чем скалолаз.Величина, связанная со скоростью выполнения определенного объема работы, называется мощностью. У туриста номинальная мощность на выше, чем у скалолаза.Мощность — это скорость выполнения работы. Это соотношение работы / времени. Математически это вычисляется с использованием следующего уравнения.
Мощность = Работа / времяили
P = Вт / т
Стандартная метрическая единица измерения мощности — Вт .Как следует из уравнения мощности, единица мощности эквивалентна единице работы, деленной на единицу времени. Таким образом, ватт эквивалентен джоулям в секунду. По историческим причинам термин лошадиных сил иногда используется для описания мощности, выдаваемой машиной. Одна лошадиная сила эквивалентна примерно 750 Вт.
Большинство машин спроектировано и построено для работы с объектами. Все машины обычно характеризуются номинальной мощностью.Номинальная мощность указывает скорость, с которой эта машина может работать с другими объектами. Таким образом, мощность машины — это соотношение работы / времени для этой конкретной машины. Автомобильный двигатель — это пример машины, которой задана номинальная мощность. Номинальная мощность относится к тому, насколько быстро автомобиль может разгонять автомобиль. Предположим, что двигатель мощностью 40 лошадиных сил может разогнать автомобиль от 0 миль / час до 60 миль / час за 16 секунд. Если бы это было так, то автомобиль с четырехкратной мощностью в лошадиных силах мог бы выполнять такой же объем работы за четверть времени.То есть 160-сильный двигатель мог разогнать тот же автомобиль с 0 миль / час до 60 миль / час за 4 секунды. Дело в том, что при одинаковом объеме работы мощность и время обратно пропорциональны. Уравнение мощности предполагает, что более мощный двигатель может выполнять такой же объем работы за меньшее время.
Человек — это также машина с номинальной мощностью . Некоторые люди более властны, чем другие. То есть некоторые люди способны выполнять тот же объем работы за меньшее время или больше за то же время.Обычная физическая лаборатория включает в себя быстрый подъем по лестнице и использование информации о массе, росте и времени для определения личных способностей ученика. Несмотря на диагональное движение по лестнице, часто предполагается, что горизонтальное движение является постоянным, и вся сила от ступенек используется для подъема ученика вверх с постоянной скоростью. Таким образом, вес ученика равен силе, которая воздействует на ученика, а высота лестницы — это смещение вверх. Предположим, что Бен Пумпинирон поднимает свое 80-килограммовое тело на 2.0-метровый подъезд за 1,8 секунды. Если бы это было так, то мы могли бы вычислить номинальную мощность Бена . Можно предположить, что Бен должен приложить к лестнице нисходящую силу 800 Ньютон, чтобы поднять свое тело. Поступая таким образом, лестница толкала тело Бена вверх с достаточной силой, чтобы поднять его тело вверх по лестнице. Также можно предположить, что угол между силой лестницы на Бена и смещением Бена равен 0 градусов. Используя эти два приближения, можно определить номинальную мощность Бена, как показано ниже.
Номинальная мощность Бена — 871 Вт. Ему 9 лошадка вполне .
Другая формула мощностиВыражение для мощности — работа / время. А поскольку выражение для работы — это сила * смещение, выражение для мощности можно переписать как (сила * смещение) / время. Поскольку выражение для скорости — это смещение / время, выражение для мощности можно еще раз переписать как «сила * скорость».Это показано ниже.
Это новое уравнение мощности показывает, что мощная машина одновременно сильна (большая сила) и быстра (большая скорость). Мощный автомобильный двигатель — сильный и быстрый. Мощная сельскохозяйственная техника — прочная и быстрая. Сильный тяжелоатлет силен и быстр. Сильный лайнсмен футбольной команды силен и быстр. Машина , достаточно сильная, чтобы приложить большую силу, чтобы вызвать смещение за небольшой промежуток времени (т.е.е., большая скорость) — машина мощная.
Проверьте свое понимание
Используйте свое понимание работы и власти, чтобы ответить на следующие вопросы. По завершении нажмите кнопку, чтобы просмотреть ответы.
1. Два студента-физика, Уилл Н. Эндейбл и Бен Пумпинирон, в зале тяжелой атлетики. Уилл поднимает 100-фунтовую штангу над головой 10 раз за одну минуту; Бен поднимает 100-фунтовую штангу над головой 10 раз за 10 секунд.Какой студент больше всего работает? ______________ Какой ученик дает больше всего энергии? ______________ Объясните свои ответы.
2. В физической лаборатории Джек и Джилл взбежали на холм. Джек вдвое массивнее Джилл; тем не менее, Джилл преодолевает то же расстояние за половину времени. Кто работал больше всего? ______________ Кто доставил больше всего энергии? ______________ Объясните свои ответы.
3. Уставшая белка (масса около 1 кг) отжимается, прикладывая силу, поднимающую ее центр масс на 5 см, чтобы выполнить работу всего на 0,50 Дж. Если уставшая белка проделает всю эту работу за 2 секунды, то определите ее мощность.
4. При выполнении подтягивания студентка-физик поднимает ее 42.0-кг тело на дистанцию 0,25 метра за 2 секунды. Какую силу развивают бицепсы ученика?
5. Ежемесячный счет за электроэнергию в вашей семье часто выражается в киловатт-часах. Один киловатт-час — это количество энергии, доставленное потоком 1 киловатт электроэнергии за один час. Используйте коэффициенты преобразования, чтобы показать, сколько джоулей энергии вы получаете, покупая 1 киловатт-час электроэнергии.
6. Эскалатор используется для перемещения 20 пассажиров каждую минуту с первого этажа универмага на второй. Второй этаж находится на высоте 5,20 метра от первого этажа. Средняя масса пассажира — 54,9 кг. Определите требуемую мощность эскалатора, чтобы переместить это количество пассажиров за это время.
Учебное пособие по законуОм и мощность в электрических цепях
Георг Ом обнаружил, что при постоянной температуре электрический ток, протекающий через фиксированное линейное сопротивление, прямо пропорционален приложенному к нему напряжению, а также обратно пропорционален сопротивлению.Эта взаимосвязь между напряжением, током и сопротивлением лежит в основе закона об омах и показана ниже.
Отношение закона Ома
Зная любые два значения величин напряжения, тока или сопротивления, мы можем использовать закон Ом , чтобы найти третье пропущенное значение. Закон Ома широко используется в формулах и расчетах электроники, поэтому «очень важно понимать и точно помнить эти формулы».
Чтобы найти напряжение, (В)
[В = I x R] В (вольты) = I (амперы) x R (Ом)
Чтобы найти ток, (I)
[I = V ÷ R] I (амперы) = V (вольты) ÷ R (Ом)
Чтобы найти сопротивление, (R)
[R = V ÷ I] R (Ω) = V (вольт) ÷ I (амперы)
Иногда легче запомнить эту взаимосвязь по закону Ома с помощью картинок.Здесь три величины V, I и R наложены в треугольник (ласково называемый треугольником закона Ома ), дающий напряжение вверху с током и сопротивлением внизу. Это расположение представляет собой фактическое положение каждой величины в формулах закона Ома.
Треугольник закона Ома
Транспонирование стандартного уравнения закона Ома, приведенного выше, даст нам следующие комбинации того же уравнения:
Затем, используя Закон Ома, мы можем увидеть, что напряжение 1 В, приложенное к резистору 1 Ом, вызовет протекание тока 1 А, и чем больше значение сопротивления, тем меньше тока будет протекать при заданном приложенном напряжении.Любое электрическое устройство или компонент, которые подчиняются «закону Ома», то есть ток, протекающий через него, пропорционален напряжению на нем (I α V), например резисторы или кабели, называются «омическими» по своей природе, а устройства, которые этого не делают, такие как транзисторы или диоды, называются «неомическими» устройствами .
Электроэнергия в цепях
Электрическая мощность (P) в цепи — это скорость, с которой энергия поглощается или производится в цепи. Источник энергии, такой как напряжение, будет производить или передавать мощность, в то время как подключенная нагрузка поглощает ее.Например, лампочки и обогреватели поглощают электроэнергию и преобразуют ее либо в тепло, либо в свет, либо и то, и другое. Чем выше их значение или номинальная мощность в ваттах, тем больше электроэнергии они могут потреблять.
Обозначение величины мощности — P и представляет собой произведение напряжения на ток с единицей измерения Вт (Вт). Префиксы используются для обозначения различных кратных или подкратных значений ватта, например: милливатт (мВт = 10 -3 Вт) или киловатт (кВт = 10 3 Вт).
Затем, используя закон Ома и подставляя значения V, I и R, формулу для электрической мощности можно найти как:
Чтобы найти Силу (P)
[P = V x I] P (Вт) = V (вольты) x I (амперы)
Также:
[P = V 2 ÷ R] P (Вт) = V 2 (вольт) ÷ R (Ом)
Также:
[P = I 2 x R] P (Вт) = I 2 (амперы) x R (Ом)
Опять же, три величины были наложены в треугольник, на этот раз названный треугольником мощности с мощностью вверху и током и напряжением внизу.Опять же, это расположение представляет собой фактическое положение каждой величины в формулах мощности закона Ома.
Треугольник власти
и снова, транспонирование основного уравнения закона Ома, приведенного выше для мощности, дает нам следующие комбинации одного и того же уравнения для нахождения различных индивидуальных величин:
Итак, мы видим, что есть три возможных формулы для расчета электрической мощности в цепи. Если рассчитанная мощность положительна, (+ P) по значению для любой формулы компонент поглощает мощность, то есть потребляет или использует мощность.Но если расчетная мощность отрицательна, (–P) по значению компонент производит или генерирует энергию, другими словами, это источник электроэнергии, такой как батареи и генераторы.
Номинальная электрическая мощность
Электрическим компонентам дается «номинальная мощность» в ваттах, которая указывает максимальную скорость, с которой компонент преобразует электрическую мощность в другие формы энергии, такие как тепло, свет или движение. Например, резистор 1/4 Вт, лампочка 100 Вт и т. Д.
Электрические устройства преобразуют одну форму энергии в другую.Так, например, электродвигатель преобразует электрическую энергию в механическую силу, а электрический генератор преобразует механическую силу в электрическую. Лампочка преобразует электрическую энергию в свет и тепло.
Кроме того, теперь мы знаем, что единицей мощности является WATT , но некоторые электрические устройства, такие как электродвигатели, имеют номинальную мощность в старом измерении «лошадиная сила» или л.с. Соотношение между мощностью и ваттами выражается следующим образом: 1 л.с. = 746 Вт.Так, например, двигатель мощностью две лошадиные силы имеет мощность 1492 Вт (2 x 746) или 1,5 кВт.
Круговая диаграмма закона Ома
Чтобы помочь нам понять взаимосвязь между различными значениями немного дальше, мы можем взять все уравнения закона Ома сверху для определения напряжения, тока, сопротивления и, конечно же, мощности и сжать их в простую круговую диаграмму закона Ома для использования в цепях переменного и постоянного тока и расчетах, как показано.
Круговая диаграмма закона Ома
Помимо использования приведенной выше круговой диаграммы закона Ома , мы также можем поместить отдельные уравнения закона Ома в простую матричную таблицу, как показано для удобства при вычислении неизвестного значения.
Таблица закона Ома
Пример закона Ома №1
Для схемы, показанной ниже, найдите напряжение (В), ток (I), сопротивление (R) и мощность (P).
Напряжение [В = I x R] = 2 x 12 Ом = 24 В
Ток [I = V ÷ R] = 24 ÷ 12Ω = 2A
Сопротивление [R = V ÷ I] = 24 ÷ 2 = 12 Ом
Мощность [P = V x I] = 24 x 2 = 48 Вт
Питание в электрической цепи присутствует только при наличии напряжения и тока ОБА .Например, в состоянии разомкнутой цепи напряжение присутствует, но нет тока I = 0 (ноль), поэтому V * 0 равно 0, поэтому мощность, рассеиваемая в цепи, также должна быть 0. Аналогично, если у нас есть состояние короткого замыкания, ток присутствует, но нет напряжения V = 0, поэтому 0 * I = 0, поэтому мощность, рассеиваемая в цепи, снова равна 0.
Поскольку электрическая мощность является произведением V * I, мощность, рассеиваемая в цепи, одинакова, независимо от того, содержит ли цепь высокое напряжение и низкий ток или низкое напряжение и большой ток.Как правило, электрическая мощность рассеивается в виде тепла, (нагреватели), механической работы, , например, двигателей, энергии , в виде излучаемой (лампы) или в виде накопленной энергии (батареи).
Электрическая энергия в цепях
Электрическая энергия — это способность выполнять работу, а единица работы или энергии — джоуль (Дж). Электрическая энергия — это произведение мощности на время, в течение которого она была потреблена. Итак, если мы знаем, сколько потребляемой мощности в ваттах и время в секундах, в течение которого она используется, мы можем найти общую потребляемую энергию в ватт-секундах.Другими словами, энергия = мощность x время и мощность = напряжение x ток. Следовательно, электрическая мощность связана с энергией, и единица измерения электрической энергии — ватт-секунды или джоулей .
Электрическая мощность также может быть определена как скорость передачи энергии. Если один джоуль работы либо поглощается, либо доставляется с постоянной скоростью в одну секунду, тогда соответствующая мощность будет эквивалентна одному ватту, поэтому мощность можно определить как «1 Джоуль / сек = 1 Вт».Тогда мы можем сказать, что один ватт равен одному джоулю в секунду, а электрическая мощность может быть определена как скорость выполнения работы или передачи энергии.
Электроэнергетический и энергетический треугольник
или найти различные индивидуальные количества:
Ранее мы говорили, что электрическая энергия определяется как ватт в секунду или джоулей . Хотя электрическая энергия измеряется в Джоулях, она может стать очень большой величиной при использовании для расчета энергии, потребляемой компонентом.
Например, если 100-ваттная лампочка остается включенной на 24 часа, потребляемая энергия составит 8 640 000 Дж (100 Вт x 86 400 секунд), поэтому префиксы, такие как килоджоулей, (кДж = 10 3 Дж) или мегаджоулей (МДж = 10 6 Дж), и в этом простом примере потребляемая энергия будет 8,64 МДж (мегаджоули).
Но имея дело с джоулями, килоджоулями или мегаджоулями для выражения электрической энергии, задействованная математика может закончиться некоторыми большими числами и множеством нулей, поэтому гораздо проще выразить потребляемую электрическую энергию в киловатт-часах.
Если потребляемая (или генерируемая) электрическая мощность измеряется в ваттах или киловаттах (тысячах ватт), а время измеряется в часах, а не в секундах, то единицей электрической энергии будет киловатт-часов , (кВтч). Тогда наша 100-ваттная лампочка, показанная выше, будет потреблять 2400 ватт-часов или 2,4 кВт-ч, что намного проще для понимания 8 640 000 джоулей.
1 кВт-ч — это количество электроэнергии, потребляемое устройством мощностью 1000 Вт за один час, которое обычно называют «единицей электроэнергии».Это то, что измеряется счетчиком коммунальных услуг, и это то, что мы, как потребители, покупаем у наших поставщиков электроэнергии, когда получаем наши счета.
киловатт-часов — это стандартные единицы энергии, используемые электросчетчиком в наших домах для расчета количества потребляемой электроэнергии и, следовательно, того, сколько мы платим. Таким образом, если вы включите электрический камин с нагревательным элементом мощностью 1000 Вт и оставите его включенным на 1 час, вы израсходуете 1 кВт-час электроэнергии. Если вы включите два электрокамина с элементами по 1000 ватт на полчаса, общее потребление будет равно количеству электроэнергии — 1 кВт · ч.
Итак, потребление 1000 Вт в течение одного часа потребляет такое же количество энергии, как 2000 Вт (вдвое больше) в течение получаса (половина времени). Затем, чтобы 100-ваттная лампочка использовала 1 кВтч или одну единицу электроэнергии, ее нужно было бы включить в общей сложности на 10 часов (10 x 100 = 1000 = 1 кВтч).
Теперь, когда мы знаем, какова взаимосвязь между напряжением, током и сопротивлением в цепи, в следующем руководстве, посвященном цепям постоянного тока, мы рассмотрим стандартные электрические единицы, используемые в электротехнике и электронике, чтобы мы могли рассчитать эти значения и убедитесь, что каждое значение может быть представлено кратными или частичными значениями стандартной единицы.
energy — Различные формулы для расчета мощности
Мощность обычно указывается как энергия / время, но на самом деле это немного расплывчато: какая энергия и в какое время?
Говоря об энергии, мы либо ссылаемся на систему / физический объект, для которого энергия является свойством, либо говорим об обмене энергией между двумя системами.
Время, когда говорят о власти, подразумевает процесс, происходящий в течение некоторого промежутка времени; например энергия системы изменяется в течение некоторого времени или, когда она доведена до мгновенного предела, мощность приближается к некоторому значению.
Уравнение
$ P = VI $
предполагает, что существует некоторый путь, по которому проходит ток; ток на пути равен $ I $, а разница напряжений на пути равна $ V $. Ток течет от высокого к низкому напряжению, поэтому мощность $ P $ — это потенциальная энергия движущихся зарядов (т.е.е. текущий) проигрывают, пересекая путь.
В отсутствие трения / тепла / других сил это привело бы к добавлению кинетической энергии к движущимся зарядам со скоростью $ -P $. Однако: всякий раз, когда мы делаем что-то интересное с электричеством (например, лампочки, компьютеры, запуск автомобиля), эта энергия, добавляемая к зарядам, забирается тем, для чего мы ее используем.
Это подводит нас к другим вашим уравнениям.
Если у нас есть резистивный элемент, подчиняющийся закону Ома **, то
$ V = I R $.2 / R $.
Теперь: чтобы перейти к другим полезным вопросам, например, сколько энергии потребляет лампочка, мы должны сделать некоторые предположения о том, как работает устройство. Обычно мы предполагаем, что установившееся состояние , то есть ток / напряжение не меняются с течением времени, что означает, что вся энергия, которую получают заряды, расходуется любым устройством, через которое мы пропускаем ток.
Другими словами, предположение, что мощность из этих формул — это мощность, используемая устройством, обычно безопасно, но только когда речь идет о системах в установившемся режиме.Исключение составляют случаи, когда мы говорим об источнике питания; в этом случае сохранение энергии говорит нам, что энергия, которую получают заряды, должна исходить от источника энергии.
Вкратце: $ P = VI $ всегда действителен при условии, что вы говорите о мощности, отдаваемой зарядам / взятой от источника питания, а два других уравнения справедливы только для резисторных элементов, которые подчиняются закону Ома (с тем же определение власти). Однако вы можете использовать их для других величин, если вам предоставлены правильные допущения, такие как системы устойчивого состояния.
** Обратите внимание, что для выполнения закона Ома не обязательно; сопротивление можно рассматривать как функцию, а не просто постоянное значение, и если вы знаете эту функцию, вы можете безопасно использовать формулы в любое время.
Мощность | Физика
Цели обучения
К концу этого раздела вы сможете:
- Рассчитайте мощность, рассчитав изменения энергии во времени.
- Изучите энергопотребление и расчеты стоимости потребляемой энергии.
Что такое мощность?
Рис. 1. Эта мощная ракета космического корабля «Индевор» действительно работала и потребляла энергию с очень высокой скоростью. (кредит: НАСА)
Мощность — это слово вызывает в воображении множество образов: профессиональный футболист, отталкивающий своего противника, драгстер, ревущий от стартовой линии, вулкан, выбрасывающий лаву в атмосферу, или взлетающая ракета, как на рисунке 1.
Эти образы силы объединяет быстрое выполнение работы, что соответствует научному определению мощности ( P ) как скорости выполнения работы.
Мощность
Мощность — это скорость выполнения работы.
[латекс] \ displaystyle {P} = \ frac {W} {t} \\ [/ latex]
Единица измерения мощности в системе СИ — ватт, (Вт), где 1 ватт равен 1 джоуль в секунду (1 Вт = 1 Дж / с).
Поскольку работа — это передача энергии, мощность — это также скорость, с которой энергия расходуется. Например, лампочка мощностью 60 Вт потребляет 60 Дж энергии в секунду. Большая мощность означает большой объем работы или энергии, выработанный за короткое время. Например, когда мощный автомобиль быстро разгоняется, он выполняет большой объем работы и потребляет большое количество топлива за короткое время.
Расчет мощности по энергии
Пример 1. Расчет мощности для подъема по лестнице
Какова выходная мощность для женщины весом 60,0 кг, которая преодолевает лестничный марш высотой 3,00 м за 3,50 с, начиная с состояния покоя, но имея конечную скорость 2,00 м / с? (См. Рисунок 2.)
Рис. 2. Когда эта женщина бежит наверх, начиная с отдыха, она превращает химическую энергию, исходную из пищи, в кинетическую энергию и гравитационную потенциальную энергию. Ее выходная мощность зависит от того, как быстро она это сделает.2 \ right) \ left (3.00 \ text {m} \ right)} {3.50 \ text {s}} \\\ text {} & = & \ frac {120 \ text {J} +1764 \ text {J} } {3.50 \ text {s}} \\\ text {} & = & 538 \ text {W} \ end {array} \\ [/ latex]
Обсуждение
Женщина выполняет 1764 Дж работы, чтобы подняться по лестнице, по сравнению со всего лишь 120 Дж, чтобы увеличить свою кинетическую энергию; таким образом, большая часть ее мощности требуется для подъема, а не для ускорения.
Поразительно, что полезная выходная мощность этой женщины чуть меньше 1 лошадиных сил (1 л.с. = 746 Вт)! Люди могут генерировать более лошадиные силы с помощью мышц ног в течение коротких периодов времени, быстро превращая доступный в крови сахар и кислород в объем работы.(Лошадь может выдавать 1 л.с. в течение нескольких часов подряд.) Как только кислород истощается, выходная мощность снижается, и человек начинает быстро дышать, чтобы получить кислород для метаболизма большего количества пищи — это известно как стадия аэробных упражнений . Если бы женщина поднималась по лестнице медленно, то ее выходная мощность была бы намного меньше, хотя объем выполняемой работы был бы таким же.
Установление соединений: расследование на вынос — измерение номинальной мощности
Определите собственную номинальную мощность, измерив время, необходимое вам, чтобы подняться по лестнице.Мы проигнорируем выигрыш в кинетической энергии, так как приведенный выше пример показал, что это была небольшая часть выигрыша в энергии. Не ожидайте, что ваша мощность будет больше 0,5 л.с.
Примеры силы
Рис. 3. Огромное количество электроэнергии вырабатывается угольными электростанциями, такими как эта в Китае, но еще большее количество энергии идет на передачу тепла в окружающую среду. Большие градирни здесь необходимы для быстрой передачи тепла по мере его производства.Передача тепла характерна не только для угольных электростанций, но является неизбежным следствием выработки электроэнергии из любого топлива — ядерного, угля, нефти, природного газа и т.п. (Источник: Kleinolive, Wikimedia Commons)
Примеры силы ограничены только воображением, потому что видов столько же, сколько форм работы и энергии. (См. Некоторые примеры в Таблице 1.) Солнечный свет, достигающий поверхности Земли, несет максимальную мощность около 1,3 киловатт на квадратный метр (кВт / м 2 ).Крошечная часть этого остается на Земле в течение длительного времени. Наш уровень потребления ископаемого топлива намного превышает скорость его хранения, поэтому они неизбежно будут исчерпаны. Сила подразумевает, что энергия передается, возможно, меняя форму. Невозможно полностью преобразовать одну форму в другую, не потеряв часть ее в виде тепловой энергии. Например, лампа накаливания мощностью 60 Вт преобразует в свет всего 5 Вт электроэнергии, а 55 Вт рассеивается в тепловую энергию.
Кроме того, обычная электростанция преобразует только 35-40% топлива в электроэнергию. Остаток превращается в огромное количество тепловой энергии, которая должна быть распределена в виде теплопередачи так же быстро, как и возникнет. Электростанция, работающая на угле, может производить 1000 мегаватт; 1 мегаватт (МВт) — это 10 6 Вт электроэнергии. Но электростанция потребляет химическую энергию в размере около 2500 МВт, создавая передачу тепла в окружающую среду в размере 1500 МВт. (См. Рисунок 3.)
Таблица 1. Выходная или потребляемая мощность | |
---|---|
Объект или явление | Мощность в ваттах |
Сверхновая (в пике) | 5 × 10 37 |
Галактика Млечный Путь | 10 37 |
Крабовидная туманность пульсар | 10 28 |
Солнце | 4 × 10 26 |
Извержение вулкана (максимальное) | 4 × 10 15 |
Молния | 2 × 10 12 |
Атомная электростанция (полная передача электроэнергии и тепла) | 3 × 10 9 |
Авианосец (полезная и теплопроводная) | 10 8 |
Драгстер (общая полезная и теплопередающая) | 2 × 10 6 |
Автомобиль (общая полезная и теплоотдача) | 8 × 10 4 |
Футболист (общий полезный и теплопередающий) | 5 × 10 3 |
Сушилка для белья | 4 × 10 3 |
Человек в состоянии покоя (вся теплопередача) | 100 |
Типовая лампа накаливания (общая полезная и теплопередающая) | 60 |
Сердце, человек в состоянии покоя (общая полезная и теплоотдача) | 8 |
Часы электрические | 3 |
Карманный калькулятор | 10 −3 |
Мощность и энергопотребление
Обычно нам приходится платить за энергию, которую мы используем.Стоимость энергии для электроприбора интересно и легко оценить, если известны его потребляемая мощность и затраченное время. Чем выше уровень энергопотребления и чем дольше прибор используется, тем выше его стоимость. Уровень потребляемой мощности [латекс] P = \ frac {W} {t} = \ frac {E} {t} \\ [/ latex], где E — энергия, поставляемая электроэнергетической компанией. Таким образом, энергия, потребляемая за время т , составляет
.E = Pt.
В счетах за электроэнергию указано количество использованной энергии в единицах киловатт-часов (кВт⋅ч) , , что является произведением мощности в киловаттах и времени в часах. Этот блок удобен тем, что потребление электроэнергии на уровне киловатт в течение нескольких часов является типичным.
Пример 2. Расчет затрат на электроэнергию
Какова стоимость эксплуатации компьютера мощностью 0,200 кВт, 6 часов в день в течение 30 дней, если стоимость электроэнергии составляет 0,120 доллара США за кВт⋅ч?
Стратегия
Стоимость основана на потребленной энергии; таким образом, мы должны найти E из E = Pt , а затем рассчитать стоимость.Поскольку электрическая энергия выражается в кВт⋅ч, в начале такой задачи удобно преобразовать единицы в кВт и часы.
Решение
Энергия, потребляемая в кВт⋅ч, составляет
[латекс] \ begin {array} {lll} E & = & Pt = (0.200 \ text {kW}) (6.00 \ text {h / d}) (30.0 \ text {d}) \\\ text {} & = & 36.0 \ text {кВт} \ cdot \ text {h} \ end {array} \\ [/ latex]
, а стоимость просто равна
. Стоимость= (36,0 кВт⋅ч) (0,120 доллара США за кВтч) = 4,32 доллара США в месяц.
Обсуждение
Стоимость использования компьютера в этом примере не является ни чрезмерной, ни незначительной. Понятно, что стоимость — это сочетание силы и времени. Когда и то и другое высокое, например, кондиционер летом, стоимость высока.
Мотивация к экономии энергии стала более убедительной из-за ее постоянно растущей цены. Вооружившись знанием того, что потребляемая энергия является продуктом мощности и времени, вы можете оценить затраты для себя и сделать необходимые оценочные суждения о том, где экономить энергию.Нужно уменьшить либо мощность, либо время. Наиболее экономически выгодно ограничить использование мощных устройств, которые обычно работают в течение длительного времени, например водонагревателей и кондиционеров. Сюда не входят устройства с относительно высокой мощностью, такие как тостеры, потому что они работают всего несколько минут в день. Он также не будет включать электрические часы, несмотря на то, что они используются круглосуточно, потому что они являются устройствами с очень низким энергопотреблением. Иногда для выполнения той же задачи можно использовать устройства с большей эффективностью, то есть устройства, потребляющие меньше энергии.Одним из примеров является компактная люминесцентная лампа, которая дает в четыре раза больше света на ватт потребляемой мощности, чем ее собрат с лампами накаливания.
Современная цивилизация зависит от энергии, но нынешние уровни потребления и производства энергии не являются устойчивыми. Вероятность связи между глобальным потеплением и использованием ископаемого топлива (с сопутствующим производством углекислого газа) сделала сокращение использования энергии, а также переход на неископаемые виды топлива чрезвычайно важными. Несмотря на то, что энергия в изолированной системе является сохраняемой величиной, конечным результатом большинства преобразований энергии является перенос тепла в окружающую среду, которое больше не используется для выполнения работы.Как мы обсудим более подробно в Термодинамике, способность энергии производить полезную работу «снижается» при преобразовании энергии.
Сводка раздела
- Мощность — это скорость выполнения работы или в форме уравнения для средней мощности. P для работы Вт , выполненной за время т , [латекс] P = \ frac {W} {t} \\ [/ латекс]
- Единицей измерения мощности в системе СИ является ватт (Вт), где [латекс] 1 \ text {W} = 1 \ frac {\ text {J}} {\ text {s}} \\ [/ latex].
- Мощность многих устройств, например электродвигателей, также часто выражается в лошадиных силах (л.с.), где 1 л.с. = 746 Вт.
Концептуальные вопросы
- Большинство электроприборов имеют мощность в ваттах. Зависит ли этот рейтинг от того, как долго прибор включен? (В выключенном состоянии это устройство с нулевой ваттностью.) Объясните в терминах определения мощности.
- Объясните в терминах определения мощности, почему потребление энергии иногда указывается в киловатт-часах, а не в джоулях.Какая связь между этими двумя энергетическими единицами?
- Искра статического электричества, которую вы можете получить от дверной ручки в холодный и сухой день, может нести несколько сотен ватт мощности. Объясните, почему вы не пострадали от такой искры.
Задачи и упражнения
- Пульсар в Крабовидной туманности (см. Рис. 4) — это остаток сверхновой, которая произошла в 1054 г. н.э. Используя данные из таблицы 1, вычислите приблизительный коэффициент, на который мощность этого астрономического объекта снизилась после его взрыва.
Рис. 4. Крабовидная туманность (предоставлено ESO, через Wikimedia Commons)
- Предположим, что звезда в 1000 раз ярче нашего Солнца (то есть излучающая в 1000 раз большую мощность) внезапно становится сверхновой. Используя данные из Таблицы 1: (a) Во сколько раз увеличивается его выходная мощность? (б) Во сколько раз ярче, чем вся наша галактика Млечный Путь, сверхновая? (c) Основываясь на ваших ответах, обсудите, возможно ли наблюдать сверхновые в далеких галактиках. Отметим, что существует порядка 10 11 наблюдаемых галактик, средняя яркость которых несколько меньше нашей собственной галактики.
- Человек в хорошей физической форме может выдавать 100 Вт полезной мощности в течение нескольких часов подряд, возможно, крутя педали механизма, приводящего в действие электрогенератор. Пренебрегая любыми проблемами эффективности генератора и практическими соображениями, такими как время отдыха: (а) Сколько человек потребуется, чтобы запустить электрическую сушилку для белья мощностью 4,00 кВт? (б) Сколько людей потребуется, чтобы заменить большую электростанцию, вырабатывающую 800 МВт?
- Сколько стоит эксплуатация 3.Электрические часы 00-Вт на год при стоимости электроэнергии 0,0900 $ за кВт · ч?
- Большой бытовой кондиционер может потреблять 15,0 кВт электроэнергии. Какова стоимость эксплуатации этого кондиционера 3,00 часа в день в течение 30,0 дней, если стоимость электроэнергии составляет 0,110 доллара США за кВт · ч?
- (a) Какова средняя потребляемая мощность в ваттах прибора, потребляющего 5,00 кВт · ч энергии в день? (б) Сколько джоулей энергии устройство потребляет в год?
- (a) Какова средняя полезная выходная мощность человека, который делает 6.00 × 10 6 Дж полезной работы за 8.00 ч? (b) Работая с такой скоростью, сколько времени потребуется этому человеку, чтобы поднять 2000 кг кирпичей 1,50 м на платформу? (Работу по поднятию тела можно пропустить, потому что здесь это не считается полезным результатом.)
- Драгстер весом 500 кг ускоряется от состояния покоя до конечной скорости 110 м / с за 400 м (около четверти мили) и сталкивается со средней силой трения 1200 Н. Какова его средняя выходная мощность в ваттах и лошадиных силах, если это занимает 7,30 с?
- (a) Сколько времени займет автомобиль массой 850 кг с полезной мощностью 40 л.с.0 л.с. (1 л.с. = 746 Вт) для достижения скорости 15,0 м / с без учета трения? (b) Сколько времени займет это ускорение, если при этом автомобиль также преодолеет холм высотой 3,00 м?
- (a) Найдите полезную выходную мощность двигателя лифта, который поднимает груз массой 2500 кг на высоту 35,0 м за 12,0 с, если он также увеличивает скорость в состоянии покоя до 4,00 м / с. Обратите внимание, что общая масса уравновешенной системы составляет 10 000 кг, т.е. только 2500 кг поднимается в высоту, но все 10 000 кг ускоряются. (б) Сколько это стоит, если электричество стоит 0 долларов.0900 за кВт · ч?
- (a) Каково доступное энергосодержание в джоулях батареи, которая обеспечивает работу электрических часов мощностью 2,00 Вт в течение 18 месяцев? (b) Как долго батарея, способная обеспечивать 8,00 × 10 4 Дж, может работать с карманным калькулятором, потребляющим энергию со скоростью 1,00 × 10 −3 Вт?
- (a) Сколько времени потребуется самолету массой 1,50 × 10 5 кг с двигателями мощностью 100 МВт, чтобы достичь скорости 250 м / с и высоты 12,0 км, если сопротивление воздуха будет незначительным? (б) Если это действительно занимает 900 с, какова мощность? (c) Учитывая эту мощность, какова средняя сила сопротивления воздуха, если самолет занимает 1200 с? (Подсказка: вы должны найти расстояние, которое самолет преодолеет за 1200 с при постоянном ускорении.)
- Рассчитайте выходную мощность, необходимую для 950-килограммового автомобиля, чтобы преодолеть уклон 2,00 ° с постоянной скоростью 30,0 м / с, столкнувшись с сопротивлением ветра и трением в сумме 600 Н. Явно покажите, как вы выполняете шаги, указанные в Стратегиях решения проблем в области энергетики. .
- (a) Рассчитайте мощность на квадратный метр, приходящуюся от Солнца в верхние слои атмосферы Земли. (Возьмем выходную мощность Солнца равной 4,00 × 10 26 Вт.) [/ Latex] (b) Часть этой мощности поглощается и отражается атмосферой, так что максимум 1.30 кВт / м 2 достигает поверхности Земли. Вычислите площадь в км 2 коллекторов солнечной энергии, необходимых для замены электростанции, вырабатывающей 750 МВт, если коллекторы преобразуют в электричество в среднем 2,00% максимальной мощности. (Такая малая эффективность преобразования обусловлена самими устройствами и тем фактом, что солнце находится прямо над головой лишь на короткое время.) При тех же предположениях, какая площадь потребуется для удовлетворения энергетических потребностей Соединенных Штатов (1,05 × 10 20 J)? Энергетические потребности Австралии (5.4 × 10 18 Дж)? Энергетические потребности Китая (6,3 × 10 19 Дж)? (Эти значения энергопотребления взяты с 2006 г.)
Глоссарий
мощность: скорость выполнения работы
ватт: (Вт) единица мощности СИ, с [латексом] 1 \ text {W} = \ frac {\ text {J}} {\ text {s}} \\ [/ latex]
лошадиных сил: более старая несистемная единица мощности, с 1 л.с. = 746 Вт
киловатт-час: установка кВт · час, используемая в основном для выработки электроэнергии, предоставляемой электроэнергетическими компаниями
Избранные решения проблем и упражнения
1.2 × 10 −10
3. (а) 40; (б) 8 миллионов
5. 149 долларов США
7.