Тнвд датчик – Принцип работы топливного насоса высокого давления

Содержание

Электронные системы управления рядными ТНВД

Как и в обычном рядном ТНВД, оснащенном механическим регулятором, количество впрыскиваемого топлива является функцией положения управляющей рейки подачи топлива 3 и частоты вращения вала привода ТНВД. Управление рейкой осуществляется с помощью специального электромагнитного регулятора количества топлива 8, присоединенного непосредственно к ТНВД. Электромагнитный регулятор состоит из катушки и сердечника, воздействующего на рейку ТНВД. Положение рейки насоса определяется индуктивным датчиком положения рейки 9, закрепленным на ней. В катушку электромагнитного регулятора, в зависимости от сигналов входных датчиков температуры двигателя, частоты вращения вала насоса, положения педали управления рейкой и др. от блока управления поступает ток возбуждения различной величины. При этом сердечник регулятора, втягиваясь под воздействием магнитного поля, воздействует на рейку насоса преодолевая усилие пружины, изменяя количество впрыскиваемого топлива. С увеличением силы тока поступаемого от блока управления, сердечник, втягиваясь на большую величину и воздействуя на рейку, увеличивает подачу топлива. При отключении соленоида пружина прижимает рейку в положение остановки двигателя и прекращает подачу топлива.

Общий вид рядного ТНВД с электронным управлением показан на рисунке:

Рис. Рядный ТНВД с электронным управлением:
1 – гильза; 2 – втулка управления; 3 – рейка подачи топлива; 4 –плунжер; 5 – кулачковый вал; 6 – электромагнитный клапан начала подачи топлива; 7 – вал управления регулирующей втулкой; 8 – электромагнитный регулятор количества топлива; 9 – индуктивный датчик положения рейки; 10 – вилочное соединение; 11 – диск; 12 – топливоподкачивающий насос

На кулачковом валу ТНВД устанавливается зубчатый диск 11, который при вращении подает импульсы на индуктивный измерительный преоб­разователь. Электронный блок управления использует импульсные ин­тервалы для вычисления частоты вра­щения коленчатого вала двигателя.

Датчик положения рейки подает сигналы для различных устройств на двигателе и автомобиле:

  • сигнал о моменте переключения передач для гидравлической коробки передач
  • сигнал для подачи максимальной порции топлива скоординированной с давлением наддува для соблюдения норм на дымность отработавших газов
  • сигнал о нагрузке, как указание момента переключения для переключения передач в механической коробке передач
  • сигнал для измерения расхода топлива
  • сигнал для запуска рецеркуляции отработавших газов
  • сигнал диагностики и др.

Рис. Датчик положения рейки:
1 – контрольная катушка; 2 – сердечник; 3 – короткозамкнутый подвижный контур; 4 – рейка; 5 – лыска; 6 – возвратная пружина; 7 – измерительная катушка; 8 – магнитопровод; 9 – неподвижный контур

Датчик состоит из пластинчатого стального сердечника 2 с двумя наружными открытыми концами. На одном конце закреплена измерительная катушка 7, которая запитывается переменным током 10 кГц, на другом конце контрольная катушка 1. Короткозамкнутый подвижный контур 3, предназначенный для регистрации хода рейки крепится к ней. Датчик хода рейки соединен с блоком управления.

Принцип работы датчика состоит в том, что короткозамкнутый неподвижный контур 9, окружающий конец сердечника, экранирует переменное магнитное поле (индукцию), вырабатываемое контрольной катушкой 1. Распространение магнитного поля ограничивается пространством между катушкой и короткозамкнутым кольцом. Учитывая то, что короткозамкнутое подвижное кольцо перемещается вместе с рейкой и изменяет своё положение относительно измерительной катушки, магнитное поле воздействующее на измерительную обмотку изменяется. Реагирующая цепь преобразует отношение индукции измерительной катушки 7 к индукции контрольной катушки 1 в отношении напряжений, которые пропорциональны ходу рейки. Величина измеряемого напряжения постоянно сравнивается с напряжением контрольной катушки.

Датчик информирует о текущем положении рейки с точностью 0,2 мм.

Электронный блок управления сравнивает частоту вращения и другие параметры работы двигателя с целью определения оптимального ко­личества подаваемого топлива (выра­жаемого как функция положения рей­ки). С помощью электронного контрол­лера сравнивается положение рейки насоса с конкретной точкой для опре­деления значения тока возбуждения соленоида, который сжимает возврат­ную пружину. Когда отклонения опре­деляются, регулируется ток возбужде­ния, обеспечивая смещение рейки насо­са к более точному положению.

Подача топлива к форсункам принципиально не отличается от механических ТНВД. Однако в насосах с электронным управлением отсутствует муфта опережения впрыска и в них угол опережения впрыска управляется по сигналам, подаваемым от блока управления в электромагнитный клапан начала подачи топлива. В зависимости от величины силы тока поступающего в катушку электромагнитного клапана начала подачи топлива 6, его сердечник, преодолевая сопротивление пружины, втягивается в катушку на определенную величину, поворачивая при этом вал управления 7 регулирующей втулкой. В свою очередь вал управления связан с втулкой управления. При повороте вала управляющая втулка может приподниматься или опускаться. При обесточивании электромагнитного клапана вал под воздействием пружины переводит втулки в верхнее положение (поздний впрыск).

Начало подачи может регулироваться при изменении положения втулок в пределах до 40° поворота коленчатого вала.

Принцип работы прецизионных деталей гильзы, плунжера и управляющей втулки показан на рисунке:

Рис. Принцип работы плунжерной пары с управляющей втулкой:
a – НМТ плунжера; b – начало подачи топлива; c – завершение подачи топлива; d – ВМТ плунжера; h2 – предварительный ход; h3 – полезный ход; h4 – холостой ход; 1 – нагнетательный клапан; 2 – полость высокого давления; 3 – втулка плунжера; 4 – управляющая втулка; 5 – винтовая канавка плунжера; 6 – распределительное отверстие в плунжере; 7 – плунжер; 8 – пружина плунжера; 9 – роликовый толкатель; 10 – кулачок; 11 – разгрузочное отверстие; 12 – камера низкого давления

Плунжер кроме обычной спиральной канавки изменяющей подаваемую порцию топлива к форсункам имеет распределительное отверстие 6, которое может быть закрыто или открыто управляющей втулкой 4. При движении плунжера вниз топливо поступает в надплунжерное пространство.

При движении плунжера 7 вверх, до тех пор, пока распределительное отверстие 6 находится в полости всасывания камеры низкого давления 12, давление в полости нагнетания 2 выравнивается с давлением во всасывающей полости через центральный канал.

Как только распределительное отверстие 6 плунжера перекрывается кромкой управляющей втулки 4 полость всасывания и полость высокого давления разобщаются и давление в полости нагнетания начинает расти. После того как под воздействием высокого давления открывается нагнетательный клапан 1, давление в трубопроводе высокого давления растет до величины открытия иглы форсунки (начало впрыска).

Впрыск продолжается при движении плунжера вверх пока кромка спиральной канавки 5 не достигнет разгрузочного отверстия 11 в управляющей втулке 4. После этого давление в полостях выравнивается, и нагнетательный клапан 1 под воздействием пружины и давления топлива закрывается.

Регулирование начала впрыска топлива зависит от частоты вращения коленчатого вала, нагрузки на двигатель и его температуры. Начало впрыска топлива зависит от положения управляющей втулки, размещенной в кольцевой выточке гильзы. Изменение начала впрыска происходит одновременно во всех секциях насоса за счет поднятия или опускания управляющих втулок. Начало впрыска топлива зависит от положения управляющей втулки, так как нагнетание может произойти только после перекрытия распределительного отверстия плунжера 6, в противном случае топливо через вертикальный канал и отверстие 6 будет вытесняться полость 12 и давление в надплунжерном пространстве возрастать не будет. В момент перекрытия отверстия 6 полость в надплунжерном пространстве становится герметичной и давление топлива начинает резко возрастать, открывая при этом нагнетательный клапан. Если втулка находится относительно отверстия плунжера 6 выше, впрыск начинается позже, так как позже будет перекрываться окно плунжера. При более низком положении втулки относительно окна плунжера перекрытие окна плунжера будет более ранним и впрыск начинается раньше. Ход втулки составляет около 5,5 мм при изменении угла опережения впрыска топлива 12° по углу поворота коленчатого вала.

Регулирование количества подаваемого топлива осуществляется как и у обычных механических ТНВД поворотом плунжера 7, на котором распределительное отверстие 6 соединено с винтовой канавкой 5 плунжера. Если плунжер повернут на небольшой угол, количество подаваемого топлива будет малым, так как спиральная канавка очень быстро после закрытия распределительного отверстия в плунжере 6 управляющей втулкой достигает разгрузочного отверстия 11 втулки. При большем повороте плунжера подача топлива соответственно увеличивается.

Прекращение подачи топлива осуществляется при останове двигателя. При этом плунжер устанавливается в такое положение, при котором в любой позиции между мертвыми точками полости всасывания и нагнетания соединены через центральное отверстие плунжера.

ustroistvo-avtomobilya.ru

Распределительные ТНВД, модели VE…EDC (VP 36/37) с управлением регулирующей кромкой

Немного теории.

Опуская основы теории впрыска, отмечу основные требования, предъявляемые к системам дизельного впрыска:

    1.Точное дозирование топлива (цикловая подача)

    2 Точный момент впрыска (Угол опережения впрыска – УОВ)

    3.Тонкость распыла

Способы регулирования цикловой подачей.

В данных насосах реализован способ управления цикловой подачей путем перемещения регулирующей кромки (в обиходе называемой втулкой).

1. Плунжер на такте всасывания топлива:

Плунжер движется влево, открыт канал поступления топлива. Канал подвода топлива к форсункам перекрыт.

2. Конец всасывания, начало нагнетания.

Плунжер поворачиваясь, перекрывает канал поступления топлива. Одновременно открывается канал подачи топлива к форсункам. Плунжер находиться в исходном положении.

3. Начало подачи:

Плунжер начинает движение вправо. Канал поступления топлива закрыт.

Канал подачи топлива к форсункам открыт. При достижении определенного давления в нагнетательном тракте форсунка открывается – начинается впрыск.

ВАЖНО:

1..Давление в подплунжерном пространстве нарастает плавно от «0» до максимального значения. Не является, какой то постоянной величиной. Вот почему при максимальном давлении плунжера в этих насосах до 1000 bar , среднее эффективное давление едва дотягивает до 500 bar.

2.Начало впрыска определяется:

    2а. Началом движения плунжера. Начальная выставка ТНВД, положение волновой шайбы.

    2б. Давлением открытия форсунки.

    2с. Временем движения волны сжатия от плунжера до форсунки (время задержки впрыска). Определяется длиной и конструкцией нагнетательного тракта.

ВАЖНО:

Блок управления начало впрыска не контролирует! Применение датчика положения ротора ТНВД спасает положение. Правда, не учитывается задержка впрыска. Положение спасает датчик подъема иглы форсунки.

4. Конец впрыска:

Регулирующая кромка (втулка) сбрасывает давление в подплунжерном пространстве в полость насоса. Давление в нагнетательном тракте падает, форсунка закрывается. Происходит конец впрыска. Положение регулирующей втулки (кромки) задает блок управления.

Подытожим:

Начало впрыска задается:

    -Положением оликового кольца относительно вала (кулачковой шайбы)

    -Начальной выставкой ТНВД

    -Давлением ТНВД

    -Давлением открытия форсунки

2..Конец впрыска задается положением регулирующей кромки (втулки).

3. УОВ (Угол Опережения Впрыска) блок управления задает только лишь положением кулачковой шайбы. Предварительная выставка ТНВД не учитывается. Так же не учитывается время задержки впрыска (если нет датчика подъема иглы) и давление открытия форсунки.

4.Цикловая подача регулируется только временем сброса давления в полость ТНВД путем перемещения регулирующей кромки (втулки). Начало подачи блоком не контролируется. Контролируется только конец подачи.

Примечание:

По принципам действия насосы Бош, Дэнсо, Дэлфай и пр. – однотипны.

Различия – только в конструктивных исполнениях.

Регулирующая втулка смещается при помощи исполнительного механизма

При отсутствии напряжения на обмотке под действием пружины (на рисунке не показана) ротор находиться в начальном положении. Втулка находиться в нулевой подаче. При подаче напряжения в обмотку ротор проворачивается, и через вал с рычагом (привод) сдвигает регулирующую втулку в сторону максимальной подачи.

Но нам нужны не только нулевые и максимальные подачи! Как поставить ротор в промежуточное положение? Управление исполнительным механизмом осуществляется широтно-импульсной модуляцией (ШИМ). Напряжение на обмотке имеет следующий вид:

Как видим, период следования импульсов Т не меняется. А вот ширина импульса Ти имеет разную величину. Под действием этого напряжения ротор начинает вращение в сторону максимального поворота. Но тут импульс пропадает – ротор возвращается в сторону нулевого поворота. Частота следования импульсов выбирается достаточно большой (до 10 кГц) – ротор не успевает пройти от одного крайнего положения до другого. Занимает, какое то положение, определяемое шириной импульсов по отношению к периоду их следования (скважность импульсов). Подключив осциллограф на вход обмотки, мы увидим именно такие импульсы. В зависимости от необходимой цикловой подачи, меняется ширина импульсов при неизменном периоде их следования.

По показаниям различных датчиков блок управления рассчитывает скважность импульсов на обмотку. Но обмотки бывают разными, да и жесткость возвратной пружины может быть разной. Плюс всякие разные возмущающие факторы. Ротор может занять совершенно нерасчетное положение. А ведь его положение напрямую определяет точность цикловой подачи. Как быть?

Положение может спасти только датчик положения ротора (регулирующей втулки). Система управления становиться замкнутой системой с обратной связью:

Блок управления изменяет скважность импульсов до тех пор, пока ротор по показаниям датчика не займет расчетное положение. В качестве датчика положения ротора первоначально использовался обычный потенциометрический датчик. Но у них есть один недостаток – износ дорожки. Начинал давать неверные показания о реальном положении регулирующей втулки. Со всеми вытекающими весьма грустными последствиями. Поэтому в дальнейшем был применен полудифференциальный датчик с замыкающим кольцом.

ЭБУ подает опорный сигнал на катушку подмагничивания (опорную катушку). Частота порядка 10 кГц. Короткозамкнутые медные кольца экранируют создаваемое магнитное поле. Меняя их положение, производим первоначальную калибровку датчика (регулировку начальной точки и крутизны характеристики). Переменное магнитное поле наводит в измерительной катушке сигнал переменного напряжения. Поле в ней экранируется измерительным кольцом, соединенным с валом регулятора. Таким образом, напряжение, наводимое в измерительной катушке, зависит от положения ротора (положения регулирующей втулки). Так как обе катушки идентичны – происходит температурная компенсация, и устраняются другие возмущающие факторы. Применение данной схемы позволило более точно определять положение регулирующей втулки по сравнению с резистивной схемой. Да и надежность выше – нет трущихся деталей.

Ну что же, точность регулирования мы повысили. Далее вспоминаем, что цикловая подача напрямую зависит от плотности топлива. Более горячая солярка имеет меньшую плотность – цикловая подача уменьшается. Более холодная имеет большую плотность – при прочих равных условиях цикловая подача увеличивается. Для корректировки этого параметра ставим датчик температуры топлива. Схема крышки ТНВД приобретает следующий вид:

Катушка подмагничивания (опорная катушка)

Измерительная катушка

Обмотка исполнительного механизма

Датчик температуры топлива

С логикой регулирования цикловой подачей мы разобрались.

Пора приступать к: проверкам.

Проверка системы цикловой подачи.

Перед нами Фольцваген Каравелла (Транспортер). 2004 года рождения, ТНВД распределительного типа с регулирующей втулкой. Производство — Бош.

Жалобы клиента – не заводится. Вечером поставил на стоянку — с утра не завелся.

По характеру прокрутки стартером версию неисправности двигателя пока отбрасываем.

Приоткручиваем трубку, идущую к форсунке. Крутим стартером. Топливо не поступает.

В дизелях с электронной системой управления отсутствие цикловой подачи может вызываться:

    1 Неисправность ТНВД

    2.Отсутствие управления с ЭБУ

Проверку начинаем именно с этого. Что плохо — электроника или механика?

Подключаем осциллограф к входу исполнительного механизма. На данной модели разъем ТНВД находиться в очень труднодоступном месте, поэтому подключаемся к выходу ЭБУ. Теряем информацию о целостности проводки – ничего, ее проверим потом. Должны увидеть импульсы, указанные выше.

Примечание:

Изменение скважности (ширины импульсов) не всегда удобно смотреть осциллографом. Берем в руки обычный тестер. Это инерционный прибор – показывает усредненное напряжение на обмотку. А ведь именно это нам нужно!

Фото не выкладываю – ТНВД расположен крайне неудобно – занимаемся безразборной диагностикой.

Итак, включаем зажигание. ТНВД находиться в нулевой подаче – тестер показывает «0». Скважность равна «0». Затем он переходит в подачу холостого хода. – тестер показывает небольшое напряжение. Сканер в потоке данных в это время показывает степень смещения втулки порядка 10%. Через 4 сек. ЭБУ снова переводит ТНВД в нулевую подачу. Тестер показывает 0 , сканер – 0%. Нажимаем на стартер. – ТНВД должен перейти в максимальную подачу. Видим: Тестер: Порядка 12 вольт. Сканер: Около 100% (двигатель холодный)

Вывод: Система электронного управления (EDC) исправна. Проблемы с ТНВД.

Возможные причины:

    1.Проблемы с плунжером.

    2.Проблемы с исполнительным механизмом (крышкой).

Проверяем п.2. Раньше мы всегда снимали верхнюю крышку и визуально смотрели положение ротора. На этой модели снять ее – много времени займет.

А я,лентяй – не хочу делать ненужную работу!

Подключаем осциллограф к опорной катушке. Видим синусоидальный сигнал с частотой порядка 10 кГц и амплитудой около 3 вольт (на других моделях эти параметры могут отличаться от указанных). Подключаем осциллограф к измерительной катушке датчика положения ротора. Цифровые осциллографы не всегда корректно работают на этой частоте – я пользуюсь электронно-лучевым. Видим синусоидальный сигнал небольшой амплитуды. Подаем 12 вольт на обмотку. Слышен отчетливый щелчок (это шайба переместилась в максимальную подачу). Сигнал на измерительной катушке резко возрастает.

Вывод: Крышка исправна. Ротор проворачивается, датчик исправен.

Ну, тогда «Трэба плунжер менять!».

С выводами не торопимся. Помним – плунжер без давления подкачки не работает! Проверяем. Подключаем манометр к обратке – на этих моделях насосов это самый простой способ.

Давление при работе стартера – порядка 1 bar. Видим «0». Отказ подкачивающего насоса (расположен внутри ТНВД)? Меняем ТНВД? С выводами не торопимся.

А солярка там вообще есть? Подключаем прозрачную трубку на подачу и на обратку. Движения топлива в подаче не видим, на выходе – чистый воздух. Завоздушенный ТНВД!

В отличие от японских автомобилей, помпа ручной подкачки на немецких автомобилях, как правило, отсутствует. Как прокачать пустой ТНВД? Мануалы молчат…

Способы прокачки ТНВД.

«Дедушкин» способ: откручиваем обратку, подаем небольшое давление воздуха от пневмомагистрали в бак. Ждем появление топлива из обратки. Риск: подав большое давление, можем повредить бак. Подав малое давление – результата не добьемся.

Берем пластиковую бутылку из-под Кока-Колы. Заполняем топливом. В пробку вставляем трубку, подсоединяем к подаче. Вешаем под капотом – топливо идет самотеком. Сжимая бутылку руками, помогаем прокачке.

И вот чудо! Из линии обратного слива потекло топливо. Нажимаем на стартер – автомобиль заводиться с пол-оборота.

Автомобиль завели – осталось найти причину завоздушивания. Опускаю подробности поиска, скажу — причина была в построении линии обратного слива от форсунок.

Принципиально у форсунок бываю либо одна, либо две трубки обратного слива.

Первую схему предпочитают применять японские автомобили. Вторую – немецкие.

Причина более чем банальна — слетела заглушка. Автомобиль на ночь был поставлен на пригорке (под наклоном) – топливо через обратный слив (оказался ниже уровня ТНВД) вытекло.

Ставим заглушку, закрываем капот. Найден дефект и причина его возникновения.

Способы проверки УОВ будут рассмотрены в последующих статьях

Продолжение следует

Примечания:

В статье использованы рисунки из официальных источников Бош, выложенных для свободного обращения и авторские рисунки

Рязанов Федор

В Интернете — father

Обсуждение статьи на нашем форуме:http://forum.autodata.ru/7/13906/

autodata.ru

Признаки неисправности ТНВД: проверка, диагностика, снятие с двигателя

Топливный насос высокого давления — один из основных механизмов в системе подачи топлива в дизельных двигателях. Именно этот узел является главным отличием дизельных двигателей от своих бензиновых собратьев. Однако из-за своей сложности и чувствительности к качеству топлива топливный насос высокого давления (сокращенно ТНВД) нередко выходит из строя, что может грозить ремонтом или заменой узла.

Принцип работы ТНВД

Несмотря на обилие различных видов насосов, все ТНВД работают по сходному принципу и обеспечивает подачу порций дизельного топлива в цилиндры двигателя автомобиля под высоким давлением в строго отведенные моменты времени. Размер подаваемых порций топлива определяется нагрузкой цилиндров к коленчатому валу. Основу любого вида ТНВД составляет плунжерная пара, состоящая из непосредственно плунжера (поршня) и втулки (цилиндра).

Выделяется 2 основных разновидности ТНВД по принципу действия:

  • ТНВД непосредственного действия с механическим приводом плунжера;
  • ТНВД с аккумуляторным впрыском.

По устройству также различаются несколько видов ТНВД:

  • рядные — секции насоса расположены в ряд и подают топливо в определенный цилиндр мотора;
  • распределительные — одна секция насоса может подавать топливо в несколько разных цилиндров;
  • многосекционные (V-образные) — для высокоскоростных дизельных двигателей.

В свою очередь распределительные ТНВД могут быть одноплунжерными и двухплунжерными.

Все ТНВД непосредственного впрыска работают по одному принципу:

  • механический привод плунжера;
  • одновременно протекающие процессы нагнетания и впрыска;
  • давление для впрыска топлива создается движением плунжера.

ТНВД с аккумуляторным впрыском обеспечивают подачу топлива в раздельных циклах: сначала топливо нагнетается в аккумулятор насоса, затем поступает в топливные форсунки. Насосы с электронным управлением форсунками получили название системы Common rail.

Вкратце принцип работы топливного насоса высокого давления выглядит таким образом.

  1. Топливо из бака поступает в ТНВД благодаря подкачивающему насосу. Давление топлива на входе в насосную секцию ТНВД поддерживается редукционным клапаном.
  2. Движение плунжера, подающего топливо в цилиндры мотора, обеспечивается кулачковым валом, в свою очередь имеющим привод от коленчатого вала автомобиля.
  3. Вращение кулачкового вала заставляет двигаться плунжер, который поднимается вверх по втулке. При этом последовательно открываются выпускное и впускное отверстие.
  4. Создаваемое движением плунжера давление открывает нагнетательный клапан, после чего топливо поступает к топливной форсунке цилиндра дизельного двигателя.
  5. Избытки топлива через сливной, винтовой, радиальный и осевой каналы сливаются из плунжера в бак посредством дренажного штуцера.

Признаки неисправности ТНВД

ТНВД — дорогостоящий и довольно «капризный» узел дизельного двигателя, крайне требовательный к качеству топлива и смазывающих материалов. Основная причина выхода из строя ТНВД — загрязнение плунжеров насоса, которые установлены во втулки с минимальными допусками, измеряющимися в микронах. Загрязнение плунжерной пары твердыми частицами, содержащейся в некачественном дизельном топливе, может приводить к выходу ТНВД из строя. Не менее опасна и вода, которая может содержаться в топливе. Влага размывает защитную масляную пленку деталей узла, что чревато заклиниванием деталей ТНВД. Также неисправность ТНВД может заключаться в физическом износе деталей и повреждение корпуса насоса.

Неисправность ТНВД обычно приводит к неравномерности подачи топлива в форсунки двигателя и к снижению его поступающего объема. Чтобы понять то, что ТНВД не работает в штатном режиме, не обязательно ждать его поломки. Признаками проблем с ТНВД и с топливной системой в целом являются:

  • повышенный расход топлива;
  • нестабильная работа двигателя на малых оборотах;
  • затруднения с запуском двигателя;
  • перегрев мотора;
  • утечка горючего;
  • падение мощности и отдачи дизельного двигателя;
  • увеличенная дымность выхлопа;
  • появление посторонних шумов в процессе работы двигателя.

Проверка ТНВД

Симптомы неисправности насоса сходны с поломками деталей двигателя, а также могут иметь схожесть с неисправностью охлаждающей системы автомобиля. Поэтому для диагностирования поломки непосредственно ТНВД необходимо проверить и убедиться в исправности деталей насоса.

В идеале диагностика ТНВД и поиск неисправностей может проводиться только на стенде — устройстве, позволяющем имитировать работу ТНВД в рабочих диапазонах. Однако так как стоимость стенда сравнима с ценой автомобиля, а для диагностики необходимо демонтировать ТНВД с автомобиля, то такие операции проводятся только в автосервисах.

В «боевых» условиях проверить ТНВД достаточно сложно, но, все-таки возможно. Однако нужно понимать, что в домашних условиях получится диагностировать только некоторые неисправности ТНВД, а полную картину даст только проверка на стенде.

  1. Проверить плунжерные пары на наличие в них воды можно сняв ремень ГРМ и осторожно покрутив шкивом. Если шкив проворачивается с переменным усилием (из-за вращения кулачкового вала), то вода во втулках ТНВД отсутствует. Если шкив не проворачивается, то в системе ТНВД находится вода, что при запуске двигателя приведет к заклиниванию.
  2. Давление в плунжерной паре можно проверить с помощью тестера ТАД-01А, КИ-4802 или любого другого подобного инструмента. Такой прибор можно изготовить даже самостоятельно, для этого потребуется мощный манометр. Тестер вкручивается в ТНВД на место топливной трубки или в центральное отверстие головки насоса. Показатели измерения должны составлять не менее 300 кг/см2. В обратном случае плунжерная пара изношена и нуждается в замене или восстановлении.
  3. В дизельных автомобилях с электронным управлением ТНВД поломка может заключаться в обрыве датчика оборотов, расположенного на корпусе насоса. В таком случае топливо не поступает из ТНВД в форсунки цилиндров мотора. Для проверки датчика необходимо с помощью мультиметра измерить сопротивление на разъеме датчика, расположенного на крышке ТНВД. В случае отсутствия сопротивления произошел разрыв.
  4. Если неисправность ТНВД заключается в утечке топлива, то, как правило, виноваты уплотнительные кольца узла. Чтобы проверить ТНВД на утечку необходимо при работающем двигателе покачать ось рычага ТНВД. Если при этом наблюдается утечка топлива, то резиновый уплотнитель в месте утечки нужно заменить. Если утечки возникают не на оси, а в других местах узла, например, в местах посадки плунжерных пар, то для диагностики придется разбирать ТНВД.

Все эти способы помогают проверить ТНВД на наличие поломок. Однако неисправностей насоса гораздо больше, поэтому в большинстве случаев приходится демонтировать ТНВД и разбирать узел в поисках механических и иных повреждений в деталях узла.

Снятие ТНВД с двигателя

Снятие ТНВД может понадобиться не только для поиска и ремонта неисправных деталей, но и для проверки форсунок и регулировки газораспределительного механизма. Снятие ТНВД — довольно трудоемкая задача, с которой справится далеко не каждый автовладелец. Как минимум для проведения такой операции необходимо иметь немалый опыт в самостоятельном ремонте автомобиля.

Снятие ТНВД проводится в несколько этапов. В зависимости от вида насоса могут иметься различия в последовательности и некоторых деталях процесса. Для снятия ТНВД кроме стандартных ключей понадобятся специальные приспособления — шестерни для проворачивания коленчатого вала, фиксаторы, стапели, съемники приводных шестерен, шлицевые ключи и специальные приспособления для демонтажа. Поэтому при снятии насоса желательно использовать набор инструментов для ремонта ТНВД.

  1. Для начала следует слить всю охлаждающую жидкость в автомобиле.
  2. Далее отсоединяется минусовая клемма аккумулятора.
  3. Снимается вентилятор и кожух вентилятора, усложняющие доступ к корпусу ТНВД.
  4. Затем снимается крышка головки блока цилиндров.
  5. Далее снимается кожух ремня ГРМ.
  6. Затем демонтируется впускной коллектор.
  7. Далее первый цилиндр двигателя необходимо установить в положение верхней мертвой точки (максимальное расстояние между цилиндром и коленвалом). Для блокировки цилиндра в таком положении используется приспособление 11 2 300.
  8. Затем необходимо демонтировать ремень ГРМ со шкивов распределительного вала и вала ТНВД.
  9. Далее необходимо отсоединить топливный трубопровод и сливной провод от насоса. Также отсоединяется шланг для слива масла.
  10. Далее требуется отсоединить распределительные трубопроводы от форсунок цилиндров с помощью приспособления 13 5 020.
  11. Далее отсоединяются детали электропроводки.
  12. Затем нужно снять крепеж ТНВД. Для снятия центральной гайки ТНВД сначала демонтируется колпачковая гайка, а затем откручивается центральная гайка рожковым ключом на 18.
  13. Далее выворачиваются болты на корпусе ТНВД.
  14. Для отсоединения ТНВД от звездочки используется выталкивающий винт и приспособление 13 5 120, которое предварительно вкручивается на место центральной гайки. При снятии ТНВД приспособление должно оставаться на центральном шкиве до момента установки насоса обратно во избежание падения звездочки.

После того, как ТНВД отделен от центрального шкива и звездочки, его можно осторожно вынуть. Дальнейший разбор для поиска неисправных деталей также производиться с помощью специализированного набора для ремонта ТНВД.

voditelauto.ru

Устройство и принцип работы ТНВД Denso

Со временем, из-за достаточного количества факторов, в том числе и морального устаревания. Устаревшие топливные насосы высокого давления (ТНВД), устройство которых значительно отставало от развития двигателей сталид потихоньку исчезать. По мере их исчезновения стали разрабатываться новые варианты насосов, и кампания Denso стала, и остается флагманом развития.

Denso разработали ТНВД, который подчиняется электронному блоку управлению. Благодаря такому решению удалось добиться ощутимого повышения точности дозировки топлива и значительного повышения равномерности и плавности работы двигателя.

На некоторых насосах от Denso можно найти быстродействующий клапан, устройство которого позволяет разделить на две фазы процесс впуска топлива в цилиндры, за счет чего значительно повышается качество сгорания топливной смеси. Также точная работа ТНВД способствует снижению выброса негативных веществ в атмосферу.

ТНВД denso

Электронная система

Как правило, в таких электронных системах принято использовать насосы распределительного типа так как в них установлены дополнительные устройства. Они регулируют положение дозатора и клапана автоматического опережения на впрыске топлива.

Блок управления ТНВД Denso и само его устройство очень похоже на принцип работы инжекторного двигателя и его ЭБУ. Блок управления воспринимает сигналы от большого количества датчиков, которые также присущи известному нам инжекторному двигателю. Это датчик положения педали акселератора, частоты вращение распределительного и коленчатого валов, температуры воздуха и прочие.

Зачем нужны сигналы

Эти сигналы обрабатывает блок управления и складываются в определенный посыл для топливного насоса после чего и отправляются туда. Получая сигнал, он обеспечивает соизмеримую подачу топлива в цилиндры, выбирает давление форсунки и, определяет нужный и лучший угол опережения впрыска. Система, основанная на датчиках довольно эффективна. К примеру, если на двигатель опускается дополнительная нагрузка, печка, например, или кондиционер, то ЭБУ моментально это замечает по поступающим сигналам и в режиме реального времени корректирует работу ТНВД так, чтобы компенсировать новую нагрузку.

Устройство системы

Устройство такого сложного электронного насоса начинается с самого главного – с исполнительного механизма. Принцип его основан на действии электрических магнитов, а задача заключается в изменении положения дозирующей муфты. Управляет ей непосредственно электронный блок. Теперь нужно понять устройство и разобраться в том, с каких же конкретно датчиков блок воспринимает сигналы, так как это может серьезно помочь в решении неполадок и диагностике появившихся проблем. В блок поступает информация с датчика начала впрыска, который расположен в одной из форсунок насоса Denso, с датчика ВМТ и частоты вращения коленчатого вала, он нашел себе место в головке блока. По этому же датчику водителю сообщаются и показания тахометра. Также участие принимают датчики массового расхода воздуха, температуры воздуха и температуры охлаждающей жидкости, положения педали газа. Далее, компьютер основываясь на заданных характеристиках и показаниях датчика создает сигналы, которые уходят в насос. Если конкретнее, то эти сигналы получают механизм цикловой подачи топлива и механизм контроля опережения. Таким образом, работа ТНВД Denso корректируется в зависимости от режима работы: от холостого хода до работы на полную мощность. Для большей надежности каждый из механизмов получил встроенный потенциометр, который отправляет сигнал в обратную сторону для получения надежных сведений о положениях муфты и необходимого угла опережения.

ТНВД Denso

Также в обязанности ЭБУ (электронный блок управления) на дизельном двигателем входит и контроль всех рутинных процессов. То есть его устройство позволяет с помощью тех же электронных сигналов полностью управлять, к примеру, стабилизацией частоты вращения коленчатого вала или же рециркуляцией охлаждающей жидкости. Помимо этого, в блоке также сохранены все оптимальные значения абсолютно всех показателей двигателя, сделано это для того, чтобы по мере изменения показателей в сторону от эталонных блок мог корректировать процессы, чтобы двигатель работал “идеально”. Также любопытно то, что Denso заложили в устройство ЭБУ программу быстрой диагностики всех систем мотора. Эта программа позволит контролировать и поддерживать работу двигателя при большинстве даже аварийных неполадок, чтобы машина даже в экстремальной ситуации не подвела своего хозяина. Соответственно если что-то случится с блоком управления, то тут уже ничего не поможет запустить двигатель и поехать.

Принцип роботы исполняющих механизмов

Чаще всего для ТНВД Denso устройство исполняющих механизмов представляет собой сложный электромагнит у которого поворотный сердечник. Конец этого сердечника особым образом соединяется с эксцентриком дозирующей муфты. Когда блок пускает по цепи электрический сигнал, то электромагнит его воспринимает и делает поворот сердечника на угол от 0 до 60 градусов, соответственно перемещая дозирующую муфту, которая и изменяет характеристики цикла подачи.

Опережение угла впрыска осуществляется также электромагнитом, только здесь это специальный клапан, который изменяет показатель давления топлива. Клапан работает с огромной скоростью, он всегда либо открыт, либо закрыт. На скорость движения клапана влияет частота вращения распределительного вала. Когда электромагнитный клапан полностью открывается, то давление очень низкое, соответственного и угол опережения также уменьшается. Когда клапан закрывается все происходит с точностью наоборот. На положение клапана воздействует импульс из блока, а ЭБУ формирует его в соответствии с режимом работы двигателя и его температурными показателями. Чтобы компьютер мог определять момент начала впрыска топлива в одной из форсунок есть индукционный датчик подъема иглы форсунки.

Электромагнитные движущие механизмы

В различных видах ТНВД Denso в качестве исполняющих механизмов могут применяться различные электромагнитные устройства, моментные, линейные или шаговые электродвигатели. Они выполняют роль движущего механизма, то есть привода дозатора топлива в насосах. Рассмотрим несколько иной принцип работы электромагнитного клапана, чем был приведен ранее. Для хорошей работы такой системы в корпусе каждой форсунки находится катушка возбуждения, на которую компьютер подает напряжение. Это делается для того, чтобы поддерживать постоянное напряжение в цепи независимо от остальных показателей. Ток, проходящий по этой цепи создает магнитное поле вокруг катушки возбуждения. В один момент, когда точка подъёма иглы достигает своего пика возникает мощный импульс, который сразу же передается в компьютер, который его анализирует и корректирует необходимый угол опережения впрыска. Также на коррекцию влияет и сохраненный в памяти блока эталонный сигнал, его значение учитывается при расчете соответствующих условий работы дизеля. Обработав сигнал, проанализировав и сравнив с эталонным вариантом, ЭБУ посылает обратный сигнал в форсунку. Клапан в форсунке соединён с автоматом, если конкретнее, то с его рабочей камерой. Когда автомат принимает определенный сигнал, то давление, что действует на поршень автомата повышается или уменьшается, и как результат поршень меняет свое положение вследствие чего изменяется и угол опережения.

Особенности работы ТНВД Denso

Далее, разберемся в устройстве непосредственно данного типа ТНВД от Denso. Мы уже разобрались в том, что всеми системами двигателя управляет ЭБУ, который к тому же еще и совмещен, т.е. ему подчиняются и все остальные системы мотора. Начнем с контура низкого давления. Обычно в таких системах применяется топливоподкачивающий насос шиберного типа, он также подчиняется компьютеру. В частности, давления топлива создаваемое им зависит от частоты вращения насосного колеса. Однако ЭБУ так корректирует его работу, что при увеличении частоты его вращения давление растет не пропорционально. В насосе есть отверстие, через которое топливо выходит на клапан, из чего следует, что клапан располагается в непосредственной близости от самого насоса. Клапан изменяет характер своей работы в зависимости от того, сколько топлива потребляет двигатель в данный конкретный момент времени. Соответственно при резком изменении условий работы двигателя, например, при резком разгоне, клапан четко на это отреагирует. Пройдя клапан топливо попадает в соответствующие секции ТНВД и к устройству опережения впрыска.

Также в насосе существуют специальные дренажные отверстия. То есть, если давление, что создает насос слишком высоко для потребляемого в эту секунду топлива, то торцевая кромка поршня отодвигается и открывает эти самые отверстия. Они радиально расположены и благодаря этому солярка сливается обратно по этим каналам. Также очень интересной является система удаления воздуха и охлаждения насоса. В насосе существует специальный клапан дросселирующего перепуска. Топливо проходит сквозь этот специальный канал, в нем есть специальный подпружиненный шарик, который дает вытекать топливо только при наличии определенного его объёма. Это немного похоже на работу поплавковой камеры обычного карбюратора. Далее по каналу располагается дроссель очень маленького диаметра, который обеспечивает автоматический отвод воздуха из корпуса насоса. Собственно, весь контур именно низкого давления рассчитан на то, что под определенным воздействием через него всегда протекает определенное количество солярки.

Теперь пришло время контура высокого давления. Непосредственно созданием высокого давления занимаются специальные секции ТНВД с радиальным движением плунжеров. Эта секция включает в себя: башмаки с роликами, специальную соединительную шайбу, кулачковую шайбу и нагнетающие плунжеры. Крутящий момент, воспринимаемый от приводного вала, принимают соединительная шайба и специальные шлицевые соединения. Эти шлицевые пазы служат для того, чтобы сидящие в них ролики обеспечивали работу плунжеров соответственно виду кулачковой шайбы. То есть, сколько кулачков на шайбе столько и цилиндров в двигателе. Далее с помощью вала распределителя топливо попадает в разные плунжеры. Разбивается этот процесс на фазы. Во время фазы наполнения плунжеры выдвигаются, а запирающая игла переходит в свободное состояние тем самым открывая доступ топливу в камеру высокого давления. В фазе нагнетания давления игла запирается, а плунжеры изменяют свое положение тем самым увеличивая давление в камере высокого давления.

autodont.ru

Устройство и принцип действия электронного ТНВД

Радиально-поршневой распределительный ТНВД представляет собой насос впрыска с электронным регулированием, имеющий собственный блок управления. Насос создаёт давление впрыска 1500 бар. Высокое давление впрыска позволяет достичь мелкодисперсного распыления топлива. Это приводит к более полному сгоранию топливно-воздушной смеси и меньшему
содержанию вредных веществ в ОГ

Основные задачи радиально-поршневого распределительного ТНВД:

  • забор топлива из топливного бака
  • сжатие топлива до 1500 бар
  • распределение топлива по цилиндрам

Всасывание
Радиально-поршневой распределительный ТНВД расположен там, где раньше был установлен пластинчатый насос, всасывает топливо из топливного бака и создаёт давление в ТНВД.

За счёт давления, созданного в ТНВД, при открытом электромагнитном клапане топливо подаётся в камеру сжатия.

Сжатие
Топливо сжимается двумя плунжерами, которые приводятся от кулачковой обоймы через ролики. Привод осуществляется приводным валом.

 

За счёт вращательного движения приводного вала ролики нажимают на кулачки обоймы и перемещают плунжеры вовнутрь. Это приводит к сжатию топлива между плунжерами.

Распределение
Если электромагнитный клапан закрыт, топливо распределяется по отдельным цилиндрам с помощью вала распределителя и распределительной головки через обратный дроссель нагнетательного клапана и форсунку впрыска.

В распределительной головке имеются отверстия, соответствующие отдельным цилиндрам. Вал распределителя проворачивается приводным валом и соединяет камеру сжатия попеременно с каждым отверстием в распределительной головке

Радиально-поршневой распределительный ТНВД имеет собственный блок управления. Задачей блока является управление и контроль исполнительных элементов насоса впрыска. Для этого в блоке управления сохранены характеристики, точно соответствующие характеристикам насоса впрыска. Блок управления и насос впрыска образуют единый блок и прочно соединены друг с другом

 

Что чем управляет?
Датчики отправляют на блок управления двигателя информацию о режиме работы двигателя и о положении педали акселератора. Блок управления двигателя анализирует эту информацию и рассчитывает момент начала впрыска и необходимое количество подаваемого топлива. Полученные значения блок управления двигателя отправляет на блок управления топливного насоса. Блок управления топливного насоса рассчитывает команды управления для электромагнитного клапана регулирования количества подаваемого топлива и клапана управления опережением впрыска. При этом учитываются сигналы, поступающие в насос впрыска от блока управления двигателя и датчика угла поворота. Для контроля управления двигателя блок управления топливного насоса отправляет на блок управления двигателя обратное сообщение о режиме работы насоса впрыска. Передача сигналов между блоком управления двигателя и блоком управления топливного насоса осуществляется по шине CAN. Преимуществом шины CAN является то, что обмен всей информацией между блоком управления топливного насоса и блоком управления двигателя может осуществляться по двум проводам. Блок управления двигателя выполняет и другие задачи, например, управление исполнительными элементами системы рециркуляции ОГ и регулирование давления наддува.

Регулирование количества подаваемого топлива

На приведённом ниже обзоре системы показаны датчики, на основании сигналов которых определяется количество подаваемого топлива Сигнал, поступающий от блока управления двигателя, преобразуется блоком управления топливного насоса в сигнал для электромагнитного клапана регулирования количества подаваемого топлива. Задачей регулирования количества подаваемого топлива является точная адаптация количества топлива к различным режимам работы двигателя.


Принцип действия:
Процесс наполнения Если электромагнитный клапан регулирования количества подаваемого топлива открыт, топливо из внутреннего пространства насоса подаётся в камеру сжатия.

Впрыск
Блок управления топливного насоса подаёт сигнал управления на электромагнитный клапан регулирования количества подаваемого топлива, клапан перекрывает подачу топлива. Все время, пока электромагнитный клапан закрыт, топливо сжимается и подаётся на форсунки впрыска. При достижении заданного блоком управления двигателя количества топлива электромагнитный клапан открывает подачу топлива из внутреннего пространства насоса. Давление падает; впрыск завершён.

При полной нагрузке двигателя объём топлива на каждый цикл впрыска составляет ок. 50 мм3.
Это равно объёму одной капли воды.

На оборотах холостого хода на каждый цикл впрыска требуется ок. 5 мм3 топлива.
Это соответствует размеру булавочной головки диаметром 2 мм.

Дополнительной задачей электромагнитного клапана регулирования количества подаваемого топлива является остановка двигателя. При выключении зажигания электромагнитный клапан открывается, сжатие топлива не происходит.

Регулирование момента впрыска

На приведённом ниже обзоре системе представлены датчики, на основании сигналов которых определяется момент начала впрыска. Сигнал, поступающий от блока управления двигателя, преобразуется блоком управления топливного насоса в сигнал для клапана управления опережением впрыска. Задачей регулирования момента впрыска является адаптация момента впрыска к частоте вращения двигателя.

Принцип действия:
При увеличении частоты вращения впрыск должен происходить раньше. Опережение впрыска осуществляется регулятором впрыска. За счёт силы действия пружины управляющий поршень прижимается к поршню регулятора впрыска. В кольцевую полость управляющего поршня через отверстие из внутреннего пространства ТНВД поступает топливо под давлением. Клапан управления опережением впрыска определяет давление топлива в кольцевой полости управляющего поршня.

При увеличении частоты вращения клапан управления опережением впрыска увеличивает давление топлива в кольцевой полости. За счёт этого управляющий поршень отжимается от поршня регулятора впрыска, преодолевая силу действия пружины, и открывает канал. Топливо поступает в полость за поршнем регулятора впрыска.

За счёт давления топлива поршень регулятора впрыска перемещается вправо. Поршень регулятора впрыска соединён с кулачковой обоймой так, что горизонтальное движение регулятора впрыска проворачивает кулачковую обойму в направлении опережения впрыска.

www.carluck.ru

Электронные системы управления рядными ТНВД

Рядный ТНВД с электронным управлением. Общий вид рядного ТНВД с электронным управлением: 1 – гильза; 2 – втулка управления; 3 – рейка подачи топлива; 4 –плунжер; 5 – кулачковый вал; 6 – электромагнитный клапан начала подачи топлива; 7 – вал управления регулирующей втулкой; 8 – электромагнитный регулятор количества топлива; 9 – индуктивный датчик положения рейки; 10 – вилочное соединение; 11 – диск; 12 – топливоподкачивающий насос.

Как и в обычном рядном ТНВД, оснащенном механическим регулятором, количество впрыскиваемого топлива является функцией положения управляющей рейки подачи топлива 3 и частоты вращения вала привода ТНВД. Управление рейкой осуществляется с помощью специального электромагнитного регулятора количества топлива 8, присоединенного непосредственно к ТНВД. Электромагнитный регулятор состоит из катушки и сердечника, воздействующего на рейку ТНВД.

Положение рейки насоса определяется индуктивным датчиком положения рейки 9, закрепленным на ней. В катушку электромагнитного регулятора, в зависимости от сигналов входных датчиков температуры двигателя, частоты вращения вала насоса, положения педали управления рейкой и др. от блока управления поступает ток возбуждения различной величины. При этом сердечник регулятора, втягиваясь под воздействием магнитного поля, воздействует на рейку насоса преодолевая усилие пружины, изменяя количество впрыскиваемого топлива.

С увеличением силы тока поступаемого от блока управления, сердечник, втягиваясь на большую величину и воздействуя на рейку, увеличивает подачу топлива. При отключении соленоида пружина прижимает рейку в положение остановки двигателя и прекращает подачу топлива.

На кулачковом валу ТНВД устанавливается зубчатое колесо, которое при вращении подает импульсы на индуктивный измерительный преоб­разователь. Электронный блок управления использует импульсные ин­тервалы для вычисления частоты вра­щения коленчатого вала двигателя.

Датчик положения рейки подает сигналы для различных устройств на двигателе и автомобиле:

  • сигнал о моменте переключения передач для гидравлической коробки передач; сигнал для подачи максимальной порции топлива скоординированной с давлением наддува для соблюдения норм на дымность отработавших газов;
  • сигнал о нагрузке, как указание момента переключения для переключения передач в механической коробке передач;
  • сигнал для измерения расхода топлива;
  • сигнал для запуска рецеркуляции отработавших газов;
  • сигнал диагностики и др.

Датчик положения рейки 1 – контрольная катушка; 2 – сердечник; 3 – короткозамкнутое подвижный контур; 4 – рейка; 5 – лыска; 6 – возвратная пружина; 7 – измерительная катушка; 8 – магнитопровод; 9 – неподвижный контур

Датчик состоит из пластинчатого стального сердечника 2 с двумя наружными открытыми концами. На одном конце закреплена измерительная катушка 7, которая запитывается переменным током 10 кГц, на другом конце контрольная катушка 1. Короткозамкнутый подвижный контур 3, предназначенный для регистрации хода рейки крепится к ней. Датчик хода рейки соединен с блоком управления.

Принцип работы датчика состоит в том, что короткозамкнутый неподвижный контур 9, окружающее конец сердечника, экранирует переменное магнитное поле (индукцию), вырабатываемое контрольной катушкой 1. Распространение магнитного поля ограничивается пространством между катушкой и короткозамкнутым кольцом. Учитывая то, что короткозамкнутое подвижное кольцо перемещается вместе с рейкой и изменяет своё положение относительно измерительной катушки, магнитное поле воздействующее на измерительную обмотку изменяется. Реагирующая цепь преобразует отношение индукции измерительной катушки 7 к индукции контрольной катушки 1 в отношении напряжений, которые пропорциональны ходу рейки. Величина измеряемого напряжения постоянно сравнивается с напряжением контрольной катушки. Датчик информирует о текущем положении рейки с точностью 0,2 мм.

Электронный блок управления сравнивает частоту вращения и другие параметры работы двигателя с целью определения оптимального ко­личества подаваемого топлива (выра­жаемого как функция положения рей­ки). С помощью электронного контрол­лера сравнивается положение рейки насоса с конкретной точкой для опре­деления значения тока возбуждения соленоида, который сжимает возврат­ную пружину. Когда отклонения опре­деляются, регулируется ток возбужде­ния, обеспечивая смещение рейки насо­са к более точному положению.

Подача топлива к форсункам принципиально не отличается от механических ТНВД. Однако в насосах с электронным управлением отсутствует муфта опережения впрыска и в них угол опережения впрыска управляется по сигналам, подаваемым от блока управления в электромагнитный клапан начала подачи топлива. В зависимости от величины силы тока поступающего в катушку электромагнитного клапана начала подачи топлива 6 (рис.), его сердечник, преодолевая сопротивление пружины, втягивается в катушку на определенную величину, поворачивая при этом вал управления 7 регулирующей втулкой. В свою очередь вал управления связан с втулкой управления. При повороте вала управляющая втулка может приподниматься или опускаться. При обесточивании электромагнитного клапана вал под воздействием пружины переводит втулки в верхнее положение (поздний впрыск).

Начало подачи может регулироваться при изменении положения втулок в пределах до 40° поворота коленчатого вала. Принцип работы прецизионных деталей гильзы, плунжера и управляющей втулки показан на рисунке.

Принцип работы плунжерной пары с управляющей втулкой. a – НМТ плунжера; b – начало подачи топлива; c – завершение подачи топлива; d – ВМТ плунжера; h2 – предварительный ход; h3 – полезный ход; h4 – холостой ход; 1 – нагнетательный клапан; 2 – полость высокого давления; 3 – втулка плунжера; 4 – управляющая втулка; 5 – винтовая канавка плунжера; 6 – распределительное отверстие в плунжере; 7 – плунжер; 8 – пружина плунжера; 9 – роликовый толкатель; 10 – кулачок; 11 – разгрузочное отверстие; 12 – камера низкого давления.

Плунжер кроме обычной спиральной канавки изменяющей подаваемую порцию топлива к форсункам имеет распределительное отверстие 6, которое может быть закрыто или открыто управляющей втулкой 4. При движении плунжера вниз топливо поступает в надплунжерное пространство.

При движении плунжера 7 вверх, до тех пор, пока распределительное отверстие 6 находится в полости всасывания камеры низкого давления 12, давление в полости нагнетания 2 выравнивается с давлением во всасывающей полости через центральный канал.

Как только распределительное отверстие 6 плунжера перекрывается кромкой управляющей втулки 4 полость всасывания и полость высокого давления разобщаются (рис b) и давление в полости нагнетания начинает расти. После того как под воздействием высокого давления открывается нагнетательный клапан 1, давление в трубопроводе высокого давления растет до величины открытия иглы форсунки (начало впрыска).

Впрыск продолжается при движении плунжера вверх пока кромка спиральной канавки 5 не достигнет разгрузочного отверстия 11 (рис. с) в управляющей втулке 4. После этого давление в полостях выравнивается, и нагнетательный клапан 1 под воздействием пружины и давления топлива закрывается.

Регулирование начала впрыска топлива зависит от частоты вращения коленчатого вала, нагрузки на двигатель и его температуры. Начало впрыска топлива зависит от положения управляющей втулки, размещенной в кольцевой выточке гильзы. Изменение начала впрыска происходит одновременно во всех секциях насоса за счет поднятия или опускания управляющих втулок. Начало впрыска топлива зависит от положения управляющей втулки, так как нагнетание может произойти только после перекрытия распределительного отверстия плунжера 6, в противном случае топливо через вертикальный канал и отверстие 6 будет вытесняться полость 12 и давление в надплунжерном пространстве возрастать не будет. В момент перекрытия отверстия 6 полость в надплунжерным пространством становится герметичной и давление топлива начинает резко возрастать, открывая при этом нагнетательный клапан. Если втулка находится относительно отверстия плунжера 6 выше, впрыск начинается позже, так как позже будет перекрываться окно плунжера. При более низком положении втулки относительно окна плунжера перекрытие окна плунжера будет более ранним и впрыск начинается раньше. Ход втулки составляет около 5,5 мм при изменении угла опережения впрыска топлива 12° по углу поворота коленчатого вала.

Регулирование количества подаваемого топлива осуществляется как и у обычных механических ТНВД поворотом плунжера 7, на котором распределительное отверстие 6 соединено с винтовой канавкой 5 плунжера. Если плунжер повернут на небольшой угол, количество подаваемого топлива будет малым, так как спиральная канавка очень быстро после закрытия распределительного отверстие в плунжере 6 управляющей втулкой достигает разгрузочного отверстия 11 втулки. При большем повороте плунжера подача топлива соответственно увеличивается.

Прекращение подачи топлива осуществляется при останове двигателя. При этом плунжер устанавливается в такое положение, при котором в любой позиции между мертвыми точками полости всасывания и нагнетания соединены через центральное отверстие плунжера.

Основные неисправности рядных электронных ТНВД и их причины.

  • Большинство неисправностей электронных рядных ТНВД, аналогичны механическим рядным ТНВД. Отличительными особенностями являются неисправности электронной части насоса.
  • Двигатель не запускается. Повреждена обмотка электромагнитного регулятора количества топлива; неисправность блока управления; остальные неисправности характерные как и для механических рядных ТНВД.
  • Блок управления двигателя включает программу аварийной работы, двигатель не развивает полной мощности. Замыкание обмоток катушек индуктивного датчика положения рейки или индуктивного датчика частоты вращения кулачкового вала ТНВД.
  • Неправильное измерение частоты вращения. Биение зубчатого колеса импульсов более 0,03 мм.

00:4922.05.2013

Проверка механизма опережения на ТНВД H типа с дополнительной втулкой

Для определения работоспособности электромагнита опережения, регулировки втулок опережения, рекомендую выкрутить с регулятора заглушку, вставить внутрь отвёртку, упёршись в сам сердечник электромагнита и прогазовывать, наблюдая за перемещением вниз электромагнита. Чем раньше зажигание, тем ниже перемещается электромагнит. Можно также вручную делать зажигание раньше, имея достаточный опыт в работе дизельных двигателей.

L

kovsh.com

Датчик температуры топлива тнвд | Датчики температуры

Система впрыска топлива с электронно-управляемым ТНВД

Адаптивная система впрыска топлива с электронно-управляемым ТНВД применяется в наиболее современных дизельных двигателях для оперативноой смены режима работы в зависимости от ситуации и стиля езды водителя.

Система электронного контроля впрыска применяется как на дизельных, так и на бензиновых двигателях. При установке на бензиновый двигатель система впрыска с электронно-управляемым ТНВД служит для экономии и более эффективного расходования топлива. В случае же с дизельным двигателем, помимо вышеперечисленных факторов, система позволяет добиться от мотора хорошей отдачи мощности на более высоких, чем это бывает у дизельных агрегатов, оборотах.

История создания систем впрыска с электронным ТНВД

Система электронного прогаммируемого контроля впрыска EPIC для дизельных двигтелей была разработа компанией Lucas в конце семидесятых годов. На данный момент EPIC и ее разновидности считается наиболее совершенной, так как позволяет добиться максимально эффективного сгорания дизельного топлива. EPIC и ее модификации устанавливается на дизельные двигатели Citroen, Mercedes-Benz, Peugeot, Ford, Toyota и ряд других.

Как правило, в случае применения электронно-управляемой системы впрыска на бензиновом двигателе, к аббревиатуре, служащей обозначением модификации двигателя, добавляется буква «Е». Та же самая литера в названии дизельного двигателя означает применение ТНВД с электронным управлением. К примеру, автомобилях Toyota могут быть оснащены двигателями 1HD-FTE, 2С-ТЕ, ЗС-ТЕ или 1KZ-TE.

Что такое ТНВД с электронным управлением

Ряд современных двигателей, как дизельных, так и бензиновых, оборудован распределенным впрыском топлива с электронным управлением. Система непосредственного впрыска бензиновых двигателей и всех без исключения дизельных двигателей построена на принципе предварительного аккумулирования определенного запаса топлива под высоким давлением. В дальнейшем это топливо топлива несколькими порциями впрыскивается, в большинстве случаев, непосредственно в цилиндр, на протяжении такта сжатия и рабочего хода.

Для создания давления в системах впрыска используется топливный насос высокого давления или ТНВД. В наиболее современных системах ТНВД, как и все другие компоненты системы впрыска, работает под управлением электроники для того, чтобы все параметры можно было контролировать с высокой точностью. Это позволяет добиться более высоких показателей мощности и рациональности расхода топлива по сравнению с двигателями, оснащенными системами на основе обычного ТНВД.

Электронно-управляемые насосы могут применяться как на дизелях с вихревой камерой, где происходит предварительное смешивание топлива с воздухом, то есть создание смеси, так и на двигателях с впрыском непосредственно в цилиндры. Различия в конструкции двигателей не играют особой роли — разница лишь в давлении топлива в рампе, созданием и поддержанием которого и занимается ТНВД. Если в вихрекамерных двигателях впрыск осуществляется под давлением 350 кгс/см2, то в двигателях с непосредственным впрыском давление доходит до 1000 кгс/см2.

Электронно-управляемые ТНВД разных поколений

Поколения насосов делятся по принципу примененного в них привода плунжера. Первое поколение (насосы типа Bosch VE) оснащены торцевым кулачковым приводом, а насосы второго поколения (роторные насосы Bosch VR, Lucas DPC, Lucas DPS) — внутренним кулачковым приводом. Чем же была обоснована необходимость в смене поколений? Дело в том, что максимальное давление  в системе на основе насоса типа VЕ составляет всего 150 кгс/см2, и дальнейшее повышение ограничено конструкцией привода. Поэтому с появлением более совершенного внутреннего привода появились ТНВД второго поколения Lucas DPC и тому подобные.

Благодаря применению нового типа привода ТНВД с радиальным движением плунжеров способны создавать более высокого давления — до 1000 кгс/см2.

Регулировка параметров впрыска в системах с электронно-управляемым ТНВД

Если раньше механические ТНВД служили лишь для создания необходимого давления, то современные электронно-управляемые ТНВД вместе с исполнительными устройствами – так называемыми дозирующими муфтами, отвечают как за количество топлива, впрыскиваемого за один цикл, так и за изменение режима работы двигателя в разных дорожных условиях.

Современные электронные ТНВД называются насосами распределительного типа.

Электронный блок управления, отвечающий за работу ТНВД, получает сигналы от различных датчиков: температуры ОЖ и топлива, частоты вращения коленвала, датчика положения иглы форсунок, датчика скорости, положения педали акселератора и других. Все эти сигналы сопоставляются с заложенными в программе блока настройками, и на ТНВД подается сигнал, обеспечивающий подачу нужного количества топлива к форсункам и оптимальный УОВ (угол опережения впрыска) с учетом текущей нагрузки на двигатель.

Регулирование подачи топлива производится дозирующей муфтой. Муфта представляет собой игольчатый регулирующий клапан. Подъемом и опусканием иглы, а следовательно, мощностью потока проходящего через муфту топлива, ведает шаговый электромотор или электромагнит с поворотным сердечником. В зависимости от сигнала от блока управления он может открывать или закрывать клапан с высокой точностью. Сервомотор обладает высокой скоростью реагирования, что обеспечивает быстрое переключение режимов подачи топлива в зависимости от нагрузки на двигатель.

Угол опережения впрыска (параметр, схожий с углом опережения зажигания в бензиновых двигателях) регулируется аналогичным образом, при помощи электромагнитного клапана. Для разной нагрузки и скорости вращения коленвала оптимальным будет свое значение угла опережения. К примеру при работе на холостых в районе 800 об/мин угол должен быть 3°, при 1000 об/мин — 4° и так далее. По этой причине в электронных системах впрыска организовано динамичное изменение угла опережения впрыска в зависимости от нагрузки. Угол опережения впрыска необходимо уменьшать при снижении нагрузки на двигатель и увеличивать при возрастании.

Одна из форсунок снабжена датчиком подъема иглы. Сигнал от него передается в блок управления двигателем. Пиковый импульс от датчика служит ориентиром для управления углом опережения. Его значение сравнивается с данными так называемой «карты» (таблицы значений), содержащей данные по разным режимам работы двигателя, в зависимости от которых происходит выбор значения угла.

Топливный насос и форсунки Common Rail серии KD Toyota

2.2. ТНВД. Топливный насос Common Rail серии KD несколько отличается от ТНВД двигателя 1CD-FTV.

1 — трубка возврата топлива, 2 — к топливной рампе, 3 — от топливного фильтра, 4 — датчик температуры топлива, 5 — клапан SCV (э/м перепускной клапан).

1 — плунжер, 2 — нагнетательный клапан, 3 — кулачок, 4 — подкачивающий насос.

Здесь насос также двух-плунжерный, но уже однокамерный, а привод осуществляется более традиционным способом — при помощи центрального вращающегося кулачка.

1 — клапан SCV, 2 — плунжер, 3 — кулачок, 4 — к рампе. На такте всасывания топливо поступает в напорную камеру через клапан SCV и открывающийся впускной обратный клапан, на такте нагнетания плунжер создает давление в напорной камере, впускной обратный клапан закрывается, выпускной — открывается, и топливо поступает в рампу. Второй плунжер работает аналогичным образом, но в противофазе с первым.

Объем поступающего к плунжеру топлива регулируется при помощи SCV, благодаря чему блоку управления удается поддерживать требуемое давление в топливной рампе.

2.2. Форсунки. Форсунки двигателей KD аналогичны по конструкции и принципу действия форсункам 1CD-FTV. Стоит заметить, что даже такая процедура, как их замена, на двигателях Common Rail усложнилась значительно — каждая форсунка имеет свою точно выверенную подачу, указанную в маркировке как корректирующий код, поэтому после их установки требуется обязательно перепрограммировать ЭБУ двигателя.

1 — электромагнитный клапан, 2 — управляющая камера, 3 — плунжер, 4 — игла.

2.3. Система управления. Серия KD внесла разнообразие и в диагностические коды тойотовских двигателей:

49 (P0087) — Слишком низкое давление топлива в рампе

78 (P0088) — Слишком высокое давление топлива в рампе

78 (P0093) — Утечка

architecturalengineering.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *