Двигатель ванкеля википедия: Двигатель Ванкеля — это… Что такое Двигатель Ванкеля?

Содержание

Двигатель Ванкеля — это… Что такое Двигатель Ванкеля?

Роторно-поршневой двигатель в разрезе.

Ро́торно-поршнево́й дви́гатель внутреннего сгорания (РПД, двигатель Ва́нкеля), конструкция которого разработана в 1957 инженером компании NSU Вальтером Фройде (англ.), ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией роторно-поршневого двигателя. [1]

Особенность двигателя — применение трёхгранного ротора (поршня), имеющего вид треугольника Рело, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде.

Конструкция

Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй — статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх клапанов.

Цикл двигателя Ванкеля: впуск (голубой), сжатие (зелёный), рабочий ход (красный), выпуск (жёлтый)

Роторно-поршневой двигатель

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого (экономия составляет около тысячи деталей), а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот ванкель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя.

Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.

Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п.

Преимущества, недостатки и их разрешение

Преимущества перед обычными бензиновыми двигателями

  • низкий уровень вибраций. РПД полностью механически уравновешен, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей, мотокаров и юникаров;
  • главным преимуществом роторно-поршневого двигателя являются отличные динамические характеристики: на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более), чем в случае конструкции обычного двигателя внутреннего сгорания.
  • Малая удельная масса при высокой удельной мощности, причины:
  1. Масса движущихся частей в РПД гораздо меньше, чем в аналогичных по мощности «нормальных» поршневых двигателях, так как в его конструкции отсутствуют коленчатый вал и шатуны.
  2. К тому же однороторный двигатель выдаёт мощность в течение трёх четвертей каждого оборота выходного вала. В отличии от одноцилиндрового поршневого двигателя, который выдаёт мощность только в течение одной четверти каждого оборота выходного вала. (современный серийный РПД с объёмом рабочей камеры 1300 см³ имеет мощность 220 л.с., а с турбокомпрессором — 350 л.с.)
  • меньшие в 1,5—2 раза габаритные размеры.
  • меньшее на 35—40 % число деталей

За счёт отсутствия преобразования возвратно-поступательного движения во вращательное двигатель способен выдерживать бо́льшие обороты с меньшими вибрациями, по сравнению с традиционными двигателями. Роторно-поршневые двигатели обладают более высокой мощностью при небольшом объёме камеры сгорания, сама же конструкция двигателя сравнительно мала и содержит меньше деталей. Небольшие размеры улучшают управляемость, облегчают оптимальное расположение трансмиссии и позволяют сделать автомобиль более просторным для водителя и пассажиров.

Соединение ротора с выходным валом через эксцентриковый механизм, являясь характерной особенностью РПД Ванкеля, вызывает давление между трущимися поверхностями, что в сочетании с высокой температурой, приводит к дополнительному износу и нагреву двигателя.

В связи с этим возникает повышенное требование к периодической замене масла. При правильной эксплуатации периодически производится капитальный ремонт, включающий в себя замену уплотнителей. Ресурс при правильной эксплуатации достаточно велик, но не заменённое вовремя масло неизбежно приводит к необратимым последствиям, и двигатель выходит из строя.

Важной проблемой считается состояние уплотнителей. Площадь пятна контакта очень невелика, а перепад давления очень высокий. Следствием этого, неразрешимого для двигателей Ванкеля, противоречия являются высокие утечки между отдельными камерами и, как следствие, падение коэффициента полезного действия и токсичность выхлопа.

Проблема быстрого износа уплотнителей на высокой скорости вращения была разрешена применением высоколегированной стали.

При всех преимуществах (высокая удельная мощность, простота устройства, несложный ремонт при правильной эксплуатации), важной проблемой является меньшая экономичность на низких оборотах по сравнению с обычными ДВС.

Другой особенностью двигателей Ванкеля является его склонность к перегреву. Камера сгорания имеет линзовидную форму, то есть при маленьком объёме у неё относительно большая площадь. При температуре горения рабочей смеси основные потери энергии идут через излучение. Интенсивность излучения пропорциональна четвёртой степени температуры, таким образом идеальная форма камеры сгорания — сферическая. Лучистая энергия не только бесполезно покидает камеру сгорания, но и приводит к перегреву рабочего цилиндра. Эти потери не только снижают эффективность преобразования химической энергии в механическую, но и вызывают проблемы с воспламенением рабочей смеси, поэтому в конструкции двигателя часто предусматривают 2 свечи.

Высокие требования к точности исполнения деталей делают его сложным в производстве. Оно требует высокотехнологичного и высокоточного оборудования — станков, способных перемещать инструмент по сложной траектории эпитрохоидальной поверхности камеры объёмного вытеснения.

Применение

NSU Ro80.

Двигатель разрабатывался изначально именно для применения на автотранспорте. Первый серийный автомобиль с роторным двигателем — немецкий спорткар NSU Wankelspider.

Первый массовый (37,204 экземпляра) — немецкий седан бизнес-класса NSU Ro80. Автомобиль имел достаточно инноваций и помимо двигателя — в частности, кузов с рекордно-низким аэродинамическим сопротивлением, полуавтоматическую коробку передач с гидротрансформатором, блок-фары, и так далее. Ro80 отличалась не только уникальной конструкцией, но и передовым дизайном, который оказался непонятен публике середины шестидесятых; через десять лет именно он был положен в основу стиля моделей «Ауди» 100 и 200 поколения C2.

К сожалению, ресурс двигателя оказался весьма мал (ремонт требовался уже после пробега порядка 50 тыс. км), поэтому автомобиль заслужил плохую репутацию и относительно малоизвестен. На многих сохранившихся автомобилях оригинальный двигатель заменён на поршневой V4 «Essex» фирмы Ford.

Citroën также экспериментировал с РПД — проект Citroën M35.

После этого серийное и мелкосерийное производство роторно-поршневых двигателей Ванкеля производились только фирмой ВАЗ, в конечном счёте взявшим за основу конструкцию двигателя

Современные двигатели

Инженерам фирмы Euro IV. Двухцилиндровый двигатель «Renesis» объёмом всего 1,3 л выдаёт мощность в 250 л. с. и занимает гораздо меньше места в моторном отсеке. Следующая модель двигателя Renesis 2 16X имеет меньший объём, но бо́льшую мощность, меньше нагревается.

Автомобили марки [2] могут использовать в качестве топлива как бензин, так и водород. Это явилось вторым витком роста внимания к РПД двигателю со стороны разработчиков. Двигатель успешно может использовать водород, так как менее чувствителен к детонации, чем обычный двигатель, использующий возвратно-поступательное движение поршня.

Автомобили с РПД потребляют от 7 до 20 литров топлива на 100 км, в зависимости от режима движения, и масла от 0,4 л до 1 л на 1000 км (для двигателей Mazda 0,4 — 0,6 л.). В настоящее время исследование этого типа двигателя активно ведёт японский автоконцерн

Авиационные двигатели

В начале 50-х годов была создана серия авиадвигателей ВП-760, ВП-1300, ВП-2650 — пятилучевых двухтактных звёзд мощностью от 40 до 130 л. с. и весом от 25 до 100 кг авиационного инженера В.Полякова, созданных для лёгкой авиационной техники и прошедших успешные испытания в небольшой серии в ДОСААФ. [3]

Сноски

  1. Иван Пятов. РПД изнутри и снаружи, Журнал Двигатель, № 5-6 (11-12) сентябрь-декабрь 2000
  2. первые буквы от названия «Renesis», производным от слов (англ. Rotary Engine:роторный двигатель и Genesis:процесс становления, название говорящее о появлении нового класса двигателей)
  3. альманах АэроМастер, №1/98г, Новосибирск.

Литература

  • Роторно-поршневой двигатель // Большая советская энциклопедия

Ссылки

РПД СССР/России

Авиационные РПД

См. также

Wikimedia Foundation. 2010.

Ротор вместо цилиндров. Почему двигатель Ванкеля так и не покорил СССР


Свой путь

В СССР еще в довоенный период конструкторы баловались опытами над вариациями поршневых силовых агрегатов. Причем, что интересно, поначалу их тоже привязывали исключительно к самолетам. Об автомобилях никто особо не задумывался.

Роторной темой в СССР плотно занимались три научно-исследовательских института — НАМИ, НАТИ и ВНИИМотопром. Делали они это по прямому приказу Минавтопрома и Минсельхозмаша. Любопытно, что происходило это еще в «дованкелевские времена». И когда немец представил свой ДВС, его разработками заинтересовались серьезно. Ведь подобный мотор мог пригодиться как в милиции, так и в автоспорте.

Советские верхи посовещались и решили передать карты в руки ВАЗу. И в 1973 году там началась кропотливая работа над РПД, в специально созданном конструкторском бюро. Тамошним инженерам поручили решить еще одну задачу — заведомо провальную — проанализировать главные недостатки мотора Ванкеля и найти (!) способы их устранения.

Надо сказать, советский РПД действительно создавали с нуля. Никто не думал о покупке патента или лицензии на производство. А чтобы работа шла быстрее, была куплена Mazda RX-2 — как раз с роторным мотором. Силовой агрегат разобрали, изучили и собрали. После чего поставили японский РПД на вазовскую «трешку».

Во время испытаний стало понятно, что РПД крайне неэкологичнен и неэкономичен. Кроме того, очень часто приходилось менять уплотнители на роторе. Другими словами, советские конструкторы столкнулись с главной проблемой РПД. Ее пытались решить лучшие европейские и японские конструкторские умы на протяжении долгих лет — и безуспешно. Как, собственно, и сам Ванкель. Ведь именно недолговечность уплотнителей поставила крест на NSU Ro-80. И, соответственно, на перспективах мотора.

Но опыт заграничных коллег если и пугал советских конструкторов, то они этого не показывали. И свой собственный опытный РПД продемонстрировали уже в 1976 году. Он получил индекс ВАЗ-301. Правда, о его серийном производстве не было речи: образец явно требовал многочисленных усовершенствований.

На это ушло еще 6 лет. И в 1982 году появился РПД ВАЗ-311, чья мощность составляла 70 лошадиных сил. Этот мотор установили на ВАЗ-21011, изменив индекс на 21018.

Для пробы было выпущено 50 таких автомобилей. Но уже спустя полгода в живых остался лишь один. На остальных РПД поменяли на привычные моторы. С главным проклятием моторов Ванкеля — недолговечными уплотнителями и подшипниками — справиться не удалось.

Что такое двигатель Найта? — ДРАЙВ

Шестицилиндровая двухдверка Willys-Knight Great Six 1930 года — один из самых массовых автомобилей, когда-либо использовавших двигатель Найта. Всего с 1914 по 1932 год включительно под маркой Willys-Knight были выпущены сотни тысяч автомобилей нескольких моделей с бесклапанными ДВС на 4, 6 и 8 цилиндров.

В 1903–1905 годах американский изобретатель Чарльз Найт построил и испытал экспериментальный четырёхтактный ДВС, в котором за газораспределение отвечали не клапаны, а концентрическая пара подвижных гильз, вложенных в рабочий цилиндр. Уже внутри этой пары гильз двигался рабочий поршень. Каждая гильза была снабжена крупными окнами с одного края. При смещении гильзы вверх и вниз эти вырезы периодически совпадали с впускным или выпускным окном в боковой стенке цилиндра. В движение гильзы приводили кривошипно-шатунный механизм и газораспределительный эксцентриковый вал, заменивший кулачковый.

Образец мотора с газораспределительным механизмом типа «Тихий Найт» или «Бесшумный механизм Найта» (Silent Knight), 1919 год.

На Чикагском автошоу 1906 года Найт и его деловой партнёр Лаймен Кильбурн представили автомобиль Silent Knight с четырёхцилиндровым 40-сильным бесклапанным мотором. В соответствии с названием, главным преимуществом новичка в сравнении с тогдашними самобеглыми колясками был несравненно более низкий уровень шума. Эта машина поначалу не слишком заинтересовала покупателей, но зато незамедлительно вызвала большой интерес в самой индустрии и в последующие годы породила целую волну подражаний по обе стороны Атлантики, волну, спавшую только после Второй мировой войны.

Шестицилиндровый ДВС Willys Knight 1928 года (слева) и его развитие — бесклапанный мотор родстера Willys Knight Great Six 1930 года (шесть цилиндров, объём 4180 см³, мощность 87 л.с.).

Разные вариации двигателей с гильзовым золотниковым распределением начали проектировать и строить не только в США, но и в Европе, в основном — в Великобритании и Франции. Такие моторы компании создавали по лицензии Найта и нередко при его же непосредственном участии (в конце первого десятилетия XX века изобретатель несколько лет проработал в Европе, а потом вернулся на родину).

Гильзовый газораспределительный механизм фирмы Argyll (конструкция Барта и Макколлума). Использовался в автомобилях Argyll в 1912–1914 годах. Позже он был перенят в авиадвигателестроении.

В разные годы моторами с гильзовым газораспределением оснащались легковушки марок Daimler, Willys, Mercedes, Peugeot, Voisin, Panhard-Levassor и ещё нескольких других. При этом идея Найта развивалась, а механизм совершенствовался. Так, в моторах шотландской компании Argyll применялся оригинальный вариант бесклапанного распределения с единственной подвижной гильзой, которая по мере прохождения рабочих тактов одновременно и сдвигалась вверх-вниз, и совершала неполный поворот вокруг продольной оси. Благодаря этому она одна могла отвечать и за впуск и за выпуск.

Во время Второй мировой войны двигатели с гильзовой системой газораспределения совершили экскурс в авиацию. Такие многоцилиндровые моторы (рядные и звездообразные) строили компании Napier (слева), Rolls-Royce и Bristol (справа). Они нашли применение на нескольких винтовых истребителях и бомбардировщиках 1940-х и начала 1950-х годов. Мощности этих ДВС достигали 3500 л.с., и это были самые могучие моторы, построенные по принципу, изобретённому Найтом. Но вскоре они ушли в историю.

Двигатели Найта обладали рядом преимуществ перед четырёхтактными ДВС с традиционными клапанами. У бесклапанных моторов были очень крупные окна для впуска и выпуска, что улучшало газообмен. Такие механизмы не боялись высоких оборотов коленвала, тогда как клапаны в аналогичной ситуации требовали всё более и более сильных пружин, что увеличивало потери на трение в приводе. Вместе все эти особенности позволяли получать на двигателях Найта высокие по тем временам мощности. Кроме того, в начале XX века, в 1920-х и даже в 1930-х годах газораспределительные механизмы Найта были во много раз долговечнее клапанных механизмов.

Французская компания Avions Voisin возникла в 1905 году, а исчезла в пятидесятых. С 1919 года и почти до самого своего конца фирма выпускала автомобили с двигателями Найта, такие как этот кабриолет Voisin C11. На разных моделях Вуазена применялись моторы Найта с четырьмя, шестью цилиндрами и даже 12 в ряд. А на прототипах были опробованы V-образные ДВС с восемью и 12 цилиндрами, а также «звезда» о семи цилиндрах. Лишь к самому концу своей истории (то есть после Второй мировой войны) компания перешла на обычные моторы.

Однако обычные газораспределительные системы быстро совершенствовались, а вот схема Найта так и не смогла избавиться от изначально присущих ей недостатков. Среди них: проблемы с обеспечением герметичности цилиндров, проблемы с приработкой внутренней гильзы и поршневых колец, проблемы с подводом смазки ко всем частям и собственно очень высокий расход масла. Эти слабые места вынудили двигатели Найта уйти с массовой сцены, хотя на протяжении всего XX века отдельные изобретатели продолжали попытки усовершенствовать такую схему. Но дальше выпуска всякой экзотики вроде крохотных моторчиков для авиамоделей дело не пошло.

изобретение двигателей – тема научной статьи по сельскому хозяйству, лесному хозяйству, рыбному хозяйству читайте бесплатно текст научно-исследовательской работы в электронной библиотеке КиберЛенинка

Електротехніка. Визначні події. Славетні імена

УДК 621.3:621.43:537.311:910.4 М.И. Баранов

АНТОЛОГИЯ ВЫДАЮЩИХСЯ ДОСТИЖЕНИЙ В НАУКЕ И ТЕХНИКЕ.

ЧАСТЬ 14: ИЗОБРЕТЕНИЕ ДВИГАТЕЛЕЙ

Наведено короткий нарис з всесвітньої історії винаходу двигунів різного виду, що з’явилися енергетичним «серцем» для всіх транспортних засобів на нашій планеті.

Приведен краткий очерк из всемирной истории изобретения двигателей различного вида, явившихся энергетическим «сердцем» для всех транспортных средств на нашей планете.

ВВЕДЕНИЕ Движение, как известно, это «жизнь». Оно (движение) является «жизнью» не только для биологических объектов, но и для большинства технических объектов. Как привести в движение различного вида физическое тело, тот или иной технический объект? Как придать подобному движущемуся телу (объекту) или его части наибольшее ускорение и наивысшую скорость? Как преобразовать один вид движения технического объекта в другой? Как уменьшить при этом паразитные потери энергии и повысить коэффициент полезного действия (КПД) для движущегося объекта? Вот тот перечень основных вопросов, возникавших сотни лет тому назад и возникающих поныне перед учеными-механиками, инженерами и конструкторами, занимающихся разработкой и созданием новой техники. Из всемирной истории развития техники всем нам хорошо известно, что «рождение» подобных объектов в техносфере землян определяется потребностями человеческого общества. Главными из них в нашем мире были и остаются: 1) неуклонное прогрессивное развитие разных отраслей промышленности всех стран для удовлетворения все возрастающих человеческих потребностей; 2) защита государственных и частных интересов, включающих территориальную целостность стран, экономическую выгоду и интеллектуальную собственность. Начиная с древних времен (например, с периода проживания и деятельности в 287-212 гг. до н.э. великого древнегреческого учено-го-механика Архимеда), продолжая в средневековье (например, в период проживания и работы в 14521519 гг. великого итальянского ученого-мыслителя и изобретателя Леонардо да Винчи и в период жизни и активной творческой деятельности в 1642-1727 гг. великого английского ученого-механика Исаака Ньютона) и заканчивая современным временем, выдающиеся представители рода человеческого постоянно «бились» и «бьются» над совершенствованием и дальнейшим развитием технических объектов военного и общегражданского назначения [1-3]. Для всех этих объектов, перемещающихся по земле (под землей), по воде (под водой), в воздухе и безвоздушном пространстве (космосе) характерным является то, что все они в своем составе содержат энергетическое «сердце» — двигатель того или иного вида, приводящий в нужное движение их части или эти объекты в целом. На взгляд автора, интересной для читателя и актуальной в области истории техники представляется научно-историческая задача по рассмотрению эволюции (это слово происходит от латинского слова «еуо/ийо»

— «процесс развития» [4]) становления, непрерывного совершенствования и прогрессивного развития в технической сфере двигателей различных видов и типов.

1. ИЗОБРЕТЕНИЕ ПАРОВОГО ДВИГАТЕЛЯ Исторически известно, что еще великий флорентинец Леонардо да Винчи описал пушку, выстреливающую снарядами при помощи сил только от огня и воды [5]. Он предполагал, что медный ствол пушки с ядром, размещенный своим одним концом в условиях горячей печи, сможет выбросить снаряд, если в отсек сильно разогретого ствола за ядром впрыснуть воду. Леонардо да Винчи полагал, что вода при высокой температуре испарится очень быстро и, став паром и практически аналогом пороха, вытолкнет из такого ствола ядро с большой скоростью. Несмотря на заманчивость такой технической идеи и неоднократные попытки европейских военных инженеров (даже в 19м столетии), создать подобную боевую пушку не удалось никому. Тем не менее, в 1681 году французский ученый Дени Папен решил создать машину для откачки подземных (грунтовых) вод из шахт, применив при этом в качестве движущей силы вначале порох, а позже и водяной пар [5]. Так на свет появилась пароатмосферная машина, уже прогрессивно содержащая цилиндрический поршень. Основной недостаток машины Д. Папена заключался в том, что пар готовился внутри ее цилиндра. В усовершенствование этой машины большой вклад внесли английские изобретатели Томас Севери, в насосе которого (патент от 1698 года на первую в мире паровую машину) приготовление пара происходило вне его цилиндра в отдельном котле, и Томас Ньюкомен, который в 1705 году изобрел паровой насос с цилиндром и поршнем, а также известный российский изобретатель-самоучка и механик Иван Иванович Ползунов, создавший к 1766 году новую на то время паровую машину [1, 5]. Далее в 1768 году патент на первый паровой двигатель с конденсатором (охладителем пара) получает выдающийся английский механик Джеймс Уатт (1736-1819 гг.). Шли годы ив 1784 году Дж. Уатт, работая над усовершенствованием машины Т. Ньюкомена, построил универсальный паровой двигатель, пригодный для широкого промышленного использования в ткацкой и машиностроительной технике (рис. 1). В данном двигателе Дж. Уаттом был применен так называемый кривошипно-шатунный механизм, преобразовывающий возвратно-поступательное движение поршня рабочего цилиндра, обусловленное водяным паром, во вращательное движение колеса [5, 6]. Применив этот двигатель, Дж. Уатт для потребностей металлообработки создал первый паровой молот. Следует заметить, что после этих изобретений Дж. Уатта мировое развитие тепловых машин пошло стремительными темпами. Укажем, что серьезные изменения в тепловые машины Дж. Уатта были вне© М.И. Баранов

сены лишь в середине 19-го столетия английским изобретателем Д Несмитом (1808-1890 гг.) [1, 5]. К 1843 году он создал кузнечный молот, в котором паровая машина и ударник были объединены в один механизм (рис. 2) [1, 6].

Рис. 1. Первый паровой двигатель выдающегося английского механика и изобретателя Джеймса Уатта [1]

Отметим, что паровой молот Д Несмита произвел, образно говоря, техническую «революцию» в области машиностроения. Этот вид кузнечного оборудования с использованием парового двигателя в 19-ом веке получил широкое внедрение по всему миру [1, 6].

Рис. 2. Мощный паровой молот разработки конца 19-го века известного английского изобретателя Джеймса Несмита [1]

Поэтому можно обоснованно считать, что исторически все машины практически пришли к нам из горной, текстильной и металлообрабатывающей индустрий, использующих силу горячего водяного пара.

2. ИЗОБРЕТЕНИЕ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Поскольку возможности парового двигателя были ограниченными, а его энергетические показатели не высокими (при низком КПД, не превышающем 10 %, он был к тому же еще и громоздким), то изобретатели всего мира продолжали поиски более эффективных двигателей, использующих иные, чем горячий пар источники энергии. История создания двигателя внутреннего сгорания (ДВС) уходит своими корнями к началу 19-го столетия [7]. В 1801 году французский инженер Филипп Лебон (1769-1804 гг.) получил патент на конструкцию газового двигателя, работающего на сгорании в камере открытого им светильного газа и который можно считать плавным переходом от

парового двигателя к ДВС [8]. Реализовать ему самому этот переход, к нашему большому сожалению, не удалось из-за своей трагической гибели в 1804 году. Необходимо отметить, что в газовом двигателе Ф. Лебона уже имелись камера смешивания и два компрессора (один для подачи в эту камеру сжиженного воздуха, а другой — для подачи в нее сжиженного светильного газа от газогенератора) [8]. После указанного смешивания этих газов образовавшаяся газовоз -душная смесь поступала в рабочий цилиндр двигателя, где вспыхивала и выделяла энергию, приводящую его поршень в движение. Далее, в 1860 году бельгийский механик Жан Этьен Ленуар (1822-1900 гг.) построил оригинальный газовый двигатель, в котором воспламенение в его рабочей камере горючей смеси происходило при помощи электрической искры [7, 9]. Так на свет впервые появился первый двухтактный двигатель внутреннего сгорания (рис. 3), который был прост в эксплуатации, имел небольшие габаритные размеры и вес. Однако, из-за своего низкого КПД (не более 5 % [9]) он не получил широкого коммерческого успеха и технического применения. В истории техники Ж.Э. Ленуар оказался лишь одним из тех людей, кто приближал прогресс на нашей планете и не получал при этом, как правило, ни славы, ни денег [9].

Рис. 3. Первый двухтактный ДВС известного бельгийского изобретателя Жан Этьен Ленуара (модель 1862 года) [9]

В дальнейшем за усовершенствование этого типа ДВС (двигателя Ленуара) взялся известный немецкий инженер Николаус Август Отто (1832-1891 гг.), который вскоре довел его КПД до 15 %. Этот показатель превосходил КПД самых лучших паровых машин того времени. В 1866 году Н.А. Отто получил патент на двухтактный ДВС, работающий на светильном газе (рис. 4) [10, 11]. Главная техническая находка («изюминка») Н.А. Отто заключалась в том, что в конструкции этого двухтактного газового двигателя с кривошипо-шатунным механизмом химическая энергия сгоревшего в его цилиндре газообразного топлива использовалась с наибольшей на то время полнотой. В 1867 году этот двухтактный двигатель получил золотую медаль на парижской Всемирной ярмарке [11].

Но самым революционным шагом в мировом дви-гателестроении стало очередное изобретение окрыленного первым успехом Н.А. Отто четырёхтактного цикла работы двигателя («цикла Отто»: впуск, сжатие, рабочий ход, выпуск), сделанное им в 1876 году и которое и поныне лежит в основе работы подавляющего большинства ДВС [11]. Благодаря этому циклу двигатель Отто стал в пять раз экономичнее двигателя Ленуара [10]. К 1897 году двигателестроительной компанией «Отто и Ко» было выпущено до 42 тысяч таких ДВС разной мощности (рис. 5). Более массовое производство запатентованного Н.А. Отто четырёхтактного ДВС сдержи-

валось отсутствием на то время в промышленно развитых странах необходимых мощностей для производства светильного газа.

Рис. 4. Музейный экспонат первого двухтактного ДВС известного немецкого изобретателя-механика Н.А. Отто [11]

Рис. 5. Музейный экспонат первого четырехтактного ДВС известного немецкого инженера-механика Н.А. Огто [11]

В этой связи в мире активно искали новые виды горючего для ДВС. Некоторые изобретатели пытались применить в качестве газа для ДВС пары жидкого топлива. Еще в 1872 году американский инженер Дж Брайтон пытался использовать в этом качестве керосин. Однако керосин плохо испарялся и тогда Дж. Брайтон перешёл к более лёгкому нефтепродукту — бензину [10]. Для того, чтобы ДВС на жидком топливе мог успешно конкурировать с газовым двигателем, необходимо было создать специальное устройство для испарения бензина, получения горючей смеси из этого топлива и воздуха и ее подачи в камеру ДВС.

Дальнейший прогресс в мировом двигателестрое-нии был связан с такими весьма известными в современном автомобильном мире именами немецких инже-неров-механиков как Готтлиб Даймлер и Вильгельм Майбах (рис. 6), прославившимися созданием в конце 19-го века работоспособного бензинового ДВС [10].

Рис. 6. Известные немецкие изобретатели в области двигателестроения Готтлиб Даймлер и Вильгельм Майбах [10]

Следует указать, что процесс испарения жидкого топлива в первых бензиновых двигателях указанных немецких изобретателей оставлял желать лучшего. Их одноцилиндровый бензиновый ДВС от 1885 года, со-

держащий вертикально установленный в рабочем цилиндре поршень и рядом расположенный упрощенный смеситель-дозатор в его топливной системе, был компактным, легким и одновременно достаточно мощным для того, чтобы двигать пассажирский экипаж. Считается, что именно этот ДВС является прототипом современного бензинового двигателя с вертикальными рабочими цилиндрами и топливом, вводимым в его камеру сгорания уже через карбюратор [9].

Заметим, что карбюратором (это слово происходит от французского слова «carburateur» — «смеситель-дозатор» [4]) называется устройство, предназначенное для внешнего смесеобразования горючей смеси (из топлива и воздуха) в топливной системе ДВС, работающего на легком жидком топливе (например, на бензине, керосине и др. видах топлива). Изобретение карбюратора стало важным этапом в двигателестроении. Создателем его считается венгерский инженер Донатан Банки [10]. Только в 1893 году он получил патент на карбюратор с жиклёром, который стал прообразом для всех карбюраторов. На рис. 7 приведен внешний вид современного карбюратора. Укажем, что Д. Банки в своем патенте предлагал не испарять бензин, а подавать его в рабочий цилиндр в распыленном жиклёром состоянии. Испарение же по его идее должно протекать в самом цилиндре под действием температуры и давления. Распыливание струи бензина происходило в потоке воздуха, причём количество всасываемого топлива было пропорционально секундному расходу воздуха. Отметим, что в бензиновых карбюраторных ДВС нормальная горючая смесь обычно состоит по массе примерно из 15 частей воздуха и 1 части паров бензина. Двигатель может работать как на обеднённой горючей смеси (пропорция «воздух-топливо» равна 18:1), так и обогащенной смеси (указаннаяпропорция составляет 12:1) [10, 11].

Рис. 7. Общий вид современного карбюратора для ДВС [10]

Слишком «богатая» или слишком «бедная» топливная смесь вызывает резкое уменьшение скорости ее сгорания в камере ДВС и поэтому такая горючая смесь не может обеспечить нормального протекания процесса ее сгорания. Укажем, что кроме карбюраторного метода смесеобразования для ДВС существует и другой способ подготовки горючей смеси, основанный на впрыске бензина во впускной коллектор или непосредственно в рабочие цилиндры двигателя при помощи распыляющих форсунок (инжектора) [9].ду несколькими людьми: Ж.Э. Ленуаром, Н.А. Отто и Г. Даймлером. Причем, из всех этих людей инженер-механик Н.А. Отто сделал самый значительный вклад (рис. 8) [10].

Рис. 8. Основные создателипервыхв мире работоспособных ДВС — бельгийский инженер Ж.Э. Ленуар (слева) и немецкий механик-изобретатель Н.А. Отто (справа) [10, 11]

Двигатель Ж.Э. Ленуара (рис. 3) по сути своей не был ни достаточно мощным, ни достаточно эффективным для того, чтобы приводить, например, автомобиль в движение. Двигатель же H.A. Отто (рис. 4, 5) обеспечивал все необходимые для этого технические параметры. Поэтому именно немецкий инженер-механик H.A. Отто является одним из истинных создателей ДВС, в котором химическая энергия используемого в нем жидкого или газообразного углеводородного топлива, сгорающего в рабочей камере высокого давления этого вида тепловой машины, преобразуется в механическую работу быстро вращающегося металлического коленчатого вала двигателя. На рис. 9 представлен общий вид современного мощного ДВС.

Рис. 9. Внешний вид современного поршневого ДВС [12]

Из рис. 3-5 и 9 и данных из [6-12] видно, что как далеко по конструкции и своим техническим характеристикам «ушли» вперед современные ДВС различного типа (например, бензиновые карбюраторные, бензиновые инжекторные, дизельные, газовые, газодизельные и роторно-поршневые [10]) в сравнении с первыми конструкциями двигателей этого вида. Причем, «ушли» в технологии изготовления, эффективности и мощности ДВС, но не по своим не изменившимся до наших дней рабочим тактам («циклу Отто»), которые так изменили нас и весь наш мир (рис. 10).

Рис. 10. Схематическое изображениерабочего цикла современного четырехтактного карбюраторного ДВС [12]

Если первые ДВС имели мощность не более 5 л.с. (до 3,7 кВт), то в настоящее время максимальная

мощность четырехтактного карбюраторного ДВС уже составляет до 800 л.с. (до 590 кВт) [12]. Современные авиационные поршневые двигатели с непосредственным впрыском авиабензина и искровым зажиганием их горючей смеси развивают мощность до 1500 л.с. (до 1100 кВт). Заметим, что в конце сгорания горючей смеси давление в рабочем цилиндре карбюраторного ДВС может достигать до 60 атм, а температура — до 2200 °С [12]. Кроме того, рабочий цикл современного карбюраторного ДВС, осуществляемый за 4-е хода поршня диаметром не более 150 мм (при его большем диаметре возрастает склонность к детонации горючей смеси [10]), может быть осуществлен при большой частоте вращения коленчатого вала двигателя (от 3000 до 7000 об/мин). Что касается ДВС гоночных автомобилей и мотоциклов, то их валы могут развивать скорость вращения в 15000 об/мин и более [12].

Важным практическим применением ДВС является их использование, прежде всего, для приведения в движение разных автомобилей. Следует особо подчеркнуть, что энергетическим «сердцем» 99,9 % всех современных автомобилей при их общем количестве в сотни миллионов штук, несмотря на сильное влияние электрификации во многих промышленных отраслях и на автотехнику, по-прежнему остается ДВС [12].

3. ИЗОБРЕТЕНИЕ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Хотя этот вид двигателя и относится к ДВС, однако учитывая его важность, прогрессивность и широкую распространенность в современном обществе, будет разумным и целесообразным выделить нам краткую историю его создания в отдельный раздел. Изобретателем этого типа двигателя оказался выдающийся немецкий инженер-механик Рудольф Дизель (1858-1913 гг.) [13]. Для всех нас, работающих в технической сфере, и по сей день, интересны мысли Р. Дизеля по поводу изобретательской деятельности инженера [13]: «Изобретение никогда не было лишь продуктом творческого воображения: оно представляет собой результат борьбы между отвлеченной мыслью и материальным миром. Изобретателем история техники считает не того, кто с той или иной степенью определенности высказывал раньше подобные же мысли и идеи, а того, кто осуществил свою идею, мелькнувшую, может быть, в уме множества других людей». Этот творческий человек с широким кругозором и отмеченным выше философским миропониманием технической сферы в конце 19-го столетия предложил новый принцип построения ДВС, базирующийся на законах классической физики. В двигателе Дизеля (дизельном двигателе) сильно сжимаемая воспламеняющаяся смесь жидкого углеводородного топлива с воздухом, содержащим по массе в своем составе до 21 % кислорода (окислителя топлива), вспыхивает без инициирующей электрической искры. Напомним, что, например, в современном карбюраторном бензиновом ДВС для инициирования процесса сгорания топлива в рабочем цилиндре двигателя применяется электрическая искра от ввинчиваемой в головку рабочего цилиндра свечи, на коаксиальные металлические электроды которой в определенный момент времени рабочего цикла подается высокое импульсное электрическое напряжение величиной до 15 кВ [12]. Для работающего дизельного двигателя необходимости в подобной электрической ис-

кре нет. Связано это с тем, что при сильном сжатии поршнем цилиндра мелкодисперсной горючей смеси в дизельном ДВС резко повышается ее температура, которая оказывается достаточной для самовоспламенения этой смеси. Принцип построения ДВС, предложенный и запатентованный им в 1892 году (рис. 11), позволил упростить работу ДВС, повысить надежность его функционирования и создать в будущем мощные ДВС для таких транспортных средств как тепловозов, речных и морских надводных и подводных кораблей [12].

Рис. 12. Первый стационарный одноцилиндровый дизельный двигатель типа БМ-12 мощностью 12 л.с. (около 9 кВт) разработки 19-го столетия выдающегося немецкого изобретателя Р. Дизеля (Германия, г. Аугсбург, 1893 год) [13]

В 1897 году Р. Дизелем (рис. 13) был создан двигатель с вертикальным цилиндром мощностью 20 л.с. (около 15 кВт), имевший термический КПД, равный около 29 %. Расход топлива (керосина) в нем составлял до 260 г на 1 л.с. в час [14]. Этот двигатель являлся самым лучшим силовым агрегатом того времени.

Рис. 11. Патент № 67207 Германии, выданный 23.02.1893 г.

выдающемуся немецкому инженеру-механику Р. Дизелю на названный в его честь дизельный двигатель [13]

Начинал в конце 19-го века выдающийся немецкий инженер-механик Р. Дизель свои воплощенные в «металл» оригинальные технические разработки с одноцилиндровых ДВС малой мощности (рис. 12) [13].

Рис. 13. Создатель первого в мире одноцилиндрового дизельного двигателя, выдающийся немецкий ученый, доктор-инженер и изобретатель Рудольф Дизель [14]

Отметим, что сейчас топливо в дизельном двигателе впрыскивается в его рабочий цилиндр под высоким давлением (как правило, при его уровне от 100 до 300 атм) через форсунку в строго определенный момент, соответствующий недоходу поршня до своей верхней мертвой точки (рис. 10). Горючая смесь образуется непосредственно в его цилиндре по мере впрыска дизельного топлива. Поэтому дизель является ДВС с внутренним смесеобразованием. Движение поршня внутри цилиндра вызывает нагрев и последующее воспламенение топливовоздушной смеси (коэффициент сжатия при этом в цилиндре может достигать до 21). КПД современного дизельного двигателя достигает до 35 % (при использовании в нем турбонаддува он доходит до 44 %) [13]. Дизельные двигатели являются низкооборотными и характеризуются высоким значением вращающего момента на коленчатом валу двигателя. Дополнительным преимуществом дизельного двигателя является то, что, в отличие от двигателей с принудительным зажиганием их горючей смеси, он при работе не нуждается в электрическом поджиге своей горючей смеси (в автомобильных дизельных двигателях бортовая электрическая система используется только на этапе его первоначального запуска) и, как следствие этого, он менее «боится» попадания в него воды. Заметим, что первые образцы дизельного двигателя в мастерской Р. Дизеля работали на угольной пыли. Позже из-за высоких абразивных свойств как самой этой пыли, так и золы, получающейся при сгорании в рабочем цилиндре угольной пыли, перешли на использование в дизелях тяжелых нефтяных фракций [14]. В 1900 году на Всемирной торгово-промышленной выставке в г. Париже двигатель Дизеля получил Гран-при. С 1908 года Р. Дизель приступил к созданию дизельного двигателя, пригодного для работы в составе автомобиля. Первые попытки такой разработки оказались безуспешными. Трагическая гибель Р. Дизеля на море, произошедшая 29 сентября 1913 года, прервала все его эти работы.

Дальнейшей работой над дизельным мотором занялся инженер Проспер Леранж, работавший на немецком заводе «Benz & Cie». В 1909 году он получил патент на дизельный двигатель с предкамерой [14]. В 20-е годы 20-го века немецкий инженер Роберт

Бош усовершенствовал для дизеля встроенный топливный насос высокого давления, который широко применяется и в наше время. Эти усовершенствования и открыли «дорогу» дизельному двигателю на автомобильный рынок. Первый грузовик, оснащенный дизельным двигателем, был выпущен в Германии в 1923 году. Это был 5-ти тонный «Benz 5K3», в котором был установлен 4-х цилиндровый дизельный двигатель с предкамерой объемом 8,8 л [14]. Он развивал мощность до 50 л.с. (около 37 кВт) при скорости вращения вала в 1000 об/мин. Дизельные двигатели получили сейчас широкое распространение в мире и, в первую очередь, на железной дороге и в судостроении. Например, локомотивы (тепловозы), использующие дизельный двигатель, являются основным видом транспорта на неэлектрифицированных участках железной дороги. Они конкурируют с электровозами за счёт своей автономности, перевозя при этом, к примеру, в Российской Федерации до 40 % грузов и пассажиров и выполняют до 98 % маневровой работы на дороге [14]. Сейчас редкая модель ДВС представляется на коммерческом рынке двигателей без дизельной модификации. Архивно-исторические данные свидетельствуют о том, что создатель этого силового агрегата Рудольф Дизель шел к своему техническому открытию весьма тернистым путем, упорно преодолевая постоянные трудности и недоверие окружающих. Кстати, разработанная им инженерная теория ДВС стала основой для создания современных двигателей с воспламенением смеси от сжатия — дизелей [14].

На рис. 14 представлены внешние виды современных дизельных двигателей, широко используемых в качестве силовых агрегатов автомобилей и судов.

Рис. 14. Внешние виды автомобильного (слева без турбонаддува) и судового (справа с турбонаддувом) мощных дизельных двигателей разработки конца 20-го столетия [14, 15]

Для связи времен и поколений отечественных дизелестроителей укажем, что в конце 2011 года в НТУ «ХПИ» прошло торжественное собрание научнотехнической общественности, посвященное 100-летию дизелестроения в Украине [16]. Вызвано это было тем закономерным фактом, что история дизелестроения нашей страны неразрывно связана с Харьковским практическим технологическим институтом, основанным в 1885 году, и нынешним его правопреемником НТУ «ХПИ». Именно в стенах этого харьковского высшего учебного заведения была основана украинская школа дизелестроения под научным руководством разработчика первых отечественных дизелей и первого заведующего кафедрой ДВС в ХПИ и ХАИ, д.т.н., проф. В.Т. Цветкова. Здесь следует отметить и тот немаловажный факт, что среди прославив-

шихся выпускников-механиков ХПИ в области авиадвигателей и дизелестроения был основатель и генеральный конструктор широко известного во всем мире Запорожского машиностроительного конструкторского бюро «Прогресс» Александр Георгиевич Ивченко. Отметим, что в настоящее время кафедра ДВС НТУ «ХПИ» под руководством ее нынешнего заведующего, проректора этого университета по науке, лауреата Государственной премии Украины в области науки техники, д.т.н., проф. А.П. Марченко успешно продолжает дальнейшее развитие необходимого нашему обществу двигателестроения в Украине [17].

4. ИЗОБРЕТЕНИЕ РОТОРНО-ПОРШНЕВОГО ДВИГАТЕЛЯ Неутомимые изобретатели мира продолжали и продолжают искать альтернативу традиционному ДВС. Одним из них оказался выдающийся немецкий механик-самоучка ФеликсГенрих Ванкель (1902-1988 гг.) [15, 18]. Еще в молодости Ф.Г. Ванкель (рис. 15) понял, что все четыре такта работы обычного ДВС (впрыск, сжатие, сгорание и выхлоп) можно осуществить при круговом вращении ротора-поршня. В 1934 году он создал первый опытный образец роторно-поршневого двигателя (РПД) и получил на него патент [15]. В это время он сконструировал новые клапаны и камеры сгорания для своего экзотического мотора, создал несколько различных вариантов его исполнения и разработал классификацию кинематических схем различных РПД [18]. Понадобились десятилетия для доводки и производства этого типа ДВС.

Рис. 15. Выдающийся немецкий изобретатель современных ДВС роторно-поршневого типа — Феликс Ванкель с трехвершинным ротором своего оригинального двигателя [15]

Только в 1957 году первый РПД был установлен немецкой компанией «NSU Motorenwerke AG» на автомобиль марки «Prinz» [15]. Испытаний этот РПД типа DKM-54 тогда не выдержал, но доказал свою принципиальную работоспособность, открыл направления для своей дальнейшей доработки и продемонстрировал колоссальный потенциал «роторников». В чем же заключается принципиальное отличие РПД от обычного ДВС? В том, что в РПД применен вращающийся ротор (поршень), размещенный внутри цилиндра, поверхность которого выполнена по эпитрохоиде (рис. 16) [15, 18]. У станов ленный на валу треугольный ротор жестко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестерней. Ротор с зубчатым колесом как бы обкатывается вокруг этой шестерни. Его (ротора) треугольные грани при этом скользят по внутренней эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер сжатия и расширения смеси в рабочем цилиндре РПД.

Рис. 16. Внешнийвид роторно-поршневого двигателя Ванкеля с разобранным овальным цилиндром этого ДВС [15]

Подобная конструкция РПД с искровым зажиганием позволяет осуществить 4-х тактный цикл без применения специального механизма газораспределения в цилиндре. Герметизация камер в этом двигателе обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Смесеобразование, зажигание, смазка, охлаждение и запуск в РПД принципиально такие же, как и у обычного поршневого ДВС [15, 18]. Таким образом, функцию поршня в РПД выполняет трехвершинный ротор, преобразующий силу давления газов от сгорания горючей смеси во вращательное движение эксцентрикового вала. Движение ротора относительно статора (наружного корпуса цилиндра) обеспечивается парой шестерен, одна из которых закреплена на роторе, а вторая на боковой крышке статора (цилиндра). За полный оборот трехвершинного ротора в каждой из камер двигателя совершается полный четырехтактный цикл. Газообмен регулируется вершиной ротора при прохождении ее через впускное и выпускное окна. Крутящий момент в РПД получается в результате действия газовых сил через трехгранный ротор на эксцентрик вала. Повышенный интерес к РПД в 70-х годах прошлого века был вызван их следующими существенными потенциальными преимуществами по сравнению с обычными поршневыми двигателями сравнимого класса по мощности [18]: 1) меньшим на 35-40 % общим количеством деталей; 2) меньшим удельным весом при одинаковых материалах и соответственно габаритным объемом; 3) меньшей стоимостью; 4) плавностью работы в результате отсутствия возвратнопоступательно движущихся частей; 5) возможностью потребления низкооктанового бензина; 6) более низким уровнем шумов и вибраций. Отметим, что автомобилестроительным компаниям США, Японии и ряда европейских стран в результате длительно проделанной ими огромной научно-исследовательской и опытно-конструкторской работы удалось решить многие сложные технические задачи на пути создания работоспособного надежного РПД и выйти в настоящее время на этап промышленного производства этого типа двигателей [15, 18]. При этом нам не следует забывать и об основных недостатках РПД [18]: 1) неэффективный процесс сгорания горючей смеси в камере цилиндра и связанный с этим повышенный расход топлива и уровень токсичности отработанных газов; 2) высокий расход масла для смазки его трущихся частей; 3) невоз-

можность его выпуска на производственных площадях, предназначенных для производства традиционных ДВС; 4) переход на выпуск РПД требует замены подавляющего большинства технологического оборудования в цехах.

5. ИЗОБРЕТЕНИЕ ЭЛЕКТРОДВИГАТЕЛЯ

Считается, что первый работоспособный образец электрического двигателя (ЭД) с круговым вращением вала якоря появился в 1834 году. Его создателем является известный российский электротехник Борис Якоби (1801-1874 гг.) [3, 19, 20]. В 1860 году итальянским изобретателем Антонио Пачинотти (1841-1912 гг.) был построен ЭД постоянного электрического тока с коллектором [19, 20]. Принцип работы ЭД заключается во взаимодействии магнитных полей его якоря и статора, содержащих распределенные вдоль их круговых периметров электромагниты (рис. 17).

ии

гл

Рис. 17. Упрощенная схема построения и работы ЭД [21]

При подведении электрического тока через графитовые щетки и коллектор к многовитковым катушкам круглого якоря, размещенного на подшипниках внутри статора ЭД, электродинамическое взаимодействие образующихся магнитных полей катушек якоря и ранее существовавшего магнитного поля электромагнитов статора вызывает появление вращающегося момента на валу якоря. Отключение электрического тока катушек якоря ЭД приводит к остановке якоря и соответственно вала двигателя. Укажем, что 1867 год ознаменовался открытием принципа самовозбуждения в электрических машинах, сделанным видным немецким электротехником и изобретателем Вернером Сименсом (1816-1892 гг.). Это дало возможность заменить в ЭД стальные магниты на электромагниты. В 1869 году двигатель Пачинотти был усовершенствован французским изобретателем Зенобом Граммом (1826-1901 гг.), который создал кольцевой якорь из шихтованного железа (из плотно прилегающих друг к другу тонких металлических пластин) [3, 19]. Позже в 1873 году немецкий электротехник Фридрих Хефнер-Альтенек (1845-1904 гг.) данный якорь заменил на барабанный, существенно упростивший конструкцию ЭД и заметно увеличивший его мощность [3, 19]. Важный физико-технический прорыв в области электрических машин был совершен гениальным хорватско-американским электротехником Николой Тесла (1856-1943 гг.), открывшим в 1888 году явление вращающегося магнитного поля [3, 19]. Это привело к созданию им серии многофазных (в большей части двухфазных) электродвигателей. В 1890 году выдающимся немецко-российским электротехником Михаилом Доливо-Добровольским (1862-1919 гг.) был изоб-

ретен трехфазный асинхронный ЭД переменного тока, содержащий короткозамкнутую обмотку якоря и распределенные по статору фазные обмотки [19, 20]. Поэтому можно обоснованно говорить о том, что к концу 19-го века в мире появились первые промышленные образцы ЭД. С появлением в 1870 году надежного источника постоянного электрического тока в виде кислотной аккумуляторной батареи их (электродвигатели) сразу стали устанавливать на боевые подводные лодки во многих странах [21]. Далее ЭД нашли широкое применение в машиностроительной и металлообрабатывающей отраслях промышленности, авиационной, ракетной и бытовой технике и на транспорте. На рис. 18 приведен общий вид современного ЭД типа Ш1МЕТ.

Рис. 18. Внешний вид современного общепромышленного электродвигателя типа ИМЕТ мощностью до 11 кВт [22]

Нам следует констатировать, что одним из важных достижений в области науки и техники конца 19го века стало изобретение электродвигателя, преобразующего электрическую энергию постоянного или переменного тока якоря и статора в механическую энергию быстро вращающегося (до нескольких тысяч оборотов в минуту) металлического вала ЭД. Сейчас это удобное и экономичное электротехническое устройство различной мощности стало важнейшим элементом во всех сферах человеческой деятельности, начиная с производства и заканчивая бытом людей.

6. ИЗОБРЕТЕНИЕ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Газотурбинный двигатель (ГТД) или как его еще иначе называют турбореактивный двигатель (ТРД) является тепловым двигателем, в котором газ сжимается и нагревается, а затем энергия сжатого и разогретого газа преобразуется в механическую работу на осевом валу газовой турбины [23]. В отличие от поршневого двигателя, в ГТД все газодинамические процессы происходят в потоке быстро движущихся газов. Сжатый атмосферный воздух из компрессора высокого давления поступает в камеру сгорания ГТД (рис. 19), в которую подаётся топливо. Сгорая, это топливо образует большое количество газообразных продуктов сгорания, вращающих под высоким давлением турбину ГТД и вырывающихся из его сопла.

В качестве топлива ГТД (рис. 20) могут использоваться любые горючие вещества, которые можно диспергировать: бензин, керосин, дизельное топливо, мазут, природный газ, судовое топливо, спирт и измельченный уголь. ГТД (ТРД) имеют самую большую удельную мощность среди ДВС (до 6 кВт/кг) [23].

Турбина ГТД реактивного самолета врашается со скоростью до 104 об/мин [23]. Чем выше в ГТД температура сгорания его топлива, тем выше КПД такого двига-

теля. 2 г а s

Э 6

Рис. 19. Схематическое построение газотурбинного двигателя в его продольном разрезе (1 — заборник воздуха; 2 — компрессор низкого давления; 3 — компрессор высокого давления;

4 — камера сгорания; 5 — расширитель рабочего тела в турбине и сопле; 6 — горячая зона; 7 — турбина; 8 — зона входа первичного воздуха в камеру сгорания; 9 — холодная зона;

10 — входное устройство воздухозаборника) [23]

Рис. 20. Внешний вид американского турбореактивного двигателя типа GEJ85 (в продольном разрезе) производства компании «General Electric» (США) [23]

Рис. 21. Форсажная камера американского турбореактивного двигателя типа GEJ79 (вид со стороны сопла двигателя) производства компании «General Electric» (США) [23]

Из данных рис. 21 видно, что в торце форсажной камеры ТРД находится стабилизатор горения диспергированного горючего с установленными на нём топлив -ными форсунками, за которым находится турбина рассматриваемого двигателя. Применение форсажной камеры обеспечивает увеличение тяги в ГТД до 50 %, но расход топлива при этом резко возрастает. Отметим, что ТРД большинства боевых самолётов, летающих на сверхзвуковых скоростях, оборудуются регулирующими направление вектора тяги соплами (рис. 22). Укажем и то, что для реактивных самолетов мира 4-го поколения (например, для МиГ-29, Су-27 и F-16) температура сжатого газа перед турбиной ГТД (например, для типа РД-33, АЛ-31Фи F-404) составляет до 1400 °С, а степень его сжатия достигает 25 [23].

Рис. 22. Внешний вид регулируемого сопла советского форсированного турбореактивного двигателя типа АЛ-21 [23]

С учетом огромных термодинамических нагрузок, действующих на элементы ГТД, рабочие лопатки его турбины, начиная с 4-го поколения, выполняются из охлаждаемых монокристаллических сплавов [23].

7. ИЗОБРЕТЕНИЕ ТУРБОВИНТОВОГО И ТУРБОВЕНТИЛЯТОРНОГО ДВИГАТЕЛЕЙ В турбовинтовом двигателе (ТВД), являющемся одной из разновидностью ГТД, основное тяговое усилие обеспечивает впереди расположенный воздушный многолопастный винт (рис. 23), соединённый через редуктор с осевым валом турбокомпрессора ТВД [23]. ТВД более экономичны на малых скоростях полёта чем ГТД и поэтому они широко используются для самолётов, имеющих большую грузоподъёмность и дальность полёта. При этом крейсерская скорость самолётов гражданской и военной авиации, оснащённых ТВД, составляет от 600 до 800 км/ч [23]. С ростом скорости полёта самолета эффективность воздушного винта в ТВД уменьшается. В этой связи чаще всего ТВД применяется в авиации, обслуживающей местные воздушные перевозки людей и грузов.

Рис. 23. Внешний вид российского натурного образца современного мощного турбовинтового двигателя [23]

Турбовентиляторный реактивный двигатель (ТВРД) является подвидом ТРД с высокой степенью двухконтурности. В ТВРД (рис. 24) компрессор низкого давления преобразуется в вентилятор, отличающийся от подобного компрессора меньшим числом ступеней и большим диаметром. В ТВРД горячая струя газов практически не смешивается с холодной.

Главным достоинством ТВРД является их высокая экономичность. Основные недостатки — большие масса и габариты [23]. Область применения таких двигателей — дальне- и среднемагистральные коммерческие авиалайнеры и военно-транспортная авиация.

8. ИЗОБРЕТЕНИЕ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ

Ракетный двигатель (РД) является на сегодня практически единственным типом двигателя, хорошо освоенным специалистами ракетно-космической отрасли для вывода полезной нагрузки на орбиту искус-

ственных спутников Земли и применения в условиях безвоздушного космического пространства [24]. Сила тяги в РД (рис. 25) возникает в результате преобразования исходной энергии топлива в кинетическую энергию реактивной струи и самого рабочего тела ракеты. В зависимости от вида энергии, преобразующейся в кинетическую энергию реактивной струи и рабочего тела, различают химические ракетные двигатели, ядерные (термоядерные) ракетные двигатели и электрические ракетные двигатели [24]. Наиболее распространенным химическим РД является жидкостной ракетный двигатель (ЖРД), в котором на основе экзотермической химической реакции горючего и окислителя, именуемых вместе топливом, образующиеся продукты их сгорания нагреваются в камере сгорания РД до высоких температур и при своем расширении разгоняются в сверхзвуковом сопле этого РД и далее с огромной скоростью истекают из него.

Рис. 24. Внешний вид американского турбовентиляторного реактивного двигателя типа CFM56-5C производства компании «General Electric» (США) [23]

Рис. 25. Советский жидкостной ракетный двигатель типа РД-107 для космического корабля «Восток», вывившего на околоземную орбиту в 1957 году первый в истории Земли искусственный спутник ив 1961 году первого в мире человека в космос [1, 24]

Создателями первых работоспособных ЖРД оказались выдающиеся немецкие и советские конструктора в лице Вернера фон Брауна и В.П. Глушко (рис. 26) [1, 24]. Следует указать, что созданию совершенных образцов РД предшествовала огромная работа многочисленных коллективов двигателестроителей. Отметим, что в настоящее время для ЖРД мощных

ракетоносителей в качестве горючего используется токсичный гептил, а в виде его окислителя — тетраоксид диазота (К204) [24]. На рис. 27 запечатлен старт американского многоразового космического корабля «Шаттл», использующего боковые твердотопливные ракетные двигатели (ТТРД) и маршевые ЖРД [24].

Рис. 26. Выдающийся конструктор ракетных двигателей, академик АН СССР Валентин Петрович Глушко [25]

Укажем, что удельный импульс для ЖРД (например, для типа РД-170) достигает 4500 с, а тяга составляет свыше 800 тс [24]. По совокупности этих свойств ЖРД предпочтительны в качестве маршевых двигателей ракетоносителей космических аппаратов.

Рис. 27. Старт с космодрома многоразового космического корабля «Шаттл» с тягой ТТРД свыше 1300 тс (США) [24]

На рис. 28 приведен предназначенный для полётов в земной стратосфере новый летательный аппарат (ЛА) США, работающий на скоростях до 5М (до 5500 км/ч) и имеющий прямоточный воздушный РД [25].

Рис. 28. Гиперзвуковой прямоточный воздушно-реактивный двигатель, установленный на экспериментальном гиперзвуковом летательном аппарате ЫАБА типаХ-43 (США) [25]

9. ИЗОБРЕТЕНИЕ ЯДЕРНОГО И ТЕРМОЯДЕРНОГО РАКЕТНЫХ ДВИГАТЕЛЕЙ Ядерный (ЯРД) или термоядерный (ТЯРД) ракетные двигатели являются разновидностью РД, которые используют энергию деления или синтеза ядер атомов для создания в них реактивной тяги [26]. Они бывают реактивными (нагрев рабочего тела осуществляется в ядерном (термоядерном) реакторе, а вывод перегретого в них газа — через сопло РД) и импульсными (нагрев рабочего тела выполняется за счет ядерных взрывов супермалой мощности) [26]. Поэто-

му традиционный ЯРД (рис. 29) представляет собой компактную конструкцию, состоящую из малогабаритного ядерного реактора, системы подачи рабочего тела-газа (как правило, водорода [26]) и сопла РД.

Согласно [26] существуют различные конструкции ЯРД (твёрдофазные, жидкофазные и газофазные), имеющие различное агрегатное состояние ядерного топлива в активной зоне их реакторов — твёрдое, расплав или высокотемпературный газ (либо плазму). ЯРД активно разрабатывались и испытывались с середины 1950-х годов как в СССР (например, типа РД-0410), так и в США (например, типа МЕЯУА). Подобные исследования ведутся и в настоящее время [26]. Укажем, что основу ЯРД типа РД-0410 с тягой в 3,6 тс составлял ядерный реактор типа ИР-100 с топливными элементами из твердого раствора карбида урана и карбида циркония [26]. Температура его водорода достигала 3000 К при мощности реактора до 170 МВт.

Рис. 29. Первый советский ядерный ракетный двигатель типа РД-0410, примененный в космических аппаратах [26]

10. ИЗОБРЕТЕНИЕ ЭЛЕКТРИЧЕСКИХ РАКЕТНЫХ ДВИГАТЕЛЕЙ В электрическихракетных двигателях (ЭРД) в качестве источника энергии для создания реактивной тяги используется электроэнергия, преобразуемая в кинетическую энергию не- и заряженных частиц [27]. ЭРД подразделяются на следующие основные виды: электростатические (плазменные и ионные), электротермические (электронагревные и электродуговые) и сильноточные (магнитоплазменные с собственным и внешним магнитным полем). Остановимся в дальнейшем вкратце лишь на плазменных и ионных ЭРД.

Плазменные двигатели. Работа этих ЭРД базируется на ускорении заряженных частиц, находящихся в квазинейтральной плазме. Поэтому рабочим телом здесь служит не сгорающее топливо, как в реактивном двигателе или ДВС, а разогнанный магнитным полем до огромных скоростей поток заряженных ионов [28]. Источником ионов в плазменном двигателе (ПД) служит

газ (как правило, им является аргон или водород). Этот газ подается в отсек ионизации ПД для получения холодной плазмы, которая разогревается в следующем его отсеке посредством ионного циклотронного резонансного нагрева. После такого нагрева высокоэнергетическая плазма подается в магнитное сопло ПД, где она вначале формируется посредством магнитного поля в направленный поток, разгоняется и затем выбрасывается в окружающую среду (рис. 30).

Основным достоинством ПД космического аппарата является его долговременное автономное функционирование в открытом космосе при относительно небольшом расходе рабочего тела [27]. ПД в космосе обеспечивается энергией от аккумуляторов, радио-изотопных генераторов или солнечных батарей космического аппарата. Сейчас такие российские и американские ПД развивают пока слабую тягу (от 30 до 50 мН или от 3 до 5 гс). Поэтому они используются только для корректировки спутниковых орбит вокруг Земли либо для медленного, но длительного ускорения небольших аппаратов непосредственно в космическом пространстве. На рис. 31 приведен общий вид советского ПД, разработанного в 1970-х годах [27].

Рис. 30. Внешний вид реактивной плазменной струи при работе в вакууме плазменного ракетного двигателя [28]

Рис. 31. Элекгроракетный ПД, созданный в 1971 году в Институте атомной энергии им. И.В. Курчатова (экспонат-установка политехнического музея, Москва) [27, 28]

Первые в мире успешные космические испытания ПД типа «Эол-1» были осуществлены в СССР в 1974 году [28]. В 1994 году ПД типа СПД-100 (при расходимости его плазменного пучка до ±45° и КПД в 50 %) был оснащен российский спутник связи «Галс-1» [28]. В качестве другого реального примера приме-

нения ПД в космосе укажем, что этот вид ЭРД типа РР8-1350, разработанный российским ОКБ «Факел», в 2003 году вывел в открытое космическое пространство с околоземной орбиты европейский зонд 8МАЯТ-1, ставший в 2005 году искусственным спутником Луны [28].

Ионные двигатели. «Пионером» ионных двигателей (ИД) в мире считается американский ученый Г. Кауфман [28]. Работа ИД основывается на ускорении заряженных частиц, присутствующих в их униполярном пучке. В ИД в качестве рабочего тела может использоваться ксенон или ртуть. Принцип работы ИД, построенного по схеме Кауфмана, поясняет рис. 32. В этой схеме вначале используется ионизация рабочего тела (газа) дуговым разрядом, а затем образовавшиеся в ионизаторе ионы разгоняются электростатическим полем в ионно-оптической системе этого двигателя.

Ионизатор Ускоряющий

Нейтрализатор

Рис. 32. Упрощенная схема построения и работы ИД [28]

Отметим, что ИД, также как и ПД, имеют на сегодня небольшую реактивную тягу, составляющую от 50 до 100 мН или от 5 до 10 гс [28]. Такой тяги недостаточно для перемещения даже небольшого ЛА в атмосфере Земли. Однако в открытом космосе, в вакууме которого практически отсутствует сопротивление, ИД при длительном разгоне космического аппарата может обеспечить ему достижение значительных скоростей. На рис. 33 представлен внешний вид действующих образцов современныхроссийскихИД [28].

Рис. 33. Внешний вид малогабаритных действующих образцов современных российских ионных ракетных двигателей, используемых в космических исследованиях [28]

На рис. 30 и 33 хорошо видны катодные трубки, направленные в сторону сопла рассматриваемых ЭРД и предназначенные для нейтрализации электрозарядов в плазменно-ионных пучках ПД и ИД. На рис. 34 показан общий вид американского ИД типа №ТАТ.

На рис. 35 приведен внешний вид реактивной ионной струи от американского ИД типа №ТАТ в период его испытания на Земле в вакуумной камере.

Рис. 34. Внешний вид современного американского ионного ракетного двигателя типа NSTAT, установленного в 1998 году NASA на космический зонд Deep Space 1 (США) [28]

Рис. 35. Предстартовые испытания в вакууме американского ионного ракетного двигателя типа NSTAT, установленного на космическом зонде Deep Space 1 (США, 1998 год) [28]

СПИСОК ЛИТЕРАТУРЫ

1. Скляренко В.М., Сядро В.В. Открытия и изобретения. -Харьков: Веста, 2009. — 144 с.

2. Климов A.A. Большая книга знаний. — Харьков: Веста, 2010. — 160 с.

3. Баранов М. И. Антология выдающихся достижений в науке и технике: Монография в 2-х томах. Том 1. — Харьков: Изд-во «НТМТ», 2011. — 311 с.

4. Большой иллюстрированный словарь иностранных слов.

— М.: Русские словари, 2004. — 957 с.

5. http://www.3dnews.ru/editorial/dvizhimie_parom_istoriya_p arovih_mashin.

6. http ://www. engine-market.ua/page/history

7. http://www.avto-okey.ru/article9.html

8. http://ru.wikipedia.org/wiki/ne6oH_®ffiiHnn

9. http://1interesnoe.info/2011/01/energeticheskie_ustanovki_d vigateli_vnutrennego_sgoraniya.

10. http://ru.wikipedia.org/wiki/ncTopHH_co3flaHHH_ÄBHraTene й_внутреннего_сгорания.

11. http://ru.wikipedia.org/wiki/OTTO_HHKonayc.

12. http://ru.wikipedia.org/wiki/flBHraTenb_BHyTpeHHero_cropa ния.

13. http://www.dizelist.ru/index.php/istoriya-sozdaniya-biografiya-izobretatelya/14-biografiya-rudolfa-dizelya.

14. http://www.avto.ru/review/post_11375.html.

15. http://amastercar.ru/articles/engine_car_48.shtml.

16. Самойленко Д. 100 років дизелебудування // Газета «Політехнік» №23 (2373) від 30 листопада 2011 p., 1 с.

17. Марченко А.П., Товажнянський Л.Л., Шеховцов А.Ф. та інші. Двигуни внутрішнього згорання: Том 1-6. — Харків: Прапор, 2004.

18. http://gizmod.ru/2009/06/23/motor_vankelja.

19. Храмов Ю.А. История физики. — Киев: Феникс, 2006. -1176 с.

20. Баранов М.И. Антология выдающихся достижений в науке и технике. Часть 5: Электротехника // Електротехніка і електромеханіка. — 2011. — №6. — С. 3-14.

21. http://www.submarine.itishistory.ru/1_lodka_2.php.

22. http://www.promelmach.ru/pages/fimet/catalog/1m.pdf.

23. http://ru.wikipedia.org/wiki/T азотурбинный_двигатель.

24. http://ru.wikipedia.org/wiki/PaKeTHbm_flBHraTenb.

25. http://vakul.ru/istoriya-aviacii/nachalo-reaktivnogo-veka.

26. http://ru.wikipedia.org/wiki/HflepHbm_paKeTHbm_flBHrarenb.

27. http://ru.wikipedia.org/wiki/3neKTph5ecK™_paKeTHbm_flB игатель.

28. http://galspace.spb.ru/orbita/ximdv.htm.

Bibliography (transliterated): 1. Sklyarenko V.M., Syadro V.V. Otkrytiya i izobreteniya. — Harkov: Vesta, 2009. — 144 s. 2. Klimov A.A. Bol’shaya kniga znanij. — Har’kov: Vesta, 2010. — 160 s. 3. Baranov M.I. Antologiya vydayuschihsya dostizhenij v nauke i tehnike: Monografiya v 2-h tomah. Tom 1. — Har’kov: Izd-vo «NTMT», 2011. — 311 s. 4. Bol’shoj illyustriro-vannyj slovar’ inostrannyh slov. — M.: Russkie slovari, 2004. — 957 s. 5. http://www.3dnews.ru/editorial/dvizhimie_ parom_istoriya_parovih_mashin. 6. http://www.engine-market.ua/ page/history. 7. http://www.avto-okey.ru/article9.html. 8. http://ru.wikipedia.org/ wiki/Lebon_Filipp. 9. http://1interesnoe.iHfo/2011/01/energeticheskie_ustanovki_dvigateli_ vnutrennego_sgoraniya. 10. http://ru.wikipedia.org/wiki/Istoriya_sozdaniya_ dvigatelej_ vnutrennego_sgoraniya. 11. http://ru.wikipedia.org/wiki/Otto_ Nikolaus. 12. http://ru.wikipedia.org/wiki/Dvigatel’_vnutrennego_sgoraniya. 13. http://www.dizelist.ru/index.php/istoriya-sozdaniya-biografiya-

izobretatelya/14-biografiya-rudolfa-dizelya. 14. http://www.avto.ru/ re-view/post_11375.html. 15. http://amastercar.ru/articles/ engine_car_48.shtml. 16. Samojlenko D. 100 rokiv dizelebuduvannya // Gazeta «Politehnik» №23 (2373) vid 30 listopada 2011 r., 1 s. 17. Marchenko A.P., Tovazhnyanskij L.L., Shehovcov A.F. ta inshi. Dviguni vnutrishn’ogo zgorannya: Tom 1-6. -Harkiv: Prapor, 2004. 18. http://gizmod.ru/2009/06/23/motor_vankelja. 19. Hramov Yu.A. Istoriya fiziki. — Kiev: Feniks, 2006. — 1176 s. 20. Baranov M.I. Antologiya vydayuschihsya dostizhenij v nauke i tehnike. Chast’ 5: ‘Elektrotehnika // Elektrotehnika і elektromehanika. — 2011. — №6. — S. 3-14. 21. http://www.submarine.itishistory.ru/1_lodka_2.php. 22. http:// www.promelmach.ru/pages/fimet/catalog/1m.pdf. 23. http://ru.wikipedia.org/ wiki/Gazoturbinnyj_dvigatel’. 24. http://ru.wikipedia.org/wiki/Raketnyj_ dvigatel’. 25. http://vakul.ru/istoriya-aviacii/nachalo-reaktivnogo-veka. 26. http://ru.wikipedia.org/wiki/Yademyj_raketnyj_dvigatel’. 27. http:// ru.wikipedia.org/wiki/’Elektricheskij_raketnyj_dvigatel’. 28. http:// galspace.spb.ru/orbita/ximdv.htm.

Поступила 30.03.2012

Баранов Михаил Иванович, д.т.н., с.н.с.

НИПКИ «Молния» НТУ «ХИЛ»

61013, Харьков, ул. Шевченко, 47,

тел. (057) 7076841, e-mail: [email protected]

Baranov M.I.

An anthology of outstanding achievements in science and technology. Part 14: Invention of engines.

A brief scientific essay on the history of invention of various-kind engines is presented, they having become the “power heart” of all transportation means on our planet.

Key words — history, invention of engines, transport.

особенности, преимущества и недостатки моторов

Идея роторного двигателя слишком заманчива: когда и конкурент весьма далек от идеала, кажется, что вот-вот преодолеем недостатки и получим не мотор, а само совершенство… Mazda находилась в плену этих иллюзий аж до 2012 года, когда была снята с производства последняя модель с роторным двигателем — RX-8.

История создания роторного двигателя

Второе имя роторного двигателя (РПД) — ванкель (этакий аналог дизеля). Именно Феликсу Ванкелю сегодня приписываются лавры изобретателя роторно-поршневого двигателя и даже рассказывается трогательная история о том, как Ванкель шел к поставленной цели тогда же, когда Гитлер шел к своей.

На самом деле все было чуточку иначе: талантливый инженер, Феликс Ванкель действительно трудился над разработкой нового, простого двигателя внутреннего сгорания, но это был другой двигатель, основанный на совместном вращении роторов.

После войны Ванкель был привлечен немецкой фирмой NSU, занимавшейся в основном выпуском мотоциклов, в одну из рабочих групп, трудившихся над созданием роторного двигателя под руководством Вальтера Фройде.

Вклад Ванкеля — это обширные исследования уплотнений вращающихся клапанов. Базовая схема и инженерная концепция принадлежат Фройде. Хотя у Ванкеля был патент на двойственное вращение.

Первый двигатель имел вращающуюся камеру и неподвижный ротор. Неудобство конструкции навело на мысль поменять схему местами.

Первый двигатель с вращающимся ротором начал работу в середине 1958 года. Он мало отличался от своего потомка наших дней — разве что свечи пришлось перенести на корпус.

Феликс Ванкель и его первый роторный двигатель

Вскоре фирма объявила о том, что ей удалось создать новый и очень перспективный двигатель. Почти сотня компаний, занимающихся производством автомобилей, закупила лицензии на выпуск этого мотора. Треть лицензий оказалась в Японии.

РПД в СССР

А вот Советский Союз лицензию не покупал вовсе. Разработки собственного роторного двигателя начались с того, что в Союз привезли и разобрали немецкий автомобиль Ro-80, производство которого NSU начала в 1967 году.

Через семь лет после этого на заводе ВАЗ появилось конструкторское бюро, разрабатывающее исключительно роторно-поршневые двигатели. Его трудами в 1976 году возник двигатель ВАЗ-311. Но первый блин получился комом, и его дорабатывали еще шесть лет.

Первый советский серийный автомобиль с роторным двигателем — это ВАЗ-21018, представленный в 1982 году. К сожалению, уже в опытной партии у всех машин вышли из строя моторы. Дорабатывали еще год, после чего появился ВАЗ-411 и ВАЗ 413, которые были взяты на вооружение силовыми ведомствами СССР. Там не особо переживали за расход топлива и малый ресурс мотора, зато нуждались в быстрых, мощных, но неприметных авто, способных угнаться за иномаркой.

ВАЗ с роторным двигателем (ГАИ)

РПД на Западе

На Западе роторный двигатель не произвел бума, а конец его разработкам в США и Европе положил топливный кризис 1973 года, когда цены на бензин резко взлетели, и покупатели машин стали прицениваться к моделям с экономным расходованием топлива.

Если учесть, что роторный двигатель съедал до 20 литров бензина на сотню км, продажи его во время кризиса упали до предела.

Единственной страной на Востоке, не утратившей веру, стала Япония. Но и там производители довольно быстро охладели к двигателю, который никак не желал совершенствоваться. И в конце концов там остался один стойкий оловянный солдатик — компания Mazda. В СССР топливный кризис не ощущался. Производство машин с РПД продолжалось и после распада Союза. ВАЗ прекратил заниматься РПД только в 2004 году. Mazda смирилась только в 2012.

Особенности роторного мотора

В основу конструкции положен ротор треугольной формы, каждая из граней которого имеет выпуклость (треугольник Рёло). Ротор вращается по планетарному типу вокруг центральной оси — статора. Вершины треугольника при этом описывают сложную кривую, именуемую эпитрохоидой. Форма этой кривой обуславливает форму капсулы, внутри которой вращается ротор.



У роторного мотора те же четыре такта рабочего цикла, что и у его конкурента — поршневого мотора.

Камеры образуются между гранями ротора и стенками капсулы, их форма — переменная серповидная, что является причиной некоторых существенных недостатков конструкции. Для изоляции камер друг от друга используются уплотнители — радиальные и торцевые пластины.

Если сравнивать роторный ДВС с поршневым, то первым бросается в глаза то, что за один оборот ротора рабочий ход происходит три раза, а выходной вал при этом вращается в три раза быстрее, чем сам ротор.

У РПД отсутствует система газораспределения, что весьма упрощает его конструкцию. А высокая удельная мощность при малом размере и весе агрегата являются следствием отсутствия коленвала, шатунов и других сопряжений между камерами.

Достоинства и недостатки роторных двигателей

Преимущества

  • Роторный двигатель хорош тем, что состоит из куда меньшего числа деталей, чем его конкурент — процентов на 35-40.

  • Два двигателя одинаковой мощности — роторный и поршневый — будут сильно отличаться габаритами. Поршневый в два раза больше.

  • Роторный мотор не испытывает большой нагрузки на высоких оборотах даже в том случае, если на низкой передаче разгонять машину до скорости более 100 км/ч.

  • Автомобиль, на котором стоит роторный двигатель, проще уравновесить, что дает повышенную устойчивость машины на дороге.

  • Даже самые легкие из транспортных средств не страдают от вибрации, потому что РПД вибрирует куда меньше, чем «поршневик». Это происходит в силу большей сбалансированности РПД.

Недостатки

  • Главным недостатком роторного двигателя автомобилисты назвали бы его малый ресурс, который является прямым следствием его конструкции. Уплотнители изнашиваются крайне быстро, так как их рабочий угол постоянно меняется.

  • Мотор испытывает перепады температур через каждый такт, что также способствует износу материала. Добавьте к этому давление, которое оказывается на трущиеся поверхности, что лечится только впрыскиванием масла непосредственно в коллектор.

  • Износ уплотнителей становится причиной утечки между камерами, перепады давления между которыми слишком велики. Из-за этого КПД двигателя падает, а вред экологии растет.

  • Серповидная форма камер не способствует полноте сгорания топлива, а скорость вращения ротора и малая длина рабочего хода — причина выталкивания еще слишком горячих, не до конца сгоревших газов на выхлоп. Помимо продуктов сгорания бензина там еще присутствует масло, что в совокупности делает выхлоп весьма токсическим. Поршневый — приносит меньше вреда экологии.

  • Непомерные аппетиты двигателя на бензин уже упоминались, а масло он «жрет» до 1 литр на 1000 км. Причем стоит раз забыть про масло и можно попасть на крупный ремонт, если не замену двигателя.

  • Высокая стоимость — из-за того, что для изготовления мотора нужно высокоточное оборудование и очень качественные материалы.


Как видите, недостатков у роторного двигателя полно, но и поршневый мотор несовершенен, поэтому состязание между ними не прекращалось так долго. Закончилось ли оно навсегда? Время покажет.

Рассказываем как устроен и работает роторный двигатель

Как выходец из СССР Николай Школьник изобрел самый мощный в мире двигатель

«Газета.Ru» пообщалась с создателями самого мощного в мире двигателя внутреннего сгорания. Как увеличить в разы КПД мотора, в чем отличие нового агрегата от известных роторных двигателей и в чем преимущество советского образования перед американским — в материале отдела науки.

Выходец из СССР, живущий в США, вместе с сыном изобрел, запатентовал и испытал самый мощный и эффективный в мире двигатель внутреннего сгорания. Новый мотор будет в разы превосходить существующие по КПД и уступать по массе.

В 1975 году вскоре после окончания Киевского политехнического института молодой физик Николай Школьник уехал в США, где получил научную степень и стал физиком-теоретиком — его интересовали приложения, связанные с общей и специальной теорией относительности. Поработав в области ядерной физики, молодой ученый открыл в США две компании: одну — занимающуюся программным обеспечением, вторую – разрабатывающую шагающие роботы. Позже он на десять лет занялся консультированием проблемных компаний, занимающихся техническими инновациями.

Однако как инженера Школьника постоянно волновал один вопрос — почему современные автомобильные моторы такие неэкономичные?

И действительно, несмотря на то что поршневой двигатель внутреннего сгорания человечество совершенствует уже полтора века,

КПД бензиновых моторов сегодня не превышает 25%, дизельных — порядка 40%.

Между тем сын Школьника Александр поступил в MIT и получил степень доктора в области компьютерных наук, стал специалистом в области оптимизации систем. Думая над увеличением КПД двигателя, Николай Школьник разработал собственный термодинамический цикл работы двигателя HEHC (High-efficiency hybrid cycle), который стал ключевым этапом в реализации его мечты.

«Последний раз такое происходило в 1892 году, когда Рудольф Дизель предложил новый цикл и создал свой двигатель», — пояснил в интервью «Газете.Ru» Школьник-младший.

Изобретатели остановились на роторном двигателе, принцип которого был предложен в середине XX века немецким изобретателем Феликсом Ванкелем. Идея роторного двигателя проста. В отличие от обычных поршневых моторов, в которых много вращающихся и движущихся частей, снижающих КПД, роторный двигатель Ванкеля имеет овальную камеру и вращающийся внутри нее треугольный ротор, который своим движением образует в камере различные участки, где происходит впуск, сжатие, сгорание и выпуск топлива.

close

100%

Плюсы двигателя — мощность, компактность, отсутствие вибраций. Однако, несмотря на более высокий КПД и высокие динамические характеристики, роторные двигатели за полвека не нашли широкого применения в технике. Одним из немногих примеров серийной установки стало их использование на автомобилях Mazda RX.

Слабыми местами таких моторов являлись ненадежность, связанная с низкой износостойкостью уплотнителей, благодаря которым ротор плотно примыкает к стенкам камеры, и низкая экологичность.

Уже работая в фирме LiquidPiston, основателями которой они стали, Школьники создали свою, абсолютно новую реинкарнацию идеи роторных моторов. Принципиальным в ней было то, что в двигателе Школьников не камера,

а ротор напоминает по форме орех, который вращается в треугольной камере.

Это позволило решить ряд непреодолимых проблем двигателя Ванкеля. Например, пресловутые уплотнители теперь можно делать из железа и крепить их неподвижно к стенкам камеры. При этом масло подводится прямо к ним, в то время как раньше оно добавлялось в сам воздух и, сгорая, создавало грязный выхлоп, а смазывало плохо.

Кроме того, при работе двигателя Школьников происходит так называемое изохорное горение топлива, то есть горение при постоянном объеме, что увеличивает КПД мотора.

Изобретатели создали один за другим пять моделей принципиально нового мотора, последняя из которых в июне была впервые протестирована — ее поставили на спортивный карт. Испытания оправдали все ожидания.

Миниатюрный двигатель размером со смартфон, массой менее 2 кг имеет мощность всего 3 л.с. Двигатель высокооборотистый, работает на частоте 10 тыс. об./мин., но может достигать и 14 тыс. КПД мотора составляет 20%. Это много, учитывая, что обычный поршневой мотор такого же объема в 23 «кубика» имел бы КПД лишь 12%, а поршневой мотор такой же массы дал бы всего 1 л.с.

Но главное, КПД таких моторов резко растет при увеличении их объемов.

Так, следующий двигатель Школьников будет дизельным мотором мощностью 40 л.с., при этом его КПД составит уже 45%, а это выше, чем эффективность лучших дизелей современных грузовиков.

Весить он будет всего 13 кг, притом что его поршневые аналоги такой же мощности сегодня весят под 200 кг.

Этот мотор уже планируется ставить на генератор, который будет вращать колеса дизель-электрического автомобиля. «Если же мы построим еще больший двигатель, мы можем достичь КПД в 60%», — поясняет Школьник.

В перспективе компактные, оборотистые и мощные моторы Школьников планируется использовать там, где эти свойства особенно важны — при конструировании легких дронов, ручных бензопил, газонокосилок и электрогенераторов.

Пока мотор гоняли 15 часов, однако по нормативам, чтобы пойти в производство, он должен отработать непрерывно 50 часов. При этом для автомобильной промышленности требуется надежность мотора на 100 тыс. миль пробега, что пока остается мечтой, признают конструкторы.

«Это самый экономичный, мощный двигатель не только среди роторных, но и всех двигателей внутреннего сгорания.

Это показывают наши измерения, а то, что мы получим на более крупных моторах, мы уже смоделировали на компьютерах», — радуется Школьник-младший.

То, что озвученные цифры — не фантазии изобретателей, подтверждает серьезность намерений инвесторов. Сегодня в стартап уже вложено $18 млн венчурных инвестиций, $1 млн которых дало американское агентство передовых разработок DARPA.

Интерес военных тут понятен. Дело в том, что военными США в авиации применяется в основном топливо JP-8. И военные хотят, чтобы вообще вся армейская техника работала на этом виде топлива, на котором, кстати, могут работать и дизельные моторы.

Но современные дизельные двигатели громоздки, поэтому DARPA так активно присматривается к разработке Школьников.

Александр считает, что создать столь революционный двигатель помогло отчасти образование, которое получил его отец еще в СССР. «Он думает по-другому, не так, как обычный инженер в США. Его фантазия ограничена только физикой. Если физика говорит — что-то возможно, то он верит, что это так, и лишь думает, как это можно сделать», — добавил Александр.

Сам Николай Школьник по-своему рассказывает об истории своего успеха и преимуществах советского образования.

«В США я переживал, что, имея специальность «машиностроение», я не буду иметь достаточного бэкграунда по физике и, особенно, математике.

Эти опасения оказались напрасными благодаря превосходной подготовке, которую я получил в советской школе.

Эта солидная образовательная подготовка до сих пор помогает мне здесь в нашей работе с новым роторным двигателем. С моей точки зрения, есть два больших отличия между американскими инженерами и получившими образование в России. Во-первых, американские инженеры невероятно эффективны в том, что они делают. Обычно требуется два-три русских инженера, чтобы заменить одного американского. Однако русские имеют более широкий взгляд на вещи (связанный с образованием, по крайней мере в мое время) и способность достигать целей с минимумом ресурсов, что называется, на коленке», — поделился размышлениями Николай Школьник.

двигатель Ванкеля — Википедия | WordDisk

Двигатель Ванкеля — это двигатель внутреннего сгорания, в котором используется эксцентрично вращающаяся конструкция для преобразования давления во вращательное движение.

Двигатель внутреннего сгорания с эксцентриковым ротором

Эта статья о конкретном безпоршневом роторном двигателе. Для других бесшумных роторных двигателей см. Бесшумный роторный двигатель. Для поршневых конструкций, расположенных в ротационной конфигурации, см роторный двигатель. Двигатель Ванкеля с ротором и выходным валом с редуктором.Спортивный автомобиль Mazda RX-8 — последний серийный автомобиль, оснащенный двигателем Ванкеля. Двухроторный мотоцикл Norton Classic с воздушным охлаждением

По сравнению с поршневым двигателем, двигатель Ванкеля имеет более равномерный крутящий момент; меньше вибрации; и, при заданной мощности, более компактный и меньше весит.

Ротор, создающий вращательное движение, по форме похож на треугольник Рело, за исключением того, что стороны имеют меньшую кривизну. Двигатели Ванкеля выдают три импульса мощности на оборот ротора с использованием цикла Отто.Однако на выходном валу используется зубчатая передача, которая вращается в три раза быстрее, давая один импульс мощности на оборот. Это можно увидеть на анимации ниже. За один оборот ротор испытывает импульсы мощности и выпускает газ одновременно, в то время как четыре стадии цикла Отто происходят в разное время. Для сравнения: в двухтактном поршневом двигателе на каждый оборот коленчатого вала приходится один импульс мощности (как в случае выходного вала двигателя Ванкеля), а в четырехтактном поршневом двигателе — один импульс мощности на каждые два оборота.

Четырехступенчатый цикл Отто, состоящий из впуска, сжатия, зажигания и выпуска, происходит при каждом обороте ротора на каждой из трех поверхностей ротора, движущихся внутри овального эпитрохоидального корпуса, обеспечивая три импульса мощности на один оборот ротора.

Определение смещения применяется только к одной поверхности ротора, так как только одна поверхность работает на каждый оборот выходного вала.

Двигатель обычно называют роторным двигателем , хотя это название также применяется к другим совершенно другим конструкциям, включая как поршневые, так и беспоршневые роторные двигатели.

Форма ротора Ванкеля

Я написал несколько постов о криволинейных треугольниках, которые не являются треугольником Рило, в том числе о Kresge Auditorium Массачусетского технологического института, струнном искусстве Triforce, крышках клапанов, садовом столе и логотипе Whale Cove, Нунавут. Я давно собирался написать о другой очевидной теме в этой теме, о роторе изогнутого треугольника двигателя Ванкеля, но, наконец, меня подтолкнули к этому, когда я прочитал две недавние популярные книги по математике How Round Is Your Circle? (2008) и Icons of Mathematics (2011) повторяют ложь о том, что роторы Ванкеля являются треугольниками Рило.Они не.

В Википедии есть хорошая визуализация того, как работают механизмы Ванкеля, которые я скопировал ниже. Они проходят те же четыре этапа, что и обычный четырехтактный двигатель внутреннего сгорания, в котором поршень отрывается от камеры сгорания, всасывая смесь топлива и воздуха, толкает назад к камере, сжимая смесь, зажигает смесь, выталкивая поршень обратно и прикладывая силу к приводному валу, а затем толкает назад к камере, выталкивая выхлоп.Разница в том, что в двигателе Ванкеля эти четыре этапа происходят в четырех разных местах камеры сгорания, поскольку газы внутри нее выталкиваются изогнутым треугольным поршнем, ротором двигателя.

Приводной вал двигателя — это фиксированная меньшая шестерня в центре анимации; в реальном двигателе это колесо само вращалось бы, но это не показано. Треугольный ротор соединяется с карданным валом с помощью эксцентриковой планетарной передачи и вращается вокруг карданного вала, как хула-хуп вокруг вращающегося танцора.Шестерни имеют зубцы и радиусы в соотношении 3: 2, в результате чего приводной вал вращается в три раза быстрее, чем ротор. При этом три угла ротора («верхние уплотнения») остаются в контакте с внешней стенкой двигателя, называемой его статором, так что газы в двигателе не просачиваются между различными фазами.

Форма статора определяется не изгибом самого ротора, а только траекторией движущихся уплотнений вершины. Эта траектория представляет собой кривую, называемую эпитрохоидой.Если вы когда-либо играли со спирографом, вы знаете, что такое эпитроихоид: это то, что вы получаете, фиксируя один круглый диск, позволяя другому круговому диску вращаться вокруг него, помещая точку где-нибудь внутри вращающегося диска и отслеживая кривую, которую он следует. Вот еще одна анимация из Википедии:

Разное соотношение радиусов внутреннего и внешнего диска дает разное количество лепестков на кривой, а разное расположение движущейся точки на внешнем диске (ближе или дальше от центра диска) дает кривые, которые ближе к центру диска. круг или более пышные формы.Размещение движущейся точки на самом внешнем круге дает вам острые, а не извилистые эпитрохоиды, а размещение ее еще дальше превращает внутренние выпуклости этих кривых в самопересекающиеся петли.

Траектории спирографа отличаются от вращающихся траекторий уплотнения вершины по крайней мере тремя способами: в двигателе Ванкеля центральный круг (приводной вал) вращается, а не удерживается в неподвижном состоянии, внешний круг (планетарная шестерня) окружает центральный круг, а не находится за его пределами. его, а точка, движение которой отслеживается (уплотнение вершины), находится за пределами внешнего круга, а не внутри него.Тем не менее форма по-прежнему остается двухлопастным эпитрохоидом; см. «теорему двойного поколения» Бернулли, описанную Нэшем, , чтобы узнать, почему одна и та же кривая может быть сгенерирована несколькими способами. По модулю масштаба всей системы существует один свободный параметр, контролирующий точную форму этой эпитрохоиды: соотношение расстояний от центра ротора до уплотнений верхушки и планетарной передачи. Если уплотнения на вершине расположены слишком близко, планетарная передача столкнется со статором; если они находятся слишком далеко, статор будет близок к круговому, и будет небольшое изменение давления от одной части цикла сгорания к другой, что приведет к снижению эффективности двигателя.В реальных двигателях делается не тот выбор, при котором верхние уплотнения размещаются как можно ближе друг к другу, а, по-видимому, требуется более тщательная оптимизация, учитывающая форму и размер областей, образованных ротором и статором на разных этапах цикла сгорания.

После определения формы статора можно переходить к ответу на вопрос, с которого мы начали: какова форма ротора? Основное конструктивное ограничение заключается в том, что он должен касаться или, по крайней мере, оставаться близко к внутренней выпуклости статора (на его «боковых уплотнениях»), чтобы предотвратить обратное течение выхлопных газов во впускное отверстие.Форму, которая позволяет достичь этого, можно понять с помощью мысленного эксперимента, в котором мы представляем ротор каким-то образом закрепленным в пространстве, в то время как транспортное средство, содержащее его, вращается вокруг него, а не наоборот. Когда автомобиль вращается, его статор проходит через части пространства, которое не может быть занято ротором. Части пространства, которые остаются нетронутыми вращающимся статором, доступны для использования ротором и должны использоваться им, если мы хотим, чтобы ротор оставался в контакте со статором на своих боковых уплотнениях.Математически это описывается как «конверт» положений вращающегося статора по отношению к неподвижному ротору. Этот конверт представляет собой изогнутый треугольник, но не треугольник Рело. Его кривые более плоские, чем дуги треугольника Рело, но они не являются дугами окружности. Как оболочка алгебраических кривых, они предположительно сами алгебраичны, но более высокого порядка; тригонометрические формулы даны Шунгом и Пенноком.

На практике форма ротора отличается от идеальной формы эпитрохоидной оболочки несколькими различными способами.Во-первых, как объясняет Дрогош, для простоты изготовления часто аппроксимируется дугами окружности, а не точно соответствует форме оболочки. Пока аппроксимация остается в пределах диапазона, ротор избегает столкновения со статором, а контакт бокового уплотнения не так важен вблизи углов треугольника, так что именно здесь приближение наиболее заметно. Во-вторых, настоящие роторы Ванкеля часто имеют ложки, вынутые из середины их сторон, чтобы сформировать мини-камеры сгорания, которые направляют и формируют газообразные продукты сгорания внутри двигателя.

Подробнее об этом см .:

(Обсудить на Mastodon)

Mazda RX серии

и роторный двигатель Ванкеля

Изобретение роторного двигателя Ванкеля

Мы придумали для вас хорошую тему: Математика! На самом деле, я не хочу сразу вас пугать, поэтому хочу объяснить, о чем идет речь. Одна из наиболее интересных альтернатив традиционной конструкции двигателя внутреннего сгорания — это роторные двигатели Ванкеля, или коротко роторные двигатели. Феликс Ванкель, немецкий инженер, изобрел первый двигатель Ванкеля в 1957 году после 7 лет разработки.Это 4-тактные двигатели без поршня и коленчатого вала, но в них используются математически определенные ротор и корпус, а также эксцентриковый вал, который заменяет коленчатый вал. Пожалуйста, посмотрите видео ниже, чтобы увидеть, как они работают:

Математика роторных двигателей

Я знаю, что это потрясающе. Но как ротор удерживает плотный контакт между сторонами к стенке корпуса? Это треугольник в овальном корпусе? Что ж, ответ приходит из математики. Да, это все МАТЕМАТИКА!

Существует хорошо известная математическая функция под названием эпитрохоида .Это определяет основную форму корпуса ротора.

В полярном уравнении:

В параметрическом уравнении:

При этом общую результирующую функцию можно увидеть (из Википедии):

Так, это вам что-нибудь напоминает? ДА, двигатель Ванкеля!

Mazda RX Series — роторный двигатель на новый уровень

Конструкция двигателя

Ванкеля используется во многих отраслях промышленности, но Mazda, японский производитель автомобилей, вывела роторный двигатель на совершенно новый уровень.Если вы слышали о Mazda RX-7, автомобиле с очень высокими характеристиками с двухроторным роторным двигателем с двумя турбинами, то теперь вы знаете, как сконструировать этот двигатель. Mazda RX-8 взяла тот же дизайн и улучшила, чтобы производить 240 л.с. с объемом 1,3-литрового двигателя. Здесь следует отметить, что в отличие от обычных поршневых двигателей с возвратно-поступательным движением, которые совершают полный цикл при 720 градусах, роторные двигатели делают это при 1080 градусах, что можно посчитать против них. 1.3L также не является полностью «истинным» или сопоставимым с поршневым двигателем.Более подробная информация в Википедии и других источниках, связанных с авто. Из-за движения эксцентрикового вала можно сравнить 1,3-литровый роторный двигатель с 2,6-литровым поршневым. Хотя роторные двигатели действительно имеют более высокий объемный КПД и минимальные насосные потери.

из Википедии Мазда

787B

Итак, это лучший автомобиль с роторным двигателем Ванкеля: Mazda 787B Le Mans Race Car. Я лично видел эту машину на автомобильной выставке владельцев Mazda в районе Ирвин, Оранж-Кантри, Калифорния. Это великолепная машина !! Поставляется с Quad-Rotor (четыре роторных двигателя) и мощностью 930 л.с. (690 кВт) при ~ 9000 об / мин.

Даже с роторными двигателями масляная присадка Polytron будет работать хорошо и продлит срок службы вашего двигателя. Используйте Polytron MTC в системе смазки и используйте Polytron Fuel Conditioner (GDFC) в топливе, чтобы добиться максимальной производительности вашего роторного двигателя.

Для получения дополнительной информации о роторных двигателях Ванкеля см .:

http://en.wikipedia.org/wiki/Wankel_engine

Наслаждайтесь:

Руководство для начинающих: что такое роторный двигатель (и как он работает)?

Роторное и поршневое

ПРОФИ
• Природа двигателя означает, что гораздо меньший рабочий объем может производить значительно больше мощности, чем поршневой двигатель сопоставимого размера — Mazda RX-8 технически имеет 1 балл.3 литра, но мощность около 230 л.с.

• Двигатели физически намного меньше, легче и имеют меньше движущихся частей, которые могут выйти из строя.

• Из-за характера двигателя они внутренне сбалансированы — роторы действуют как вращающиеся противовесы, поэтапно компенсирующие друг друга. Это означает, что вибрации меньше, поэтому двигатель работает более плавно и будет раскручиваться до более высоких оборотов (10000 об / мин отнюдь не является чем-то неслыханным) без повреждений.

МИНУСЫ
• Роторные двигатели менее экономичны, чем их аналоги с поршневыми двигателями, поскольку они менее эффективны с точки зрения теплового воздействия.

• Выбросы низкие из-за частичного совпадения событий впуска и выпуска, и ни одно из них не соответствует действующим нормам.

• Наконечники ротора, также известные как уплотнения вершины, подвергаются огромным нагрузкам и склонны к выходу из строя — это была огромная проблема для старых моделей Wankels, и ее еще предстоит полностью решить в современных вариантах.

• Высокий расход масла из-за необходимости поддерживать внутреннюю смазку роторов и уплотнений.

• Из-за небольшого эксцентриситета вала по сравнению с ходом коленчатого вала роторные двигатели имеют небольшой крутящий момент по сравнению с обычным двигателем на низких оборотах.

Mazda была крупнейшим производителем роторных двигателей и единственным производителем, который использовал их с конца 1970-х годов. General Motors разрабатывала свою собственную более 40 лет назад, но законы о смоге и первое нефтяное эмбарго в 1973 году заставили их отказаться от нее до того, как она была завершена для производства. NSU и Citroen в Европе продавали автомобили в небольших количествах, а Hercules, Norton и Suzuki производили мотоциклы, но никто не производил столько, сколько Mazda. Mazda Cosmo впервые появилась с роторным двигателем в 1965 году, за ним последовали R100, R130, RX-2, RX-3, RX-7, Luce, Rotary Pickup Truck, RX-7 и, наконец, RX-8, который выпускался до тех пор, пока 2012 г.

Недавно было проведено исследование производства небольших роторных двигателей для питания генераторной части гибрида, благодаря их компактным размерам и плавности хода. Считается, что, работая на постоянной скорости для выработки энергии, двигатель Ванкеля может, наконец, решить проблемы с топливной экономичностью и выбросами.

9781155816487: Транспортные средства с двигателями Ванкеля: двигатель Ванкеля, Nissan Sunny, Mazda RX-7, Mazda RX-8, Mazda 787B, двигатель Mazda Wankel, Mazda B-Series, Mazda Cosmo: … Mazda RX-3, NSU Ro 80, Mazda R100, NSU Spider — AbeBooks

Resea del editor :

Обратите внимание, что содержание этой книги в основном состоит из статей, доступных из Википедии или других бесплатных источников в Интернете.Страниц: 59. Разделы: Двигатель Ванкеля, Nissan Sunny, Mazda RX-7, Mazda RX-8, Mazda 787B, двигатель Mazda Wankel, Mazda B-Series, Mazda Cosmo, Audi A1, Citron GS, Mazda 929, Diamond DA20, Mazda Люс, Mazda RX-792P, Mazda RX-3, NSU Ro 80, Mazda R100, NSU Spider, Mazda RX-2, Mazda RX-4, ОС Двигатели, Norton Interpol 2, Chevrolet Aerovette, Mercedes-Benz C111, Mazda Roadpacer AP, Mazda RX-8 Hydrogen RE, Norton Commander, Citron M35, Comotor, Mazda 757, Mazda 767, Norton F1, Norton Classic, Mazda Savanna, Mazda 737C , Mazda 727C, Van Veen, Mazda 717C, двигатель Jonova.Отрывок: Двигатель Ванкеля — это тип двигателя внутреннего сгорания, использующий роторную конструкцию для преобразования давления во вращательное движение вместо использования возвратно-поступательных поршней. Его четырехтактный цикл происходит в пространстве между внутренней частью овального эпитрохоидного корпуса и ротором, который по форме похож на треугольник Рело, но с более плоскими сторонами. Такая конструкция обеспечивает плавную подачу мощности на высоких оборотах при компактных размерах. Это единственный двигатель внутреннего сгорания, изобретенный в двадцатом веке и поступивший в производство.С момента своего появления двигатель обычно считался роторным, хотя это название также применяется к нескольким совершенно различным конструкциям. Двигатель был изобретен немецким инженером Феликсом Ванкелем. Он получил свой первый патент на двигатель в 1929 году, начал разработку в начале 1950-х годов в NSU Motorenwerke AG (NSU) и завершил рабочий прототип в 1957 году. Затем NSU предоставил лицензию на концепцию компаниям по всему миру, которые продолжали улучшать двигатель. дизайн. Благодаря своей компактной конструкции роторные двигатели Ванкеля устанавливались в различных транспортных средствах и устройствах, таких как автомобили (включая гоночные), а также в самолетах, картингах, личных водных судах, цепных пилах и вспомогательных силовых установках.Наиболее широкое автомобильное использование …

«Об этом заглавии» может принадлежать другой редакции этого заглавия.

Изобретатель роторного двигателя Феликс Ванкель родился

Немецкий инженер Феликс Ванкель, изобретатель роторного двигателя, который будет использоваться в гоночных автомобилях, родился 13 августа 1902 года в Ларе, Германия.

Ванкель, как сообщается, придумал основную идею нового типа бензинового двигателя внутреннего сгорания, когда ему было всего 17 лет. В 1924 году Ванкель основал небольшую лабораторию, где он начал исследования и разработку двигателя своей мечты, который мог бы обеспечивать впуск, сжатие, сгорание и выхлоп во время вращения. Свои знания в области поворотных клапанов он принес в свою работу с Немецким институтом авиационных исследований во время Второй мировой войны и в ведущую немецкую мотоциклетную компанию NSU Motorenwerk AG, начиная с 1951 года.Ванкель завершил свою первую конструкцию роторно-поршневого двигателя в 1954 году, а первый блок был испытан в 1957 году.

В других двигателях внутреннего сгорания движущиеся поршни выполняли работу по запуску процесса сгорания; в роторном двигателе Ванкеля для этой цели служил вращающийся ротор в форме изогнутого равностороннего треугольника. Меньшее количество движущихся частей позволило создать двигатель с плавной работой, который был легким, компактным, недорогим и требовал меньшего количества ремонтов. После того, как NSU официально объявило о завершении роторного двигателя Ванкеля в конце 1959 года, около 100 компаний по всему миру поспешили предложить партнерские отношения, которые позволят внедрить двигатель в их продукцию.Mazda, японский автопроизводитель, подписала официальный контракт с NSU в июле 1961 года после получения одобрения от правительства Японии.

Пытаясь поэкспериментировать с роторным двигателем и усовершенствовать его для использования в своих транспортных средствах, Mazda создала в 1963 году исследовательский отдел RE (Rotary Engine). Cosmo Sport, выпущенный Mazda в мае 1967 года, был первым на планете двойным двигателем. роторный роторный двигатель автомобиля. Благодаря футуристическому стилю и превосходным характеристикам Cosmo поразил автолюбителей во всем мире. Mazda начала устанавливать роторные двигатели на свои седаны и купе в 1968 году, и эти автомобили попали в категорию U.S. в 1971 году. После мирового нефтяного кризиса 1973-74 годов Mazda постоянно работала над улучшением своих роторных двигателей для повышения топливной экономичности, и к концу того десятилетия ее спортивные автомобили стали популярными как в Европе, так и в странах Европы. Соединенные Штаты Помимо Mazda, ряд других компаний лицензировали двигатель Ванкеля в 1960-х и 1970-х годах, в том числе Daimler-Benz, Alfa Romeo, Rolls Royce, Porsche, General Motors, Suzuki и Toyota.

Тем временем Ванкель продолжил свою собственную работу с роторно-поршневым двигателем, основав свое собственное исследовательское учреждение в Линдау, Германия, в середине 1970-х годов.В 1986 году он продал институт за 100 миллионов немецких марок (около 41 миллиона долларов) компании Daimler Benz, производителю Mercedes. Ванкель подал новый патент только в 1987 году; в следующем году он умер после продолжительной болезни.

Роторный двигатель — Energy Education

Рисунок 1. Цикл роторного двигателя. Он всасывает воздух / топливо, сжимает его, воспламеняется, обеспечивая полезную работу, а затем выпускает газ. [1]

Роторные двигатели или Двигатели Ванкеля — это тип двигателя внутреннего сгорания, наиболее часто используемый в Mazda RX-7, который преобразует тепло от сгорания топливовоздушной смеси под высоким давлением в полезную работу для остальной части автомобиль.Его уникальной особенностью является треугольный ротор, который выполняет те же задачи, что и поршень поршневого двигателя, но совсем другим образом. [2]

Ротор заключен в корпус овальной формы и выполняет обычный четырехтактный цикл двигателя внутреннего сгорания, как показано на рисунке 1. Ротор соединен с выходным валом, который вращается в 3 раза быстрее, чем ротор (внутренний круг обозначен буквой «B» на рисунке). Этот цикл описан ниже и повторяется 3 раза по для каждого вращения ротора: [2]

  1. Впуск : запускается, когда кончик ротора проходит через впускной канал.В этот момент камера имеет самый маленький размер, и по мере вращения камера расширяется, втягивая топливно-воздушную смесь. Как только конец ротора проходит через впускной канал, он переходит к стадии сжатия, а следующая поверхность ротора начинает этот шаг заново.
  2. Сжатие : По мере того как ротор продолжает вращаться, топливно-воздушная смесь сжимается, поскольку камера уменьшается в размерах. Это необходимо для следующей детали, которая воспламеняет эту смесь.
  3. Зажигание : сжатая смесь воспламеняется свечами зажигания, и значительное увеличение давления заставляет ротор расширяться.Это силовой ход, обеспечивающий полезную работу. Часто необходимы две свечи зажигания, чтобы обеспечить равномерное зажигание по всей камере. Выхлопной газ расширяется в камеру, пока кончик ротора не пройдет через выхлопное отверстие.
  4. Выхлоп : Как только наконечник проходит через это отверстие, выхлопные газы под высоким давлением могут проходить через выпускное отверстие. Ротор продолжает вращаться до тех пор, пока конец его поверхности не пройдет через выпускное отверстие, а кончик не пройдет через впускное отверстие, и цикл будет повторяться.

Интересная часть этого цикла состоит в том, что каждый шаг происходит одновременно , только в разных камерах.Это дает три рабочих хода на каждый оборот ротора.

Отличия от поршневого двигателя

Помимо различных методов завершения четырехтактного цикла, роторные двигатели имеют другие преимущества и недостатки по сравнению с более распространенными поршневыми двигателями: [2]

  • Меньше движущихся частей : Двухроторный роторный двигатель имеет три движущихся части — два ротора и выходной вал, — в то время как у обычных поршневых двигателей их не менее 40.Это повышает надежность роторных двигателей.
  • Smoother : Ротор постоянно вращается в одном направлении, в отличие от поршневых двигателей, поршни которых резко меняют направление. Они также уравновешены грузами, которые уменьшают внутренние вибрации. Подача мощности также более непрерывна из-за трех тактов на каждый оборот ротора.
  • Медленнее : Ротор вращается со скоростью, равной одной трети скорости выходного вала, поэтому основные движущиеся части движутся медленнее, чем в поршневом двигателе.Это повышает надежность.

Недостатки

Затраты на производство могут быть выше из-за меньшей популярности этих двигателей. Кроме того, они обычно потребляют больше топлива, чем другие двигатели, из-за их низкой степени сжатия и, следовательно, имеют более низкий термический КПД, что затрудняет соблюдение норм по выбросам.

Для дальнейшего чтения

Список литературы

.

Добавить комментарий

Ваш адрес email не будет опубликован.