Схема зарядного устройства на 12 вольт 10 ампер – СХЕМА ПРОСТОГО ЗАРЯДНОГО НА 12 ВОЛЬТ

СХЕМА ПРОСТОГО ЗАРЯДНОГО НА 12 ВОЛЬТ

   Чтоб зарядить свинцовый аккумулятор небольшой ёмкости (до 10 А/ч), потребуется зарядное устройство, схема которого предлагается для самостоятельного изготовления. Вы не сможете испортить АКБ с помощью этого зарядного, потому что в нём ток около 300 мА не способный повредить батарею. ЗУ может полностью зарядить любой 12 вольтовый аккумулятор и держать его заряженным (периодически подзаряжая) в течение нескольких месяцев, и даже лет.

Схема простого зарядного на 12 вольт

Принцип действия схемы

   Чтоб было понятнее, условно разделим всю принципиальную схему на отдельные модули. Устройство не включается, пока аккумулятор не подключен через клеммы, как показано на схеме. Кнопка Push нужна для запуска схемы при абсолютно разряженной батарее. Это действие включает транзистор. Сопротивление между коллектором и эмиттером уменьшается и загорается светодиодный индикатор. Электрический потенциал к нижней части схемы идет через диод, Уэ-катод тиристора и через два резистора по 1R8 включенных в параллель. Поэтому светодиод горит.

   Прежде чем пойдем дальше заметим, что вся схема работает от адаптера ПЕРЕМЕННОГО тока. Постоянное питание не позволит тиристору открываться и закрываться, когда ток идущий через него падает до нуля.Тиристор SCR включается в течение каждого полупериода напряжения, и ток течет в батарею. Напряжение также падает на двух 1R8 резисторах и подается на электролитический конденсатор 47 мкФ. Он заряжается и включает транзистор BC547. Транзистор лишает тиристор напряжения управляющего электрода и он выключается. Энергия конденсатора поступает в транзистор, но через короткое время она уже не сможет удержать транзистор включенным.

   Транзистор выключается, тиристор включается и подает еще один импульс тока от заряжаемую батарею. В процессе заряда батареи, ее напряжение увеличивается, это контролирует блок «монитор напряжения». Данный узел состоит из транзистора и стабилитрона, а также резисторов 8k2, переменный 1k, 1k5, 150 Ом и светодиода. 

   Так как напряжение на батарее увеличивается до 13,4 вольт, каждый резистор будет иметь некоторое падение напряжения на нем, соответствующее сопротивлению резистора. Диод будет иметь постоянное падение 0,7 вольта. Напряжение через стабилитрон будет 10 В. Это оставляет 0,6 В между базой и эмиттером транзистора. Такого напряжения достаточно, чтобы открыть транзистор. А значит зарядка отключается. 

   Схема предназначена для тока заряда около 300-400 мА. Максимальное значение определяется резисторами 1R8. Они не позволяют превысить более 900 мА в течение половины цикла. Когда аккумулятор полностью заряжен, индикатор LED начнет мигать. Мигание создаёт резистор 2k2 и конденсатор 47 мкФ, подключенный к блоку монитору напряжения. При этом происходит небольшая подача тока в батарею, чтобы держать её заряженной. Это называется импульсный режим подзаряда.

Настройка зарядного

   Зарядите полностью аккумулятор и когда напряжение достигает 13.4 В, подстройте регулятор 1к так, чтобы светодиод мигал. Схема не включится, если напряжение аккумулятора менее 4-х вольт. Если аккумулятор хороший, но был полностью разряжен, вы можете вручную запустить процесс зарядки при подключении аккумулятора и нажатия кнопки.

   Если аккумулятор не заряжается даже после того, как вы нажали кнопку, не тратьте на него время — скорее всего он уже вообще не будет заряжаться. Таким образом это зарядное устройство идеально подходит для определения того, может ли вообще батарея быть заряжена. Для этого просто подключите АКБ к зарядному устройству и контролируйте напряжение на батарее. Если оно остается на уровне менее 8 В после 1 часа, то батарею можно выкинуть. Если нужно зарядное на большой ток, для автомобильных АКБ — тогда вам пойдёт другая схема.

   Схемы зарядных устройств

elwo.ru

Зарядное устройство для автомобильных аккумуляторов 12 вольт (5 схем) | РадиоДом

Правильное соблюдение режима эксплуатации аккумуляторных батарей (АКБ), и главное, режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку АКБ производят током, значение которого можно определить по формуле:

Где I — средний зарядный ток в амперах., а Q — паспортная электрическая емкость АКБ в ампер-часах. Например, АКБ ёмкостью 70 ампер-час заряжают током не более 7 ампер.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.
Классическая стандартная схема зарядного устройства для аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты и транзисторные стабилизаторы тока. В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя. Пример такого зарядного устройства представлен на рисунке 1.

 





Для регулировки зарядного тока также можно использовать блок конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен. Недостатком данного способа является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20 вольт). Пример такой схемы приведена на рисунке 2.
 

Схема зарядного устройства, обеспечивающее зарядку 12 вольтовых АКБ током до 15 ампер, причем ток зарядки можно изменять от 1 до 15 ампер с шагом через 1 ампер. Есть возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится недолгих коротких замыканий в цепи нагрузки и обрывов в ней. Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки. Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах АКБ, равном напряжению полностью заряженной батареи. Пример данного ЗУ представлена ниже на рисунке 3.
 


Здесь представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения. Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на одно переходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10 ампер, устанавливается стрелочным или цифровым амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2. Вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором. Названое обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором). Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на алюминиевые теплоотводы. Схема показана на рисунке 4.


Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. В схеме регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).
 

Диоды выпрямительного моста VD5-VD8 необходимо установить на алюминиевые ребристые теплоотводы. В зарядном устройстве диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 одно переходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242-Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

radiohome.ru

Схема зарядного на 12 вольт

Представляем новую простую схему зарядного устройства для обычного автоаккумулятора на 12 В, которая по силам для самостоятельной сборки даже не слишком опытным радиолюбителем. Зарядное собрано на основе силового трансформатора 16-20 В 5 А, выпрямителя, системы слежения за напряжением аккумулятора и ключевым элементом – тиристором.

Постоянное напряжение с выпрямителя на диодах подаётся на заряжаемый аккумулятор через амперметр на 5 А и тиристор. Этот тиристор управляется другим, более слабым тиристором Q2, который отслеживает напряжение на заряжаемом АКБ. Оно снимается с резисторного делителя и стабилитрона. Как только напряжение полностью зарядившегося аккумулятора превысит порог открывания тиристора – он откроется и зажгётся зелёный светодиод “аккумулятор заряжен”. Одновременно тиристор Q1 закроется и зарядка прекратится.

Работа с зарядным устройством

  1. После сборки схемы выведите движок переменного резистора в нулевое положение. Прежде всего убедитесь, что без аккумулятора оба светодиода светятся.
  2. Подключите батарею и проследите, чтоб светодиод LED2 погас. Это значит пошёл заряд.
  3. Вращайте движок резистора вверх до тех пор, пока светодиод LED2 не засветится. Этим резистором выставляется порог отключения АКБ от зарядки, по мере достижения на аккумуляторе полного напряжения (около 14В).

Детали зарядного устройства на 12В

R1= 1 кОм 

R2= 1.2 кОм
R3= 470 Ом
R4= 470 Ом
R5= 10 кОм
D1= 1N4001
D2= 6.8V 0.5W стабилитрон
LD1= зелёный светодиод
TR1= 4.7 кОм переменник
LD2= красный светодиод
Q1= BTY79 или похожий на 10A
M1= 0-5A амперметр
Q2= тиристор C106D
C1= 10мкФ 25V
GR1= 50V 6A диодный мост
F= 5A предохранитель

Тиристоры можно ставить типа BT138-600, КУ202, Т122-10 (Q1) и любой маломощный на ток до 0,3А вместо Q2. Резисторы на 0,25 ватт. Диодный мост готовый, или составленный из 4-х диодов КД202, Д242, Д245. Конденсатор – 5-50 микрофарад. При всей своей простоте, эта схема ЗУ используется даже в некоторых промышленных зарядках. Но всё равно, обязательно ставьте предохранитель, так как от нештатных ситуаций (пробоя диодов или тиристора) никто не застрахован!

https://blogun.ru/cheerlessgdeje.html

serp1.ru

Схема простого зарядного устройства для АКБ

Привет всем, я за свою практику делал множество схем зарядных устройств для самых разных аккумуляторов, но в последнее время заметил, что несмотря на огромную базу схем в интернете, люди хотят видеть простую схему зарядного устройства для автомобильных аккумуляторов из очень доступных компонентов, поэтому я решил воплотить эту идею в жизнь.

Эта схема была снята из радиожурнала, которая стала очень популярной в последнее время, по сути это тиристорный регулятор напряжения, многие наверное будут осуждать мое решение об использовании именно этой схемы, ведь она не имеет узла контроля тока, защиты и многих других плюшек, которыми снабжены современные зарядные устройства.

Вы конечно правы, но именно эта схема была повторена радиолюбителями, в том числе и мною множество раз и зарекомендовала себя с лучшей стороны.

Итак, о схеме; она отличается от обычных линейных схем, обратите внимание на транзисторы Q1 и Q2, на их базе собран генератор импульсов, то есть аккумулятор по сути заряжается импульсами тока, в этом можно убедиться подключив осциллограф, такой режим работы имеет множество плюсов.

Первый из них заключается в том, что силовой элемент схемы работает не в линейном, а в ключевом режиме, следовательно, нагреваться будет меньше, и ещё импульсная зарядка может быть полезной для консульфатации аккумулятора, а значит такая зарядка в теории может восстанавливать АКБ.

Генератор импульсов собран на маломощной комплементарной паре, можно использовать буквально любые маломощные транзисторы, например наши КТ 361 и КТ 315. Выходной ток может доходить до 10 ампер, следовательно с ее помощью можно эффективно заряжать аккумуляторы с ёмкостью до 100 ампер\часов.

Диодный мост нужен с запасом, советую использовать диоды ампер на 15-20, я ставил готовую сборку на 30 ампер. Сетевой понижающий трансформатор должен обеспечивать выходное напряжение не менее 15 или 16 вольт и соответствующий ток.

Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора,  например аккумулятор на 60 ампер\часов эффективный ток заряда должен быть в районе 6 ампер и т.д.

В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант. Мне повезло и обмотки трансформатора оказались медными, а не алюминиевыми как это бывает с бюджетными бесперебойниками.

Порывшись в старом хламе мне удалось найти только один тиристор, но к сожалению и тот оказался нерабочим, по идее можно собрать аналог тиристора, но я решил использовать обычный транзистор типа империи MJE13009 и всё прекрасно заработало.

переделал на транзистор

Печатная плата получилась довольно компактной, кстати исходный файл платы доступен для скачивания в конце статьи. Транзисторы и диодный мост устанавливают на радиатор, конструкцию также желательно дополнить кулером.  Индикаторы поставил стрелочные, амперметр на 1 ампер, но после замены шунта он стал отображать ток до 10 ампер, вольтметр на 15 вольт.

Хотел всё это дело собрать в корпусе от блока питания компьютера но на данный момент работаю над несколькими проектами и времени попросту нет, но в дальнейшем обязательно займусь изготовлением корпуса.

Выходное напряжение регулируется от чистого ноля. Процесс зарядки автомобильных аккумуляторов происходит следующим образом, включаем зарядное устройство в сеть и вращением переменного резистора добиваемся на выходе 14 и 14.4 вольт выходного напряжения.

Это напряжение полностью заряженного автомобильного аккумулятора, дальше подключаем зарядку к аккумулятору не забывая соблюдать полярность, то есть плюс к плюсу, а минус к минусу.

По мере заряда аккумуляторной батареи ток будет снижаться и в конце процесса значение будет близким к нулю, этим заряд можно считать завершенным.

Плохо то, что схема лишена защиты от коротких замыканий, может спасти только предохранитель, также отсутствует функция защиты от переполюсовки питания, но все это можно дополнить и позже, было бы желание))).

Плата в формате .lay; скачать…

Автор; АКА КАСЬЯН

xn--100—j4dau4ec0ao.xn--p1ai

Недорогое зарядное устройство 12.6 Вольта 3 Ампера

Буквально совсем недавно я выкладывал пару обзоров зарядных устройств, но так получилось, что случайно ко мне попало еще одно. К сожалению оно также на 12.6 Вольт (3S сборка литиевых аккумуляторов), но я решил, что обзор может быть полезен из-за низкой цены. Увы, не все так, как хотелось бы, но об этом уже в обзоре.

Было заказано 10 штук зарядных устройств, на момент заказа цена была $8.13, то ли акция была, то ли продавец цену сейчас поднял, не знаю. Чтобы не было проблем с таможней, заказал двумя заказами.
Любопытно что упаковки были разные, видно коробки были те, что попались под руку, но упаковано было плотно.

В любом случае пришло все, каждое зарядное упаковано в отдельную картонную коробку, кабели лежали отдельно.

В комплект входит собственно зарядное устройство и кабель питания.

Из десяти кабелей один попался с вилкой у которой плоские штыри, хотя в заказе было указано — EU. Не критично, но неприятно.
А вот второй нюанс куда интереснее. В описании лота указано — Liitokala 12.6 В 3A зарядное устройство. Если насчет 12.6 и 3 все понятно, то вот насчет Литокала возникли некоторые вопросы. В принципе, насколько мне известно, Литокала не производит подобных зарядных устройств. Но на зарядных устройствах присутствует наклейка Liitokala, причем оригинально, в одной коробке были, в другой нет. Хотя если смотреть на фото, то можно понять, что разницы между ними никакой нет, вернее разница только в наклейке.

Корпус — привычный «брусок» черного цвета, на одной стороне расположен разъем подключения кабеля питания, на другой кабель для подключения к потребителю. Разъем 5.5/2.1мм.
Со стороны кабеля находится светодиод индикации режима работы.

Но меня интересовало это зарядное не только само по себе, а и в сравнении с тем, что я обозревал ранее.
Напомню, зарядное устройство с теми же заявленными характеристиками, 12.6 Вольта 3 Ампера, на вид также почти такое же, корпус чуть больше. Ссылка на обзор, чтобы понимать о чем идет речь.

Справа обозреваемое, слева то, что я разбирал ранее. Даже здесь видны некоторые отличия.

Зарядные устройства я покупал не себе, потому перед разборкой пришлось спросить товарища, не против ли он, если я его разберу для обзора, так как половинки корпуса склеены. Возражений не последовало, потому разобрал.

Внутри отличий гораздо больше. Как минимум у предыдущего трансформатор имеет магнитопровод большего размера, на фото это не так заметно, мешает скотч. Хуже изоляция радиаторов, вернее она есть в небольшом количестве только на радиаторе транзистора.

Ну а входной фильтр. Справа обозреваемый экземпляр, диодный мост попроще, дросселя нет, предохранитель обычный.

На выходе ситуация немного лучше. Хотя нет, точнее сказать — не сильно отличается от предыдущего, также два конденсатора и также нет дросселя по выходу. И кстати, как и у предыдущего есть место под вторую диодную сборку.

Вынимаем плату из корпуса для более тщательного осмотра, так как еще при первом взгляде мне показалось, что отличий больше.

1. Входные диоды 1N4007, фильтр отсутствует, зато конденсатор емкостью 82мкФ. Даже с учетом что реальная емкость китайских конденсаторов обычно занижена, все равно нормально для зарядного мощностью 35-40 Ватт.
2. Транзистор 8N65, вполне нормально для такой мощности.
3. Помехоподавляющий конденсатор правильный, потому безопасность в основном упирается упирается в отсутствие изоляции радиаторов и защитных прорезей в плате.
4. Выходная диодная сборка 10 Ампер 100 Вольт, нормально как по напряжению, так и по току. Конденсаторы 1000мкФ 25 Вольт, также вопросов особо нет, за исключением их «безродности».

На удивление плата спаяна даже аккуратно, конечно ей далеко до фирменных устройств, но в целом нормально.
Защитных прорезей нет, но расстояние между «горячей» и «холодной» сторонами довольно неплохое.

Первичная сторона блока питания. На всякий случай, если кому-то придется ремонтировать подобное зарядное.

А вот и первый косяк. Хотя по большому счету я даже не знаю как корректно назвать то, что я увидел.
Сверху на плате виден желтый помехоподавляющий конденсатор Х класса, так вот он не участвует в процессе. Не, ну бывает что паяют перемычки вместо дросселя, я уже к этому давно привык, но впаять конденсатор и не использовать его.
На фото я обозначил как запаян термистор и предохранитель, видно что конденсатор (справа) ни с чем не соединен. Странное решение 🙂

Как и в прошлый раз меня куда больше интересует вторичная сторона, так как первичная обычно имеет настолько маленькие отличия от других, что ее уже можно по памяти рисовать.
Как и предыдущие зарядные устройства, схема основана на операционном усилителе LM358, никаких «умных» контроллеров и в помине нет.

Вся электроника это ШИМ контроллер 6853K09, его подключение идентично контроллерам — 63D39, 63D12, и все они очень похожи на FAN6862. А также ОУ LM358, классика дешевых зарядных устройств.

Перечертил схему, хотя в данном случае по сути это компиляция из схемы блока питания, и предыдущего зарядного устройства 12.6 Вольта 1 Ампер, которые я описывал ранее, но с некоторыми отличиями.
Позиционные номера компонентов совпадают со схемой, по крайней мере в большинстве случаев 🙂

Сходство выходной части ну очень большое со схемой этого зарядного, а в какой то мере схема даже проще. Но в любом случае обе схемы гораздо проще, чем у предыдущего варианта 3 Ампера зарядного. Там было двойное питание и при желании можно было получить почти нулевое потребление когда зарядное не подключено к сети.

Схемотехника выходной части также примитивна, синий — стабилизация напряжения, красный — тока, синий — индикация, зеленый — опорное напряжение.
Это один из самых простых вариантов зарядных устройств, проще только на базе LM317 или резистора, но второй вариант не используется с литиевыми батареями (по крайней мере попадается крайне редко).

Первые тесты по моей методике тестирования зарядных устройств.
1. Выходное напряжение на холостом ходу заметно завышено, примерно по 40мВ на элемент. Это означает, что каждый элемент будет заряжаться до 4.24, а не до 4.20 Вольта. В таком варианте больше шансов получить срабатывание платы защиты аккумуляторной сборки. У предыдущего варианта было 20мВ превышение.
2. Собственный ток потребления без сети составляет 11мА, у предыдущего 7мА, а у 1А версии 14мА. Но у предыдущей версии 3 Ампера можно этот ток заметно снизить, у обозреваемого это сделать заметно сложнее, хотя и реально.
3. Ток заряда 3.23 Ампера, что почти на 10% больше заявленного. По большому счету ничего страшного в этом нет, просто аккумуляторы зарядятся чуть быстрее, но в моем случае повышенный ток «вылез боком».
4. Переключение индикации с красного на зеленый происходит при 359мА, что немного больше чем стандартная 1/10 от исходного тока. Не критично.
5, 6. Ток заряда через 5 и через 10 минут после срабатывания индикации. Как и следовало из схемы, данное зарядное не умет отключать аккумуляторы по завершении процесса, продолжая оставлять их под током. Для типичного сценария зарядил/отключил это неважно, но на неделю я бы не стал оставлять.

Следующий тест под нагрузкой, как всегда проверяем две вещи:
1. Нагрев.
2. Уход напряжения после прогрева.

Электронная нагрузка в таком тесте подключается до шунта чтобы зарядное не переходило в режим стабилизации тока (хотя в итоге все равно светил красный индикатор), и ток нагрузки выбирается таким, какой был измерен в предыдущем тесте.

Напряжение после получасового прогрева заметно убежало от исходного. Конечно по завершении заряда падает и нагрев, но сначала зарядное доведет напряжение батареи до 12.7 Вольта, а после остывания снизит до 12.68. Хотя стоп, почему снизит, без нагрузки на выходе было 12.72, потому даже скорее повысит. Жаль нет подстроечного резистора для коррекции.

На графике виден уход напряжения при нагреве. У предыдущего 3 Ампера зарядного уход был 0.005 Вольта! Как говорится — почувствуйте разницу.

С нагревом также картина не очень веселая. Сначала температура корпуса и компонентов после получасового прогрева.

А теперь через 1 час 14 минут. Самая высокая температура зарегистрирована в районе обмотки трансформатора, более 100 градусов.
Я бы не сказал что все так уж плохо, так как зарядное работает обычно час-два, максимум три, дальше обычно аккумулятор заряжается и нагрев падает. Кроме того, на начальном этапе нагрев будет немного меньше, так как выходная мощность зарядного меньше. Например на каждом аккумуляторе 3.8 Вольта, в сумме выходит 3.8х3х3.2=36,5 Ватта, а почти в самом конце заряда (в этом режиме я проводил тест) — 4,2х3х3,2=40,3, на 10 процентов больше.

Температура отдельных компонентов в конце теста —
Входной диодный мост — 74.5
Высоковольтный транзистор — 86.3
Трансформатор — 94.8
Обмотка трансформатора — 102.8
Выходная диодная сборка — 99.9
Выходные конденсаторы — 82.4

Термограмма с двух ракурсов.

На мой взгляд проблема перегрева кроется в нескольких вещах и первая — малый запас по мощности трансформатора. Вторая — завышенный выходной ток, почти 10% это немало. Я считаю, что стоит снизить его хотя бы до заявленного значения, а в идеале опустить до 2.8 Ампера. В таком варианте работать должно нормально.
Как и в прошлый раз (в обзоре 1 А зарядного) я советую изменить номиналы делителя. В данном случае либо увеличить R20, либо уменьшить R22. Так как уменьшить проще чем увеличить, то лучше сделать именно так, например припаяв параллельно резистор номиналом 8.2-10кОм. Чем меньше сопротивление резистора, тем меньше будет выходной ток.

Выводы просты. Главное преимущество данного зарядного — цена, дешевле мне пока не попадалось. Как вы понимаете, цена определяется обычно качеством сборки и работы. А в данном случае производитель явно экономил почти на всем. Но даже в таком варианте зарядное работает, но я бы советовал его немного доработать. Сама по себе доработка проста, самая большая сложность это аккуратное вскрытие.
Но в любом случае к Литокале данные изделия имеют примерно такое же отношение как я к балету 🙂

Вот и все. Надеюсь что обзор был полезен, как всегда жду комментариев и вопросов.

www.kirich.blog

Обзор схем зарядных устройств

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

www.radiolub.ru

Схема зарядного устройства для любых типов аккумуляторов

В данной статье представлена схема зарядного устройства предназначеного для заряда любых типов аккумуляторов — кислотных и щелочных аккумуляторных батарей напряжением от 1,5 до 15 вольт, током заряда от 50 миллиампер до 10 ампер. Возможен заряд как маленьких пальчиковых, так и больших свинцовых автомобильных и других стартерных аккумуляторных батарей.

Устройство имеет схему стабилизации зарядного тока. По мере заряда аккумуляторной батареи, ток заряда не падает как у обычных зарядных устройств, а поддерживается на установленном уровне, что позволяет качественно заряжать аккумуляторную батарею.

Кроме того, устройство имеет схему разряда — «тренажа» аккумуляторной батареи, предназначенную для предотвращения процесса сульфатации (химического разложения) пластин аккумуляторной батареи. В отдельных случаях, возможно восстановление аккумуляторных батарей, которые уже подвержены сульфатации.

>

Заряд аккумуляторной батареи производится прямоугольными импульсами частотой 50 Герц (положительной полуволной сетевого напряжения). В случае необходимости тренировки АКБ от сульфатации, включается схема «тренажа», которая используется во время действия отрицательной полуволны сетевого напряжения. Для кислотных аккумуляторных батарей ток разряда выбирается приблизительно в десять раз меньше тока заряда, ступенчато, с помощью тумблеров S2 (0,1А) и S3 (0,25А). При включении обоих тумблеров, ток разряда соответственно будет равен 0,35А. Таким образом, заряд кислотной аккумуляторной батареи с одновременным использованием схемы разряда должен производиться токами 1А, 2,5А и 3,5А соответственно. При выключенных переключателях схема разряда не действует.

Схема стабилизации тока заряда работает следующим образом: На резисторе R6, с помощью транзистора VT3 через делитель напряжения R3, R4 измеряется падение напряжения, которое прямо пропорционально протекающему через резистор току. Транзистор VT3 в свою очередь управляет силовыми транзисторами VT1 и VT2. При увеличении тока, протекающего через резистор R6, ток, протекающий по пути коллектор – эмиттер транзистора VT3 увеличивается, что приводит к уменьшению тока, протекающего по пути база VT2 – эмиттер VT1 и как следствие – к уменьшению тока коллектор – эмиттер транзисторов VT1 и VT2 – тока заряда АКБ. При уменьшении тока происходит противоположный процесс. Фактически схема, в любой момент времени стремится поддерживать на каждом из p-n переходов база — эмиттер транзисторов VT1 и VT2 разность потенциалов приблизительно равную 0,6 вольта. Это позволяет заряжать аккумуляторы не синусоидальным током, а импульсами прямоугольной формы.

Схема разряда — «тренажа» аккумуляторной батареи, предназначенная для предотвращения процесса сульфатации пластин аккумуляторной батареи собрана на транзисторе VT4. Принцип её работы следующий: Во время действия отрицательной полуволны сетевого напряжения, что соответствует отсутствию тока заряда, ток, протекающий по пути — верхний вывод вторичной обмотки трансформатора (11), стабилитроны VD2 и VD3, резистор R2, база-эмиттер транзистора VT4, открывает этот транзистор. Происходит разряд аккумуляторной батареи по пути: +АКБ, коллектор-эмиттер VT4, резисторы R10 и R11, -АКБ. Ток разряда, как было написано ранее определяется значением сопротивления резисторов R10 и R11. При изменении полуволны питающего напряжения, транзистор закрывается и происходит заряд аккумуляторной батареи от схемы заряда.
Стабилитроны VD2 и VD3 предназначены для предотвращения разряда АКБ по вышеописанной цепи в случае пропадания напряжения сети. Это связано с тем, что в таком случае транзистор может оказаться открытым током, проходящим от +АКБ, через вторичную обмотку трансформатора.

Следует учесть, что значения тока разряда через резисторы R10 и R11, соответствуют аккумуляторной батареи с напряжением 12 вольт (по закону Ома).

В качестве амперметра возможно применение любого микро-миллиамперметра со шкалой кратной десяти (максимальное показание будет равно – 10 ампер). На приведённой схеме используется прибор на 1 миллиампер. В связи с тем, что ток заряда импульсный, резистор R13 подбирается экспериментальным путём при помощи поверенного и откалиброванного осциллографа. Осциллографом измеряется амплитуда зарядных импульсов на резисторе R6. При амплитуде 0,5 вольт, прибор должен показывать зарядный ток в 5 ампер. Резистор R12 должен быть в 10 раз меньше резистора R13, и предназначен для увеличения чувствительности амперметра в 10 раз (при измерении малых токов заряда – до 1 ампер). Переключение на большую чувствительность производится с помощью кнопки Кн1.

В качестве вольтметра может использоваться любой вольтметр или микро-миллиамперметр со шкалой до 15 – 20 единиц. На приведённой схеме используется прибор на 200 микроампер. Резистор R14 подбирается в соответствии с выбранным прибором по принципу делителя напряжения (как расчитать делитель в статье — Делитель напряжения). В случае использования стандартного вольтметра на 15 – 20 вольт, резистор из схемы исключается.

В качестве трансформатора возможно применение любого силового трансформатора обеспечивающего ток нагрузки до 12 ампер, с выходным напряжением 20 – 25 вольт. Это может быть двухкатушечный силовой трансформатор мощностью не менее 180 ватт от старого черно-белого телевизора с перемотанной вторичной обмоткой (Как расчитать и перемотать трансформатор в статье — Силовой трансформатор, расчёт трансформатора). Диоды VD4 и VD5 – силовые, рассчитанные на прямой ток до 15 ампер, устанавливаются на радиатор (корпус устройства) с изоляцией от корпуса устройства. Лучший вариант – использовать силовой выпрямительный мост типа КЦ419 (импортный аналог – МВ5010) с соединёнными вместе нейтральными выводами, как результат – не нужна изоляция, компактность и запас по току до 25 ампер.

Схема разработана так, что силовые транзисторы VT1 и VT2 можно крепить непосредственно на металлический корпус зарядного устройства без использования радиаторов охлаждения и дополнительной изоляции коллекторов. В ходе эксплуатации выяснилось, что при токах более 5 Ампер, силовые транзисторы без радиаторов значительно греются. Для того, чтобы не нагромождать конструкцию радиаторами и повысить надёжность, вместо двух силовых транзисторов 2Т908А я использовал два составных транзистора КТ827А. Транзисторы VT3 и VT4 – типа КТ815 с любым буквенным индексом, крепятся на корпус устройства через слюдяную прокладку. Не плохо было бы для лучшего охлаждения силовых транзисторов использовать теплопроводную пасту (Что такое «Теплопроводная паста» в статье «Инструменты радиолюбителя»).

В качестве резистора R6 применяются десять параллельно соединённых резисторов типа ПЭВ-10 на 10 Ом. Возможны и другие варианты, например нихромовый провод, но этот вариант достаточно неудобный — необходима тепло и электроизоляция, подбор длины и диаметра таким, чтобы не было излишнего нагрева.

На зарядное устройство печатная плата не проектировалась потому, что основная часть элементов прикручивается к корпусу. Делать для него плату — бессмысленное занятие. Для нескольких резисторов типа МЛТ и стабилитронов я использовал две монтажные панельки. Все соединения выполняются многожильным монтажным проводом.

Устройство компактно монтируется в металлическом корпусе размером 130х150х210 мм от маломощного блока питания,можно и больших размеров,корпус может быть любой.

В случае отключения питания, или пропадания сети, заряжаемая аккумуляторная батарея напряжением 12 вольт разряжается через резистор R8 током 6 миллиампер, а батарея напряжением 1,5 вольта – током 500 микроампер. Это очень слабый ток для стартерных аккумуляторов, но для исключения нежелательного разряда, особенно для таких батарей, как батареи «пальчиковых» аккумуляторов, после зарядки необходимо отсоединить клеммы от аккумуляторов.

Многие «глупые» автолюбители проверяют зарядные устройства путем «добывания искры» замыкая между собой выходные клеммы, а это часто приводит к выходу зарядных устройств из строя. Данное зарядное устройство защищено от подобной глупости за счет схемы стабилизации зарядного тока. При замыкании клемм, искра появляется, но в доли микросекунд (определяется быстродействием P-N перехода транзисторов) схема ограничивает ток, протекающий через элементы схемы до значения, установленного регулятором. Фактически устройству без разницы, ток течёт через аккумулятор или через замкнутые клеммы, его значение будет одинаковым в обоих случаях. Но долго держать замкнутые клеммы не надо, силовые транзисторы будут сильно греться от падения почти всего отдаваемого трансформатором напряжения на их переходах.

И не забывайте правило опытных автолюбителей: «Чем меньше ток заряда, тем дольше, но главное — качественнее зарядится аккумулятор!».

meanders.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *