Сопротивление аэродинамическое – ?

Аэродинамическое сопротивление автомобиля

В процессе проектирования и создания конструкторами очень тщательно прорабатывается аэродинамика автомобиля, поскольку она оказывает значительное влияние на технические показатели модели.

При движении автомобиля большая часть мощности силовой установки уходит на преодоление сопротивления, создаваемого воздухом. И правильно созданная аэродинамика автомобиля позволяет уменьшить это сопротивление, а значит на борьбу с противодействием находящего воздушного потока потребуется затратить меньше мощности, и соответственно – топлива.

Измерение аэродинамики автомобиля проводится для изучения сил, создаваемых воздушным потоком и воздействующих на транспортное средство. И таких сил несколько – подъемные и боковые, а также лобовое сопротивление.

Лобовое сопротивление и коэффициент Сх

По большей части все работы с кузовом авто направлены на преодоление лобового сопротивления, поскольку именно эта сила самая значительная.

Движение потоков воздуха

За основу при расчетах берется сила сопротивления воздуха. Для вычисления результата используются такие данные как плотность воздуха, площадь поперечной проекции авто, коэффициент аэродинамического сопротивления (Сх)  — это важнейший показатель в аэродинамике автомобиля. При этом на силу сопротивления в значительной мере влияет также скорость движения. Так, увеличение скорости вдвое будет сопровождаться повышением сопротивлением в 4 раза. Скорость один из мощных факторов увеличения расхода.

Например, для хорошо обтекаемого авто с площадью проекции 2 ми коэффициентом 0,3 при движении на скорости 60 км/ч для преодоления сопротивления воздуха необходимо 2,4 л.с., а при скорости 120 км/ч уже 19,1 л.с. Разница расхода топлива при таких условиях достигает 30% на 100 км.

Если вам, в данный момент, требуется максимальная экономия топлива, необходимо придерживаться постоянной скорости около 60 км/ч. В этом режиме движения расход будет минимальным даже у авто с большим Cx.

Рассмотрим все по-простому. У воздуха есть своя плотность, причем немалая. При движении автомобилю приходится проходить через имеющиеся воздушные массы, при этом создается поток, который обтекает кузов. И чем легче авто будет «резать» воздушную массу, тем меньше он затратит на это энергии.

Но не все так просто. Во время движения перед авто создается область увеличенного давления (машина сжимает воздушную массу), то есть спереди образуется такой себе невидимый барьер, осложняющий «разрезание» воздушной массы.

Также после обтекания кузова происходит отрыв воздушного потока от поверхности, что становиться причиной появления завихрений и разрежения за авто. В сочетании с повышенным давлением возникающее разрежение еще больше увеличивает сопротивление.

Поскольку повлиять на плотность воздуха невозможно, то конструкторам остается только вносить коррективы в две другие расчетные составляющие – площадь авто и коэффициент аэродинамического сопротивления.

Но уменьшить проекцию авто не представляется особо возможным без ущерба для полезных пространств кузова (просто невозможно сделать авто меньше, чем он есть), поэтому остается только изменение коэффициента Сх.

Этот коэффициент устанавливается экспериментальным путем (в аэродинамической трубе) и характеризует он соотношение лобового сопротивления к скоростному напору и площади поперечного сечения кузова. Величина его безразмерная.

Аэродинамическая труба

Наименьший коэффициент аэродинамического сопротивления имеет каплевидное тело. При движении в воздушной массе такое тело плавно перед собой разводит поток, не создавая области повышенного давления, а имеющийся «хвост» позволяет за собой сомкнуть поток без обрывов и завихрений, то есть разрежение тоже отсутствует. Получается, что воздух просто обтекает тело, создавая минимальное сопротивление. Для такого тела коэффициент Сх составляет всего 0,05.

Конструкторам, работая с аэродинамикой автомобиля добиться, таких показателей пока не удается. И все потому, что при движении сопротивление создается несколькими факторами:

  • Формой кузова;
  • Трением потока о поверхности при обтекании;
  • Попаданием потока в подкапотное пространство и салон.

Поэтому для современных авто коэффициент аэродинамического сопротивления считается отличным, если его значение ниже 0,3. К примеру, у Peugeot 308 коэффициент составляет 0,29, у Audi A2 он равен 0,25, а у Toyota Prius – 0,26. Но стоит отметить, что это расчетные показатели в идеальных условиях. На практике же во время движения на авто воздействуют множество разнообразных факторов, которые негативным образом сказываются на сопротивлении кузова.

Примечательно, что на коэффициент оказывает наибольшее влияние не передок авто, а его задняя часть. И виной этому становится создание разрежения и завихрений в результате отрыва потока от кузова. Поэтому конструкторы по большей части занимаются приданием необходимой формы именно задней части.

Коэффициент сопротивления Volkswagen XL1 составляет всего 0,19

Снизить коэффициент Сх позволяет также уменьшение количества выступающих частей, причем везде на авто (бока, крыша, днище, передок), а тем элементам, которые не удается убрать с поверхности придается максимально возможная обтекаемая форма.

Подъемная и прижимная сила

В результате неравномерного обтекания потоком воздуха автомобиля с разных сторон возникает разница в скорости его движения.

Действующие подъемная и прижимная силы

Автомобиль движется и рассекает поток воздуха, при этом часть этого потока уходит под авто и проходит под днищем, то есть движется практически по прямой. А вот верхней части потока приходится повторять форму кузова, и ей приходится проходить большее расстояние. Из-за этого возникает разница в скорости воздуха – верхняя часть движется быстрее нижней, проходящей под авто. А поскольку увеличение скорости сопровождается снижением давления, то под днищем образуется зона повышенного давления, которая приподнимает машину.

Проблем добавляет и лобовое сопротивление. Область повышенного давления воздушной массы перед машиной прижимает передок к дороге, в то время как разрежение и завихрения позади наоборот – способствуют приподнятию кузова. Подъемная сила, как и лобовое сопротивление, возрастает при увеличении скорости движения.

Негативным фактором от воздействия такой силы является ухудшение устойчивости авто при увеличении скорости и повышение вероятности ухода в занос.

Но эта сила может оказывать и положительное действие. При внесении корректив в конструкцию авто возможно преобразование подъемной силы в прижимную, которая будет обеспечивать лучшее сцепление с дорогой, устойчивость авто, его управляемость на высоких скоростях.

При этом для получения прижимной силы не требуется каких-либо отдельных решений. Все разработки, направленные на снижение коэффициента Сх также сказываются и на прижиме. К примеру, оптимизация формы задней части приводит к уменьшению завихрений и разрежения, из-за чего подъемная сила тоже снижается, а прижимная — повышается. Установка заднего спойлера действует таким же образом.

Уменьшение завихрений при установке спойлера

Боковые же силы при установлении аэродинамики автомобиля, особо в расчет не берутся, в силу того, что они не постоянны, а также значительного влияния на показатели авто не оказывают.

Но это все теория аэродинамики автомобиля. На практике все можно пояснить одним предложением — чем хуже аэродинамика, тем выше расход топлива.

Что ещё влияет на аэродинамику?

Конечно, конструкторы стараются по максимуму снизить сопротивление авто при движении и повысить прижимную силу. Но особенности эксплуатации авто и свой взгляд автовладельцев на внешние особенности машины вносят свои коррективы, причем в некоторых случаях – значительны.

Аэродинамическое сопротивление разных автомобилей в зависимости от скорости

К примеру, установка багажника на крышу, даже с аэродинамической формой увеличивает поперечную проекцию авто и сильно влияет на обтекаемость, это сразу сказывается на потреблении топлива.

Также расход повышается от езды с открытыми окнами и люком, использование защитных и декоративных обвесов, перевозка негабаритных грузов, выступающих за авто, нарушение положения конструктивных элементов, расположенных под днищем, повышение клиренса.

Но автовладелец также может и внести коррективы, которые положительно повлияют на аэродинамику автомобиля. К ним относится использование аэродинамических обвесов, установка спойлера, уменьшение клиренса.

autoleek.ru

Аэродинамическое сопротивление тел — эффекты отрыва потока. Сопротивления трения и давления

Несмотря на то что прилегающий к поверхности пограничный слой имеет толщину несколько миллиметров, характер потока в этом пограничном слое, где проявляются силы вязкого трения жидкости, в значительной мере влияет на режим всего потока. Возникновение сопротивления в двухмерном несжимаемом потоке можно объяснить только с помощью трения жидкости.

Образование пограничного слоя (переход от ламинарного состояния потока к турбулентному)

Эпюра распределения скорости потока в пограничном слое для простого случая продольного обтекания пластины показана на рисунке 1.

Рисунок 1 — Схематичное изображение пограничного слоя при обтекании пластины в продольном направлении (размеры по оси y сильно увеличены)

В этом случае скорость во внешнем потоке V а значит, и давление p постоянны. Обладающий вязким трением поток прилипает к поверхности стенки. Первоначально вектор скорости потока параллелен стенке, и поток находится в стационарном состоянии. Такой режим течения потока называется ламинарным. Толщина пограничного слоя, т.е. той области, в которой наблюдается влияние вязкого трения, увеличивается в направлении перемещения потока по закону:

					(1)

То есть толщина пограничного слоя δ увеличивается от переднего края обтекаемой поверхности к заднему, и это увеличение тем больше, чем меньше скорость набегающего потока V и больше коэффициент кинематической вязкости ν.

Стабильность ламинарного режима течения потока в пограничном слое достигается только при определенных условиях в отношении шероховатости поверхности. По мере увеличения длины обтекаемой поверхности по ходу потока x > xu наблюдается переход режима течения в пограничном слое в так называемое турбулентное состояние. Большое значение для такого перехода имеет число Рейнольдса. Для рассмотренного случая обтекания пластины, расположенной вдоль потока переход ламинарного режима течения в пограничном слое в турбулентный происходит при числе Рейнольдса

Rexu = Vxu/ν = 5·105,

зависящем от длины обтекаемой поверхности по ходу потока. Это относится только к случаю, когда отсутствует градиент давления вдоль пластины. При наличии градиента давления в направлении распространения потока уменьшение давления вызывает стабилизацию ламинарного пограничного слоя, в то время как увеличение давления ведет к очень быстрому переходу его в турбулентное состояние. Помехи ламинарному потоку, например, шероховатость стенок, ускоряют процесс перехода. В общем случае можно констатировать, что переход от ламинарного режима течения потока к турбулентному происходит в зоне минимального давления, если число Рейнольдса при этом имеет не слишком малое значение.

После перехода поток в принципе имеет нестационарное состояние. В нестационарной зоне поток хотя еще прилегает к стенке и параллелен ей, но к средней скорости u прибавляются скорости пульсаций u′, V′, w′ во всех трех направлениях осей координат. Для параллельной стенке компоненты скорости (см. рисунок 1) имеет силу следующее выражение:

				(2)

где

				(3)

Такой режим течения потока называется турбулентным. Вследствие пульсаций в пограничном слое происходит интенсивная диффузия. В результате этого дополнительного к касательному напряжению, возникающему из-за молекулярного трения (см. Свойства несжимаемых жидкостей, уравнение 1), добавляется касательное напряжение вследствие турбулентных взаимодействий:

						(4)

В этом уравнении u′ и v′ — скорости пульсаций соответственно в направлении осей координат х и у. Поперечная черта означает, что речь идет о средних за бесконечно малый промежуток времени значениях скоростей (пульсаций в соответствии с уравнением 3). τturb всегда имеет положительное значение. Следовательно, турбулентные пульсации действуют так же, как заметное повышение вязкости обтекающей среды. А значит, толщина пограничного слоя для показанной на рисунке 1 пластины в направлении распространения потока после точки перехода увеличивается быстрее, чем до нее. Закон изменения толщины пограничного слоя после перехода его в турбулентное состояние имеет вид:

						(5)

Из-за диффузии эпюра скоростей при турбулентном потоке в пограничном слое более выпуклая, чем при ламинарном потоке (см. рисунок 1).

Отрыв потока

Ламинарный и турбулентный режимы течения в пограничном слое сильно зависят от изменения давления во внешнем потоке. При возрастании давления в направлении движения потока, особенно вблизи стенки, может иметь место его значительное замедление и в связи с этим появление обратных потоков. Схематично это представлено на рисунке 2, из которого видно, что линия тока отрывается от стенки. Этот процесс называется отрывом. Для точки отрыва А имеет силу выражение
(du/dy)w = 0						(6)

Рисунок 2 — Схема отрыва потока от стенки в пограничном слое

По сравнению с ламинарным пограничным слоем турбулентный выдерживает более сильные повышения давления, не приводящие к его отрыву. Это объясняется тем, что благодаря присущей турбулентному состоянию потока диффузии близким к стенкам слоям подводится усиленный извне импульс. При понижении давления опасность отрыва потока отсутствует.

Сопротивление трения

При наличии градиента скорости вблизи стенки в любом месте обтекаемого тела (рисунок 3) вследствие молекулярной вязкости тангенциальное напряжение τw, определяемое уравнением 1 (см. статью Свойства несжимаемых жидкостей), передается от обтекающей среды на стенку.

Рисунок 3 — Схема для определения силы сопротивления трения (на примере двухмерного потока)

Если суммировать компоненты элементарных сил в направлении потока

						(7)

то получится так называемое сопротивление трения. До тех пор, пока не возникли отрывы потока, эта сила является одной из самых весомых составляющих общего аэродинамического сопротивления тела при двухмерном потоке, это хорошо поясняют два приведенных ниже примера.

Рисунок 4 дает представление об изменении аэродинамического сопротивления плоской пластины, установленной вдоль потока (см. рисунок 1).

Рисунок 4 — Полученная экспериментальным путем зависимость коэффициента сопротивления плоских пластин и крыловидных профилей от числа Рейнольдса:

1 — ламинарное состояние потока, обтекающего плоскую пластину; 2 — турбулентное состояние потока, обтекающего плоскую гладкую пластину

Чтобы характеристика носила более общий характер и не за

carspec.info

Сопротивление воздуха (аэродинамическое)

Автор: Юлиюс Мацкерле (Julius Mackerle)
Источник: «Современный экономичный автомобиль» [1]
47680 5

На расход топлива, в особенности при больших скоростях движения, значительное влияние оказывает сопротивление воздуха (аэродинамическое сопротивление), сила аэродинамического сопротивления пропорциональна квадрату скорости и рассчитывается по формуле

Pv = cx·S·v2·ρ/2,

где S – площадь фронтальной проекции автомобиля, м2; v – скорость движения автомобиля относительно воздуха, м/с; ρ – плотность воздуха, кг/м3; cх – коэффициент аэродинамического сопротивления.

Аэродинамическое сопротивление не зависит от массы автомобиля [2].

Площадь фронтальной проекции автомобиля определяется формой кузова и требованиям по обеспечению комфортного расположения водителя и пассажиров на сиденьях. Например, автомобиль большого класса может быть ниже, чем малого, так как сиденья у него зачастую располагаются ниже. У автомобиля малого класса из-за его небольшой массы и длины сиденья расположены выше над полом, и поэтому расстояние между передними и задними сиденьями меньше. Более прямое расположение водителя и пассажиров в автомобиле малого класса требует его большей высоты, но меньшей длины. Площади фронтальных проекций обоих автомобилей при этом почти одинаковы, но низкий и длинный кузов автомобиля большого класса аэродинамически более выгоден.

Мощность двигателя, необходимая для преодоления аэродинамического сопротивления, пропорциональна, следовательно, кубу скорости:

Nv = Pv·v/3600 (кВт),

где v — относительная скорость движения автомобиля, км/ч.

Коэффициент аэродинамического сопротивления, как видно из таблицы, представленной ниже, изменяется в широком диапазоне в зависимости от формы кузова автомобиля.

Аэродинамическое сопротивление различных автомобилей
Кузов автомобиля Коэффициент сопротивления воздуха cx Мощность, необходимая для преодоления аэродинамического сопротивления (кВт), при площади фронтальной проекции 2 м2 и скорости
40 км/ч 80 км/ч 120 км/ч
Открытый четырёхместный 0,7 – 0,9 1,18 – 1,47 9,6 – 11,8 31,0 – 40,5
Закрытый, с наличием углов и граней 0,6 – 0,7 0,96 – 1,18 8,0 – 9,6 26,4 – 30,8
Закрытый, с закруглением углов и граней 0,5 – 0,6 0,80 – 0,96 6,6 – 8,0 22,0 – 26,4
Закрытый понтонообразный 0,4 – 0,5 0,66 – 0,80 5,2 – 6,6 17,6 – 22,0
Закрытый, хорошо обтекаемый 0,3 – 0,4 0,52 – 0,66 3,7 – 5,2 13,2 – 17,6
Закрытый, аэродинамически совершенный 0,20 – 0,25 0,33 – 0,44 2,6 – 3,3 9,8 – 11,0
Грузовой автомобиль 0,8 – 1,5
Автобус 0,6 – 0,7
Автобус с хорошо обтекаемым кузовом 0,3 – 0,4
Мотоцикл 0,6 – 0,7

Коэффициент аэродинамического сопротивления устанавливается продувкой автомобиля или его макета в аэродинамической трубе или приближенно в ходе эксплуатационных испытаний. При испытаниях в аэродинамической трубе на макетах получаются менее точные значения, чем при тех же испытаниях на реальных автомобилях. Это вызвано тем, что на изменение сопротивления воздуха оказывают влияние неточности изготовления некоторых узлов и деталей автомобиля: ручек дверей, днища кузова, бамперов, зеркал заднего вида и т. д. Кроме того, значительное влияние на величину сх оказывает воздух, проходящий в кузов для охлаждения и вентиляции.

При больших скоростях движения автомобиля аэродинамическое сопротивление является преобладающим.

На рисунке ниже показано изменение мощностей, необходимых для преодоления сопротивления качению Nf и аэродинамического сопротивления Nv в зависимости от скорости v для автомобиля среднего класса. При скорости 60 км/ч мощности, необходимые для преодоления сопротивления качению и сопротивления воздуха, равны, что характерно для данного вида автомобилей. По сумме потребляемых мощностей можно убедиться в важности сопротивления воздуха. При скорости 80 км/ч мощность, затрачиваемая на его преодоление, в 4 раза больше, чем при скорости 40 км/ч, а при скорости выше, чем 120 км/ч, общая мощность, необходимая для движения, растет почти пропорционально кубу скорости автомобиля.

Мощность, затрачиваемая на преодоление сопротивлений движению
Масса автомобиля 1350 кг, площадь фронтальной проекции S автомобиля 2 м2; коэффициент сопротивления качению f равен 0,015; коэффициент аэродинамического сопротивления сх равен 0,456.

При определении мощности двигателя, необходимой для достижения максимальной скорости, большей той, которую обеспечивает номинальная мощность установленного на автомобиле двигателя, можно использовать без значительной ошибки следующее соотношение:

N2 = N1·(v2/v1)3,

где N2 – требуемая мощность, кВт; N1 – достигнутая максимальная мощность, кВт; v2 – требуемая скорость, км/ч; v1 – достигнутая максимальная скорость, км/ч.

Через точку X – максимальная мощность N1 при максимальной скорости v1 – проведена кривая зависимости мощности от куба скорости. Разница между этой кривой и линией мощности, требуемой для движения при максимальной скорости, незначительна.

Показанная сумма мощностей сопротивления качению Nf и аэродинамического сопротивления Nv представляет собой мощность сопротивления равномерному движению автомобиля по горизонтальному участку дороги при безветрии.

Последнее обновление 02.03.2012
Опубликовано 16.03.2011

Читайте также

  • Двигатель Стирлинга

    Двигатель Стирлинга является новым возможным источником механической энергии для привода автомобиля.

  • Аккумуляторы: плотность энергии

    Масса и размеры резервуара, бака или аккумулятора с энергоносителем, используемым для привода автомобиля, не должны быть большими.

Сноски

  1. ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. — М.: Машиностроение, 1987. — 320 с.: ил.//Стр. 110 — 114 (книга есть в библиотеке сайта). – Прим. icarbio.ru

Комментарии

icarbio.ru

Аэродинамическое сопротивление — Физическая энциклопедия

АЭРОДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ (лобовое сопротивление) — составляющая аэродинамич. силы RA, с к-рой газ (воздух) действует на движущееся в нём тело (см. Аэродинамические сила и момент). Возникает вследствие необратимого перехода кинетич. энергии тела в тепловую. А. с.- одна из важнейших аэродинамич. характеристик летат. аппарата, определяющих его лётно-техн. данные, в частности требуемую тягу двигат. установки. Оно зависит от формы и размеров тела, его ориентации к направлению движения (или к скорости набегающего потока), от скорости движения, а также от свойств и состояния среды, в которой движется тело.

Характеризуется А. с. безразмерным коэф. Сха (см. Аэродинамические коэффициенты ).А. с. является суммой проекций на ось распределённых по поверхности тела нагрузок, направленных по нормали (давление) и касательной (вязкое трение) к этой поверхности. Рассеяние кинетич. энергии и превращение её в тепловую происходит посредством образования вихрей, ударных волн, аэродинамического нагрева поверхности.

В идеальной, несжимаемой жидкости вихреобразо-вание и образование ударных волн невозможно, а поэтому, теоретически, не возникает и А. с. (см. Д’ Аламбера-Эйлера парадокс). Наличие вязкости в реальных средах приводит к А. с. трения, а также к отрыву потока от тела, влияющему на распределение давления по поверхности тела. Возникновение ударных волн изменяет величину и распределение давления по поверхности тела, а также сказывается на сопротивлении трения (напр., стимулирует переход от ламинарного течения к турбулентному). T. о., А. с. тела формируется в сложном взаимодействии перечисленных явлений, и вклад этих явлений в создание А. с. различен.

При дозвуковом течении осн. вклад в А. с. вносят сопротивление трения и отрыв потока с вихреобразованием, причём для хорошо обтекаемых тел (крылья, тонкие тела вращения при малых углах атаки и скольжения) — сопротивление трения, а для плохо обтекаемых — отрыв потока, вихреобразование. Режим и характер вязкого течения зависят от Рейнолъдса числа Re (рис. 1).

В области дозвукового течения, когда возникают локальные зоны, где местная скорость течения достигает, а затем и превышает скорость звука, Сха быстро растёт (рис. 2).

Рис. 1. Зависимость коэффициента аэродинамического сопротивления Сха от при дозвуковых скоростях.

Рис. 2. Зависимость Cxa от числа М при коэффициенте подъемной силы Cya = 0. Заштрихованная область — вклад волнового сопротивления, Mкр — значение числа Маха, при котором начинают возникать зоны со сверхзвуковой скоростью (M > 1).

А. с., обусловленное диссипацией кинетич. энергии летящего тела в ударных волнах, наз. волновым сопротивлением; оно вносит основной вклад в А. с. при больших сверхзвуковых скоростях для затупленных тел (например, спускаемых аппаратов). Часть А. с., связанную с созданием подъёмной силы, наз. индуктивным сопротивлением. Оно, также как и волновое, изменяет распределение давления в результате вихреобразования и отрыва потока. Сопротивление при нулевой подъёмной силе (для симметричного крыла — при a=0) иногда наз., в отличие от индуктивного, профильным сопротивлением. Тогда коэф. А. с. тела


где — коэф. сопротивления давления и трения, характеризующие профильное сопротивление, — коэф. волнового, — коэф. индуктивного сопротивления.

Осн. метод определения А. с.- аэродинамический эксперимент.

Лит.: Фабрикант H. Я., Аэродинамика, M., 1964; Лойцянский Л. Г., Механика жидкости и газа, 5 изд., M., 1978; Аржаников H. С., Мальцев В. H., Аэродинамика, M., 1952; Аржаников H. С., Садекова Г. С., Аэродинамика больших скоростей, M., 1965.

Ю. А. Рыжов.

      Предметный указатель      >>   

www.femto.com.ua

Соперник ветра — журнал За рулем

Вот с каким противником автомобиль имеет дело. Приопустим стекло, подставим ладонь ветру — ощутимо давит? Если менять угол, под которым ладонь атакует ветер, можно обнаружить и вертикальную силу — как на крыле самолета.

Силы вертикального и поперечного направлений, дестабилизирующие машину, важны не меньше сопротивления. Кому понравится автомобиль, на 250 км/ч выходящий из-под контроля! Он должен быть устойчивым, не рыскать, не «соскальзывать» в поворотах, при порывах бокового ветра, разъезде со встречной машиной, въезде в тоннель и т. п. Да еще иметь просторный салон при небольших габаритах и при этом отвечать эстетическим требованиям дизайнеров! Полностью рассчитать его обтекаемость, заранее все увязать, увы, невозможно. Машину доводят в аэродинамической трубе, затрачивая огромные деньги.

Между тем, мода заставляет людей покупать сомнительные «прибамбасы», влияющие на аэродинамику. Сечение псевдокрыла часто совсем не похоже на крыльевой профиль: нарисовавший его дизайнер думал только об изяществе линий! К счастью, большинство «жертв рекламы» быстрее 160–180 км/ч не ездит — и действие какого-нибудь безграмотного «антикрыла» мало ощутимо. Если же автомобиль быстроходнее, неосторожные игры с аэродинамическими предметами чреваты печальными последствиями.

Даже серьезные фирмы не застрахованы от ошибок. Помните первые шаги » Ауди ТТ»? Не сразу его «научили» крепко держаться за дорогу. Но у такой фирмы побольше возможностей устранять промахи, чем у частного владельца — у него в списке «расходных материалов» может оказаться жизнь.

Вычислить прижимающую силу крыла не просто: не владея основами этой науки, автомобилисты, случается, спорят до третьих петухов. Поэтому приведем простой пример из параллельной области техники. У бомбардировщика В-1В площадь крыла 181 м2. Взлетный вес — 216 тонн. Самолет сверхзвуковой, но взлетает-то при скорости меньше 300 км/ч. Значит, каждый квадратный метр крыла несет груз в 1,2 тонны. Но некоторые спортивные автомобили ездят и быстрее, — так что их обтекатели, спойлеры, антикрылья инженеры «доводят» весьма дотошно. Хорошее антикрыло площадью всего треть квадратного метра способно создать прижимающую силу в четыре центнера, а то и больше.

Но иной «гонщик» может купить высокоэффективное антикрыло, а поставить его неправильно — например чрезмерно вынесет назад. На высоких скоростях передняя ось машины разгружается, автомобиль может стать неуправляемым. Утешает, что зачастую «крыло» помещают в зону срыва («аэродинамическую тень» кузова), где оно практически не работает.

ЗАКОН «КВАДРАТА»

К счастью для загадочной русской души автомобилей, делающих 300 км/ч, у нас мало. Зато хватает тех, которым по плечу 180–200. А мысль о том, что «обвешанный» автомобиль на такой скорости может не послушаться руля, иные головы никогда не посещает. Зря что ли деньги уплачены на зависть соседям!

«Проколы» обтекаемости заявляют о себе громко лишь на высоких скоростях. Силы сопротивления воздуха растут пропорционально квадрату скорости потока — V2. Ведь затормаживая поток (например, плоским щитом, как на рис. 2), мы переводим его кинетическую энергию в дополнительное статическое давление. При плотности воздуха 1,3 кг/мз повышение давления от торможения потока («скоростной напор») составит 1,3.V2/2=0,65V2 Н/м2.

Чтобы определить силу давления потока на щит (то есть аэродинамическое сопротивление), остается лишь умножить полученное давление на площадь щита S. 

Допустим, S=1,8 м2 (лобовая площадь сопротивления «Жигулей»). Тогда скоростям 50, 100, 150 и 200 км/ч соответствуют силы сопротивления 226, 903, 2031 и 3611 Н — закон «квадрата». Удвоив скорость,учетверяем силу.

www.zr.ru

Аэродинамическое сопротивление — Большая советская энциклопедия

Аэродинами́ческое сопротивление

Лобовое сопротивление, сила, с которой газ (например, воздух) действует на движущееся в нём тело; эта сила направлена всегда в сторону, противоположную скорости, и является одной из составляющих аэродинамической силы. Знание Л. с. необходимо для аэродинамического расчёта летательных аппаратов, т. к. от него зависит, в частности, скорость движения при заданных тяговых характеристиках двигательной установки.

А. с. — результат необратимого перехода части кинетической энергии тела в тепло. Зависит А. с. от формы и размеров тела, ориентации его относительно направления скорости, значения скорости, а также от свойств и состояния среды, в которой происходит движение. В реальных средах имеют место: вязкое трение в пограничном слое (См. Пограничный слой) между поверхностью тела и средой, потери на образование ударных волн при около- и сверхзвуковых скоростях движения (Волновое сопротивление) и на вихреобразование. В зависимости от режима полёта и формы тела будут преобладать те или иные компоненты А. с. Например, для затупленных тел вращения, движущихся с большой сверхзвуковой скоростью, А. с. определяется в основном волновым сопротивлением. У хорошо обтекаемых тел, движущихся с небольшой скоростью, А. с. определяется сопротивлением трения и потерями на вихреобразование.

В аэродинамике А. с. характеризуют безразмерным аэродинамическим коэффициентом (См. Аэродинамические коэффициенты) сопротивления Cx, с помощью которого А. с. Х определяется как

где ρ плотность невозмущённой среды, v скорость движения тела относительно этой среды, S — характерная площадь тела. Коэффициент Cx тела заданной формы при известной ориентации его относительно потока зависит от безразмерных подобия критериев (См. Подобия критерии): М-числа (См. М-число), Рейнольдса числа (См. Рейнольдса число) и др. Численные значения Cx обычно определяют экспериментально, измеряя А. с. моделей в аэродинамических трубах (См. Аэродинамическая труба) и других установках, используемых при аэродинамическом эксперименте. Теоретическое определение А. с. возможно лишь для ограниченного класса простейших тел.

Ю. А. Рыжов.

Источник: Большая советская энциклопедия на Gufo.me

gufo.me

АЭРОДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ — Физический энциклопедический словарь

(лобовое сопротивление) сила, с к-рой воздух или др. газ действует на движущееся в нём тело; эта сила направлена всегда в сторону, противоположную направлению скорости тела, и явл. одной из составляющих аэродинамич. силы. Знание А. с. необходимо для аэродинамич. расчёта летат. аппаратов, т. к. от него зависит, в частности, скорость движения при заданных тяговых хар-ках двигат. установки.

А. с.— результат необратимого перехода части кинетич. энергии тела в теплоту. Зависит А. с. от формы и размеров тела, ориентации его относительно направления скорости, а также от св-в и состояния среды, в к-рой происходит движение. В реальных средах имеют место: вязкое трение в пограничном слое между поверхностью тела и средой, потери на образование ударных волн при около- и сверхзвук. скоростях движения (волновое сопротивление) и на вихреобразованне. В зависимости от режима полёта и формы тела будут преобладать те или иные компоненты А. с. Напр., для затупленных тел вращения движущихся с большой сверхзвук. скоростью, А. с. определяется в осн. волновым сопротивлением. У хорошо обтекаемых тел, движущихся с небольшой скоростью, А. с. определяется сопротивлением трения и потерями на вихреобразование. Разрежение, возникающее на задней торцевой поверхности обтекаемого тела, также приводит к возникновению результирующей силы, направленной противоположно скорости тела,— донного сопротивления, к-рое может составлять значит. часть А. с.

В аэродинамике А. с. Ха характеризуют безразмерным аэродинамическим коэффициентом сопротивления Сх:

где r? — плотность невозмущённой среды, v? — скорость движения тела относительно этой среды, S— характерная площадь тела. Коэфф. Сх тела заданной формы при известной ориентации его относительно потока зависит от безразмерных подобия критериев: Маха числа, Рейнольдса числа и др. Численные значения Сх обычно определяют экспериментально. Теор. определение А. с. возможно лишь для огранич. класса простейших тел. (см. ГИДРОДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ).

Источник: Физический энциклопедический словарь на Gufo.me

gufo.me

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *