380 вольт 400 ампер сколько киловатт – ( )

Содержание

Расчет мощности трехфазного автомата

Для расчета мощности номинала трехфазного автомата необходимо суммировать всю мощность электроприборов, которые будут подключены через него. Например, нагрузка по фазам одинакова:

L1 5000 W + L2 5000 kW + L3 5000W = 15000 W

Полученные ваты переводим в киловатты:

15000 W / 1000 = 15 kW

Полученное число умножаем на 1,52 и получаем рабочий ток А.

15 kW * 1,52 = 22,8 А.

Номинальный ток автомата должен быть больше рабочего. В нашем случае рабочий ток 22,8 А, поэтому мы выбираем автомат 25 А.

Номинал автоматов по току: 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100.

Уточняем сечение жил кабеля на соответствие нагрузке здесь.

Данная формула справедлива при одинаковой нагрузке по трем фазам. Если потребление по одной из фаз значительно больше, то номинал автомата подбирается по мощности этой фазы:

Например, нагрузка по фазам: L1 5000 W; L2 4000 W; L3 6000 W.

Ваты переводим в киловатты для чего 6000 W / 1000 = 6 kW.

Теперь определяем рабочий ток по этой фазе 6 kW * 4,55 = 27,3 А.

Номинальный ток автомата должен быть больше рабочего в нашем случае рабочий ток 27,3 А мы выбираем автомат 32 А.

В приведенных формулах 1,52 и 4,55 – коэффициенты пропорциональности для напряжений 380 и 220 В.

Материалы, близкие по теме:

electromontaj-st.ru

Таблица выбора сечения кабеля. Расчет сечения проводов и кабелей по току, мощности.

В таблице приведены данные мощности, тока и сечения кабелей и проводов, для расчетов и выбора кабеля и провода, кабельных материалов и электрооборудования.

В расчете применялись данные таблиц ПУЭ, формулы активной мощности для однофазной и трехфазной симметричной нагрузки.

Ниже представлены таблицы для кабелей и проводов с медными и алюминивыми жилами проводов.

Таблица выбора сечения кабеля по току и мощности с медными жилами
Сечение токопро водящей жилы, мм2 Медные жилы проводов и кабелей
Напряжение, 220 В Напряжение, 380 В
ток, А мощность, кВт ток, А мощность, кВт
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33,0
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75,9
50 175 38,5 145 95,7
70 215 47,3 180 118,8
95 260 57,2 220 145,2
120 300 66,0 260 171,6
Таблица выбора сечения кабеля по току и мощности с алюминивыми жилами
Сечение токопро водящей жилы, мм2 Алюминивые жилы проводов и кабелей
Напряжение, 220 В Напряжение, 380 В
ток, А
мощность, кВт
ток, А мощность, кВт
2,5 20 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11,0 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22,0 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4
95 200 44,0 170 112,2
120 230 50,6 200 132,0

Пример расчета сечения кабеля

Задача: запитать ТЭН мощностью W=4,75 кВт медным проводом в кабель-канале.
Расчет тока: I = W/U. Напряжение нам известно: 220 вольт. Согласно формуле протекающий ток I = 4750/220 = 21,6 ампера.

Ориентируемся на медный провод, потому берем значение диаметра медной жилы из таблицы. В колонке 220В — медные жилы находим значение тока, превышающего 21,6 ампера, это строка со значением 27 ампера. Из этой же строки берем Сечение токопроводящей жилы, равное 2,5 квадрата.

Расчет необходимого сечения кабеля по марке кабеля, провода

Число жил,
сечение мм.
Кабеля (провода)
Наружный диаметр мм.Диаметр трубы мм.Допустимый длительный
ток (А) для проводов и кабелей при прокладке:
Допустимый длительный ток
 для медных шин прямоугольного
 сечения (А) ПУЭ
ВВГВВГнгКВВГКВВГЭNYMПВ1ПВ3ПВХ (ПНД)Мет.тр. Дув воздухев землеСечение, шины ммКол-во шин на фазу
11х0,75      2,716201515123
21х1    
 
 2,81620171715х3210  
31х1,55,45,4   33,21620233320х3275  
41х2,55,45,7   3,53,61620304425х3340  
51х466   441620415530х4475  
61х66,56,5   55,51620507040х4625  
71х107,87,8   5,56,220208010540х5700  
81х169,99,9   78,2202010013550х5860  
91х2511,511,5   910,5323214017550х6955  
101х3512,612,6   1011323217021060х6112517402240
111х5014,414,4   12,513,2323221526580х6148021102720
121х7016,416,4   1414,84040270320100х6181024703170
131х9518,818,7   1617404032538560х8132021602790
141х12020,420,4     505038544580х8169026203370
151х15021,121,1     5050440505100х8208030603930
161х18524,724,7     5050510570120х8240034004340
171х24027,427,4     6365605 60х10147525603300
183х1,59,69,2  9  2020192780х10190031003990
193х2,510,510,2  10,2  20202538100х10231036104650
203х411,211,2  11,9  25253549120х10265041005200
213х611,811,8  13  25254260Допустимый длительный ток для
медных шин прямоугольного сечения
(А) Schneider Electric IP30
223х1014,614,6     25255590
233х1616,516,5     323275115
243х2520,520,5     323295150
253х35
22,4
22,4     4040120180Сечение, шины ммКол-во шин на фазу
264х1  89,5   16201414123
274х1,59,89,89,210,1   2020192750х56501150 
284х2,511,511,511,111,1   2020253863х575013501750
294х503031,3     636514522580х5100016502150
304х7031,636,4     8080180275100х5120019002550
314х9535,241,5     8080220330125х5135021503200
324х12038,845,6     100100260385Допустимый длительный ток для
медных шин прямоугольного сечения (А) Schneider Electric IP31
334х15042,251,1     100100305435
344х18546,454,7     100100350500
355х1  9,510,3   16201414
365х1,510101010,910,3  20201927Сечение, шины ммКол-во шин на фазу
375х2,5111111,111,512  20202538123
385х412,812,8  14,9  2525354950х56001000 
395х614,214,2  16,3  3232426063х570011501600
405х1017,517,5  19,6  4040559080х590014501900
415х162222  24,4  505075115100х5105016002200
425х2526,826,8  29,4  636595150125х5120019502800
435х3528,529,8     6365120180    
445х5032,635     8080145225    
455х9542,8      100100220330    
465х12047,7      100100260385    
475х15055,8      100100305435    
485х18561,9      100100350500    
497х1  1011   16201414    
507х1,5  11,311,8   20201927    
517х2,5  11,912,4   20202538    
5210х1  12,913,6   25251414    
5310х1,5  14,114,5   32321927    
5410х2,5  15,617,1   32322538    
5514х1  14,114,6   32321414    
5614х1,5  15,215,7   32321927    
5714х2,5  16,918,7   40402538    
5819х1  15,216,9   40401414    
5919х1,5  16,918,5   40401927    
6019х2,5  19,220,5   50502538    
6127х1  1819,9   50501414    
6227х1,5  19,321,5   50501927    
6327х2,5  21,724,3   50502538    
6437х1  19,721,9   50501414    
6537х1,5  21,524,1   50501927    
6637х2,5  24,728,5   63652538    

www.eti.su

1 ампер — это сколько киловатт мощности? Сколько ампер в 1 киловатте? 10 ампер сколько киловатт

1 ампер — это сколько киловатт мощности?

Сколько ампер в 1 киловатте?

Ким Чен Ын [264K]

7 месяцев назад

Эти две величины не совсем соизмеримы (совместимы) в Киловаттах измеряется мощность, а вот в Амперах сила тока.

Но если надо, то высчитать можно, напряжение мы знаем 220-ь Вольт (или 380-т, надо смотреть по месту).

В одном киловатте 1000а Ватт, делим 1000-у на 220-ь, получаем 4,54545454545, если округлить (точная цифра просто не нужна, для этих расчётов), то 4,5-ь Ампер в 1000-е Ваттах (одном киловатте).

То есть амперы высчитываются путём деления Ватт на Вольты.

Один ампер равен 0,22-м киловаттам (см. выше), для сети 220-ь Вольт и соответственно один амер равен 0,38-и Киловаттам, если сеть 380-т Вольт.

Формула для расчёта не сложная, вот она

«I», это те самые амперы которые мы вычилсяем.

«Р», в данной формуле, это Ватты.

«U», Вольты.

Всё, подставляем известные значения в формулу и производим расчёты.

Ещё более простой вариант, это воспользоваться специальной таблицей, вот одна из них,

для ознакомления.

автор вопроса выбрал этот ответ лучшим

в избранное ссылка отблагодарить

Torn [-50]

«Формула для расчёта не сложная, вот она» при этом вы ее написали не правильно. P=UIcosF (кВт), S=I*U (кВА) — 3 месяца назад

СТЭЛС [15.9K]

8 месяцев назад

Ампер может быть в киловатте, только как «составляющая» и сам по себе без напряжения не существует.

Для того что бы ответить на этот вопрос, нужна еще одна характеристика — величина напряжения. Так для однофазной сети 220 вольт и трехфазной 380 вольт, ампераж будет разным, так как меняется напряжение.

Если например на розетке (или вилке) квартирной электрической сети написано 16 ампер это означает допустимую нагрузку по силе тока, которую может дать потребитель мощностью 16 х 220 = 3520 ватт, или 3,5 киловатта.

По этой же формуле вычисляем и ответ на вопрос.

Для однофазной сети 220 вольт —

1 ампер — это 220 ватт (или 0,22 киловатта)

В 1 киловатте 4,54545 Ампера

Для трехфазной сети 380 вольт —

1 ампер — это 380 ватт (или 0,380 киловатта)

В 1 киловатте 2,63157 Ампера

в избранное ссылка отблагодарить

geos77 [16.4K]

Для трёхфазной сети мощность составляет сумму мощностей отдельных фаз, по этому 1 ампер в трёхфазной сети это не 380 ватт. — 3 месяца назад

С С С Р [7.4K]

8 месяцев назад

Всё зависит от напряжения, на самом деле.

Один и тот же ампер с автомобильного двенадцативольтового аккумулятора — это одно, а дома из розетки — совсем другое.

Мощность потребляемая (ватты, киловатты…) очень просто вычисляется — множим ток (в Амперах) на напряжение (в Вольтах). Если в розетке у нас положенные 220 Вольт, то потребитель с током 1 Ампер потребляет 220 (220*1) Ватт, то есть, 0,22 кВт.

Старые (советского образца) бытовые вилки и розетки рассчитывались на максимальный ток в 6 Ампер. Сейчас обычно на 10 Ампер. Превышать эти значения категорически не рекомендуется, даже запрещается — пожароопасно.

в избранное ссылка отблагодарить

Torn [-50]

ога…силовая сеть на 16 амперных автоматах строится, а розетки рассчитаны на 10….нуну — 3 месяца назад

ясмин [4K]

3 месяца назад

Ампер — это единица измерения силы тока. Эта электрическая величина входит в формулу расчета мощности любого электроприбора. Зная приложенное напряжение, умножаем его на силу тока и получаем величину мощности.

Так же можно вычистить силу тока по известной мощности и напряжению. Потребляемая мощность указывается в паспорте на электроприборы.

Напряжение, применяемое в быту 220 или 380 В

Мощность делим на приложенное напряжение и получаем силу тока, протекающего через данный прибор. Мощность обозначают ВА.

Часто на элементах, которые используются в электрических цепях указывают на какой ток они рассчитаны, например розетки, автоматы. Например автомат на 10 ампер, зная напряжение можем высчитать мощность нагрузки, которую выдержит этот автомат. 10 А умножаем на 220 В получаем 2200 ВА мощности.

1 Ампер -0,22 Киловатта мощности.

в избранное ссылка отблагодарить postscriptum [4.1K]

2 недели назад

Корректно было бы спросить — если есть оборудование в 1 Квт мощностью, то сколько оно потребляет ампер? Например, есть у нас утюг с приведенной выше мощностью (а в ваттах это — 1000), в розетке, соответственно, ток переменный, с напряжением (в вольтах) 220 и частотой (в герцах) — 50. Ампер используется для измерения силы тока, ко

10i5.ru

50 квт сколько ампер 3 фазной линии. Как производится расчет автоматического выключателя

На приведенном упрощенном графике, по горизонтальной шкале указаны номиналы тока автоматов, по вертикальной шкале, значение активной мощности при однофазном питании 220 Вольтрассчет для напряжение 380 Вольт и/или трехфазного питания будет значительно отличаться и приведенный график для других, кроме 220 Вольт и однофазное электропитание, мощностей недействителен. . Для выбора подходящего для выбранной рассчетной мощности автомата, достаточно провести горизонталь от выбранной слева мощности до пересечения с зеленым столбиком, посмотрев в основание которого можно выбрать номинал автомата для указанной мощности. Нужную время токовую характеристику и количество полюсов можно выбрать, перейдя по картинке на таблицу выбора автоматов кривой C, как наиболее универсальной и часто применяемой характеристики.

Таблица выбора автоматов по мощности

Расширенная таблица выбора автоматов по мощности, включая трехфазное подключение звездой и треугольником позволяет подобрать соответствующий потребляемой мощности автоматический выключатель. Для работы с таблицей, то есть для выбора автомата, соответствующей мощности, достаточно, зная эту мощность , выбрать в таблице значение большее или равное этой мощности значение. В левой крайней колонке вы увидете номинальный ток автомата, соответствующего выбранной мощности. Вверху, над выбранной мощностью, вы увидете тип подключения автомата, количество полюсов и использумое напряжение. В случае, если выбранной мощности соответствуют несколько значений мощности в таблиценапример мощность 6,5 кВт может быть получена однофазным подключением автомата 32А, подключением трехполюсного автомата 6А трехфазным треузольником и подключением четырехполюсного автомата 10А трехфазной звездой , следует выбрать доступный вам способ подключения. То есть выбирая автомат для мощности 6,5 кВт при отсутствии трехфазного электропитания, нужно выбирать только из однофазного подключения, где будут доступны однополюсный и двухполюсный автомат 32А. Переход по ссылке в таблице для определенной, соответствующей возможностям подключения, мощности осуществляется на соответствующий по номинальному току и количеству полюсов автоматический выключатель с время токовой характеристикой C. В том случае, если нужна друга характеристика отсечки, можно выбрать автомат другой характеристики, ссылки на которые находятся на странице каждого автомата.

Выбор автоматов по мощности и подключению

Однофазное
Вид подключения => Однофазное
вводный
Трехфазное
треугольником
Трехфазное
звездой
Полюсность автомата => Однополюсный
автомат
Двухполюсный
автомат
Трехполюсный
автомат
Четырехполюсный
автомат
Напряжение питания => 220 Вольт 220 Вольт 380 Вольт 220 Вольт
V V V V
Автомат 1А > 0.2 кВт 0.2 кВт 1.1 кВт 0.7 кВт
Автомат 2А > 0.4 кВт 0.4 кВт 2.3 кВт 1.3 кВт
Автомат 3А > 0.7 кВт 0.7 кВт 3.4 кВт 2.0 кВт
Автомат 6А > 1.3 кВт 1.3 кВт 6.8 кВт 4.0 кВт
Автомат 10А > 2.2 кВт 2.2 кВт 11.4 кВт 6.6 кВт
Автомат 16А > 3.5 кВт 3.5 кВт 18.2 кВт 10.6 кВт
Автомат 20А > 4.4 кВт 4.4 кВт 22.8 кВт 13.2 кВт
Автомат 25А > 5.5 кВт 5.5 кВт 28.5 кВт 16.5 кВт
Автомат 32А > 7.0 кВт 7.0 кВт 36.5 кВт 21.1 кВт
Автомат 40А > 8.8 кВт 8.8 кВт 45.6 кВт 26.4 кВт
Автомат 50А > 11 кВт 11 кВт 57 кВт 33 кВт
Автомат 63А > 13.9 кВт 13.9 кВт 71.8 кВт 41.6 кВт
Пример подбора автомата по мощности
Одним из способов выбора автоматического выключателя, является выбор автомата по мощности нагрузки. Первым шагом, при выборе автомата по мощности , определяется суммарная мощность подключаемых на постоянной основе к защищаемой автоматом проводке/сети нагрузок. Полученная суммарная мощность увеличивается на коэффициент потребления, определяющий возможное временное превышение потребляемой мощности за счет подключения других, первоначально неучтенных электроприборов.
Как пример можно привести кухонную электропроводку, рассчитанную на подключение электрочайника (1,5кВт), микроволновки (1кВт), холодильника (500 Ватт) и вытяжки (100 ватт). Суммарная потребляемая мощность составит 3,1 кВт. Для защиты такой цепи можно применить автомат 16А с номинальной мощностью 3,5кВт. Теперь представим, что на кухню поставили кофемашину (1,5 кВт) и подключили к этой же электропроводке. Суммарная мощность снимаемая с проводки при подключении всех указанных электроприборов в этом случае составит 4,6кВт, что больше мощности 16 Амперного автовыключателя, который, при включении всех приборов просто отключится по превышению мощности и оставит все приборы без электропитания, Включая холодильник. Для снижения вероятности возникновения таких ситуаций и применяется повышающий коэффициент потребления. В нашем случае, при подключении кофемашины мощность увеличилась на 1,5кВт, а коэффициент потребления стал 1,48 (округляем до 1,5). То есть для возможности подключения дополнительного прибора мощностью 1,5кВт рассчетную мощность сети надо умножить на коэффициент 1,5 получив 4,65кВт возможной к получению с проводки мощности.
При выборе автомата по мощности возможно так же применение понижающего коэффициента потребления. Этот коэффициент определяет отличие потребляемой мощности, в сторону снижения, от суммарной рассчетной в связи с неиспользованием одновременно всех, заложенных в рассчет электроприборов. В ранее рассмотренном примере кухонной проводки с мощностью 3,1кВт, понижающий коэффициент будет равен 1, так как чайник, микроволновка, холодильник и вытяжка могут быть включены одновременно, а в случае рассмотрения проводки с мощностью 4,6кВт (включая кофемашину), понижающий коэффициент может быть равен 0,67, если одновременное включение электрочайника и кофемашины невозможно (например, всего одна розетка на оба прибора и в доме нет тройников)
Таким образом, при первом шаге определяется рассчетная мощность защищаемой проводки, и определяются повышающий (увеличение мощности при подключении новых электроприборов) и понижающий (невозможность одновременного подключения некоторых электроприборов) коэффициенты. Для выбора автомата предпочтительно использовать мощность, полученную умножением повышающего коэффициента на рассчетную мощность, при этом естественно учитывая возможности электропроводки (сечение провода должно быть достаточным для передачи такой мощности).

Номинальная мощность автомата

Номинальная мощность автомата, то есть мощность, потребление которой в защищаемой автоматическим выключателем проводке не приведет к отключению автомата рассчитывается в общем случае по формуле , что можно описать фразой => «Мощность = Напряжение умноженное на Силу тока умноженное на косинус Фи», где напряжение это переменное напряжение электросети в Вольтах, сила тока это ток, протекающий через автомат в Амперах и косинус фи — это значение тригонометрической функции Косинус для угла фи (угол фи — это угол сдвига между фазами напряжения и тока). Так как в большинстве случаев выбор автомата по мощности производится для бытового применения, где сдвига между фазами тока и напряжения, вызываемого реактивными нагрузками типа электродвигателей, практически нет, то косинус близок 1 и мощность можно приближенно рассчитать как напряжение умноженное на ток.
Так как мощность уже определена, то из формулы мы получаем ток, а именно ток, который соответствует рассчетной мощности путем деления мощ

electrmaster.ru

Выбор автомата по мощности нагрузки и сечению провода

Содержание статьи

Выбор автомата по мощности нагрузки

Для выбора автомата по мощности нагрузки необходимо рассчитать ток нагрузки, и подобрать номинал автоматического выключателя больше или равному полученному значению. Значение тока, выраженное в амперах в однофазной сети 220 В., обычно превышает значение мощности нагрузки, выраженное в киловаттах в 5 раз, т.е. если мощность электроприемника (стиральной машины, лампочки, холодильника) равна 1,2 кВт., то ток, который будет протекать в проводе или кабеле равен 6,0 А(1,2 кВт*5=6,0 А). В расчете на 380 В., в трехфазных сетях, все аналогично, только величина тока превышает мощность нагрузки в 2 раза.

Можно посчитать точнее и посчитать ток по закону ома I=P/U —  I=1200 Вт/220В =5,45А. Для трех фаз напряжение будет 380В.

Можно посчитать еще точнее и учесть cos φ — I=P/U*cos φ.

 

Коэффициент мощности

это безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.
Численно коэффициент мощности равен косинусу этого фазового сдвига или cos φ

Косинус фи возьмем из таблицы 6.12 нормативного документа СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»

Таблица 1. Значение Cos φ в зависимости от типа электроприемника

Тип электроприемникаcos φ
Холодильное  оборудование
предприятий торговли и
общественного питания,
насосов, вентиляторов и
кондиционеров воздуха
при мощности
электродвигателей, кВт:
до 10,65
от 1 до 40,75
свыше 40,85
Лифты и другое
подъемное оборудование
0,65
Вычислительные машины
(без технологического
кондиционирования воздуха)
0,65
Коэффициенты мощности
для расчета сетей освещения
следует принимать с лампами:
люминесцентными0,92
накаливания1,0
ДРЛ и ДРИ с компенсированными ПРА0,85
то же, с некомпенсированными ПРА0,3-0,5
газосветных рекламных установок0,35-0,4

Примем наш электроприемник мощностью 1,2 кВт. как бытовой однофазный холодильник на 220В, cos φ примем из таблицы 0,75 как двигатель от 1 до 4 кВт.
Рассчитаем ток I=1200 Вт / 220В * 0,75 = 4,09 А.

Теперь самый правильный способ определения тока электроприемника — взять величину тока с шильдика, паспорта или инструкции по эксплуатации. Шильдик с характеристиками есть почти на всех электроприборах.

Автоматические выключатели EKF

Общий ток в линии(к примеру розеточной сети) определяется суммированием тока всех электроприемников. По рассчитанному току выбираем ближайший  номинал автоматического автомата в большую сторону. В нашем примере для тока 4,09А это будет автомат на 6А.

 

 

ВАЖНО!

Очень важно отметить, что выбирать автоматический выключатель только по мощности нагрузки является грубым нарушением требований пожарной безопасности и может привести к возгоранию изоляции кабеля или провода и как следствие к возникновению пожара. Необходимо при выборе учитывать еще и сечение провода или кабеля.

По мощности нагрузки более правильно выбирать сечение проводника. Требования по выбору изложены в основном нормативном документе для электриков под названием ПУЭ (Правила Устройства Электроустановок), а точнее в главе 1.3. В нашем случае, для домашней электросети, достаточно рассчитать ток нагрузки, как указано выше, и в таблице ниже выбрать сечение проводника, при условии что полученное значение ниже длительно допустимого тока соответствующего его сечению.

Выбор автомата по сечению кабеля

Рассмотрим проблему выбора автоматических выключателей для домашней электропроводки более подробно с учетом требований пожарной безопасности.Необходимые требования изложены главе 3.1 «Защита электрических сетей до 1 кВ.», так как напряжение сети в частных домах, квартирах, дачах равно 220 или 380В.

Расчет сечения жил кабеля и провода

 

Напряжение 220В.

– однофазная сеть используется в основном для розеток и освещения.
380В. – это в основном сети распределительные – линии электропередач проходящие по улицам, от которых ответвлением подключаются дома.

Согласно требованиям вышеуказанной главы, внутренние сети жилых и общественных зданий должны быть защищены от токов КЗ и перегрузки. Для выполнения этих требований и были изобретены аппараты защиты под названием автоматические выключатели(автоматы).

 

Автоматический выключатель «автомат»

это механический коммутационный аппарат, способный включать, проводить токи при нормальном состоянии цепи, а также включать, проводить в течение заданного времени и автоматически отключать токи в указанном аномальном состоянии цепи, таких, как токи короткого замыкания и перегрузки.

 

Короткое замыкание (КЗ)

э- лектрическое соединение двух точек электрической цепи с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать в результате нарушения изоляции токоведущих элементов или механического соприкосновения неизолированных элементов. Также, коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания.

 

Ток перегрузки

– превышающий нормированное значение длительно допустимого тока и вызывающий перегрев проводника.Защита от токов КЗ и перегрева необходима для пожарной безопасности, для предотвращения возгорания проводов и кабелей, и как следствие пожара в доме.

 

Длительно допустимый ток кабеля или провода

– величина тока, постоянно протекающего по проводнику, и не вызывающего чрезмерного нагрева.

Кабели ВВГнг с медными жилами

Величина длительно допустимого тока для проводников разного сечения и материала представлена ниже.Таблица представляет собой совмещенный и упрощенный вариант применимый для бытовых сетей электроснабжения, таблиц № 1.3.6 и 1.3.7 ПУЭ.

Сечение
токо-
проводящей
жилы, мм
Длительно допустимый
ток, А, для проводов
и кабелей с медными жилами.
Длительно допустимый
ток, А, для проводов
и кабелей с алюминиевыми жилами.
1,519
2,52519
43527
64232
105542
167560
259575
3512090
50145110

Выбор автомата по току короткого замыкания КЗ

Выбор автоматического выключателя для защиты от КЗ (короткого замыкания) осуществляется на основании расчетного значения тока КЗ в конце линии. Расчет относительно сложен, величина зависит от мощности трансформаторной подстанции, сечении проводника и длинны проводника и т.п.

Из опыта проведения расчетов и проектирования электрических сетей, наиболее влияющим параметром является длинна линии, в нашем случае длинна кабеля от щитка до розетки или люстры.

Т.к. в квартирах и частных домах эта длинна минимальна, то такими расчетами обычно пренебрегают и выбирают автоматические выключатели с характеристикой «C», можно конечно использовать «В», но только для освещения внутри квартиры или дома, т.к. такие маломощные светильники не вызывают высокого значения пускового тока, а уже в сети для кухонной техники имеющей электродвигатели, использование автоматов с характеристикой В не рекомендуется, т.к. возможно срабатывание автомата при включении холодильника или блендера из-за скача пускового тока.

Выбор автомата по длительно допустимому току(ДДТ) проводника

Выбор автоматического выключателя для защиты от перегрузки или от перегрева проводника осуществляется на основании величины ДДТ для защищаемого участка провода или кабеля. Номинал автомата должен быть меньше или равен величине ДДТ проводника, указанного в таблице выше. Этим обеспечивается автоматическое отключение автомата при превышении ДДТ в сети, т.е. часть проводки от автомата до последнего электроприемника защищена от перегрева, и как следствие от возникновения пожара.

Провода ПУГНП и ШВВП

Пример выбора автоматического выключателя

Имеем группу от щитка к которой планируется подключить посудомоечную машину -1,6 кВт, кофеварку – 0,6 кВт и электрочайник – 2,0 кВт.

Считаем общую нагрузку и вычисляем ток.

Нагрузка = 0,6+1,6+2,0=4,2 кВт. Ток = 4,2*5=21А.

Смотрим таблицу выше, под рассчитанный нами ток подходят все сечения проводников кроме 1,5мм2 для меди и 1,5 и 2,5 по алюминию.

Выбираем медный кабель с жилами сечением 2,5мм2, т.к. покупать кабель большего сечения по меди не имеет смысла, а алюминиевые проводники не рекомендуются к применению, а может и уже запрещены.

Смотрим шкалу номиналов выпускаемых автоматов — 0.5; 1.6; 2.5; 1; 2; 3; 4; 5; 6; 8; 10; 13; 16; 20; 25; 32; 40; 50; 63.

Автоматический выключатель для нашей сети подойдет на 25А, так как на 16А не подходит потому что рассчитанный ток (21А.) превышает номинал автомата 16А, что вызовет его срабатывание, при включении всех трех электроприемников сразу. Автомат на 32А не подойдет потому что превышает ДДТ выбранного нами кабеля 25А., что может вызвать, перегрев проводника и как следствие пожар.

Сводная таблица для выбора автоматического выключателя для однофазной сети 220 В.

Номинальный ток автоматического выключателя, А.Мощность, кВт.Ток,1 фаза, 220В.Сечение жил кабеля, мм2.
160-2,80-15,01,5
252,9-4,515,5-24,12,5
324,6-5,824,6-31,04
405,9-7,331,6-39,06
507,4-9,139,6-48,710
639,2-11,449,2-61,016
8011,5-14,661,5-78,125
10014,7-18,078,6-96,335
12518,1-22,596,8-120,350
16022,6-28,5120,9-152,470
20028,6-35,1152,9-187,795
25036,1-45,1193,0-241,2120
31546,1-55,1246,5-294,7185

Сводная таблица для выбора автоматического выключателя для трехфазной сети 380 В.

Номинальный ток
автоматического
выключателя, А.
Мощность, кВт.Ток, 1 фаза 220В.Сечение жил
кабеля, мм2.
160-7,90-151,5
258,3-12,715,8-24,12,5
3213,1-16,324,9-31,04
4016,7-20,331,8-38,66
5020,7-25,539,4-48,510
6325,9-32,349,2-61,416
8032,7-40,362,2-76,625
10040,7-50,377,4-95,635
12550,7-64,796,4-123,050
16065,1-81,1123,8-124,270
20081,5-102,7155,0-195,395
250103,1-127,9196,0-243,2120
315128,3-163,1244,0-310,1185
400163,5-207,1310,9-393,82х95*
500207,5-259,1394,5-492,72х120*
630260,1-327,1494,6-622,02х185*
800328,1-416,1623,9-791,23х150*

* — сдвоенный кабель, два кабеля соединенных паралельно, к примеру 2 кабеля ВВГнг 5х120

Итоги

При выборе автомата необходимо учитывать не только мощность нагрузки, но и сечение и материал проводника.

Для сетей с небольшими защищаемыми участками от токов КЗ, можно применять автоматические выключатели с характеристикой «С»

Номинал автомата должен быть меньше или равен длительно допустимому току проводника.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Понравилась статья?

Поделиться с друзьями:

Подпишитесь на новые

volgaproekt.ru

63 ампера 3 фазы сколько киловатт, 220 вольт перевести в квт

 Название нашей статьи несколько странно, особенно если вдуматься в соизмеримость приведенных в заголовке величин, ведь по сути мы хотим сопоставить значения электрического тока с мощностью. Все без ничего, но такая конвертация невозможна без еще одной составляющей, без напряжения, которая как раз и определяет ключевое значение для мощности.

Но не будем начинать нашу статью с нагромождений «сложностей», что говорится с места в карьер, а разложим все по полочкам, чтобы пришло понимание качественного и количественного значения величин. Такое понимание намного важнее сухих фактов к запоминанию, ведь один раз поняв, вы сможете всегда восстановить ход событий, даже не помня мелких особенностей протекания процесса, они сами выстроятся в логический и правильный ряд…

Что такое электрический ток, в чем он измеряется или откуда появились Амперы

 Начнем мы совсем не с определения электрического тока, как и до этого еще надо дойти. Начнем мы с самых низов или азов, это кому как угодно. Проводники, чаще всего это металлы, обладают определенной структурой с электронами вращающихся вокруг атомов на «высоких» орбитах, что позволяет при незначительных воздействиях (тепло, свет, радиация…) выбивать эти электроны с орбиты. В итоге электроны могут довольно легко переходить от одного атома металла к другому. То есть в проводнике электроны могу свободно перемещаться одни туда, другие сюда, в некой хаотичности, словно при броуновском движении. Образуется некое электронное облако, но четкого направления движения электронов в нем нет. Так вот, если же с разных стороны проводника обеспечить разность потенциалов, скажем подключением элемента питания, то образуется направленное движение электронов. Итак, именно направленное движение электронов и называется электрическим током. Электроны перемещаются к плюсовому полюсу, хотя при указании направления электрического тока всегда руководствуются тем, что ток течет от плюса к минусу, что по факту как вы уже поняли, не совсем корректно. То есть получается, электроны направляются к плюсу, а вектор электрического тока к минусу. Так уж повелось. Теперь, когда мы знаем что такое электрический ток, необходимо каким-то образом фиксировать его значение, то есть измерять.
 Измеряется сила тока в амперах. Не будем подводить что и как получилось в этом случае, когда ток получил именно эти единицы измерения, скажем лишь что к ним причастен Андре Ампер, и электромагнитная сила…
 Итак, если между двумя проводниками с пренебрежительно малой площадью и длиной 1 метр, расположенных между собой на расстоянии 1 метр в вакууме при постоянном токе возникнет сила в 2*10-7 ньютона, то  в проводниках как раз и будет течь ток в 1 А.

Здесь из самого важного надо понять 2 вещи. Первое, что вокруг проводника с электрическим током образуется магнитное поле, с помощью которого как раз и меряют силу тока. А второе, это то, что сила электрического тока это величина мгновенная, то есть она берется в конкретное время, а не за период времени. Скажем в проводнике может протекать 5 секунд назад ток в 5 А, в настоящее время 10 А, а через еще 5 секунд 3 А. То есть ток измеряется сейчас и здесь. По сути, такую величину можно сравнить с силой наших мышц, для того чтобы вам было более понятно. Скажем, вначале мышцы были  расслаблены, а затем напряглись. Также и ток, может меняться от 0 до максимума. И нас в этом случае не столько интересует время, за которое изменился ток или тонус наших мышц, как конечные показатели. То есть электрический ток в Амперах это количественный показатель, а не качественный, когда работа проделана, ток имеется определенной силы, но за какое время он вырос до своей величины это не важно. Здесь более важно количество электронов которое прошло или проходит в данный момент. Именно количество электронов и создает тот самый ток – количественный показатель. А вот что на счет качества этого тока, то есть на счет потенциала с каким электроны стремятся преодолеть сопротивления, это уже качественный а не количественны показатель, который мы затронем в следующем нашем абзаце.

Что такое мощность, в чем она измеряется или откуда появились Киловатты

 Итак, что на счет мощности и Киловатов, в которых она измеряется, то здесь все несколько иначе… По сути мгновенная мощность это количество электронов, взятое с учетом их потенциала. То есть с учетом напряжения.

Как перевести Амперы в Киловатты

Именно такое произведения количества на качество способно отразить всю имеющуюся мощность, которая обеспечивается не только определенным количеством электронов проходящих в проводнике, но и их потенциалом. Здесь напряжение является качественным показателем, который также учитывается при расчете мощности. Что же, теперь не трудно понять, что мощность это произведения тока на напряжения.

P=UI

 Если быть до конца объективным, то в игру иногда вступает и поправочный коэффициент, который зависит от индуктивности проводника и изменения скорости тока, то есть его частоты. (cos φ). Влияет это следующим образом. В самом начале возрастания напряжения при его подаче (постоянный ток) или полуволне возрастания этого напряжения, когда ток переменный, происходит образование магнитного поля, которое в свою очередь влияет на рост этого самого напряжения. То есть масло масляное, напряжение порождает магнитное поле, а поле влияет на напряжение. В итоге, пока напряжение не вырастет до номинального, происходит этот процесс влияния магнитного поля. Можно сказать, устанавливается баланс между влиянием магнитного поля на напряжения и влиянием напряжения на магнитное поле. В этом случае при возрастании напряжения магнитное поле задерживает его потенциал, в итоге напряжение возрастает плавно, а не мгновенно. То же самое при отключении тока (постоянный ток) или полуволне  на спаде (переменный ток). Напряжение падает, магнитное поле меняется и тем самым влияет вновь на напряжение. В этом случае напряжение дольше остается с большим потенциалом, чем изначально поступает в проводник. Если кратко, что в этих процессах происходит трансформация энергии в магнитное поле, а потом из магнитного поля в электрический ток. Причем это влияние в большей степени зависит от скорости изменения магнитного поля и от индуктивности проводника, то есть от того, что наиболее актуально влияет на образование магнитного поля.
В итоге, с учетом этого, формула мощности будет записана так…

P=UI cos φ

В большинстве случаев обывателями этот поправочный коэффициент не учитывается, так как он более применим для мощных производственных электродвигателей и чего-то аналогичного.
 Что же, теперь не трудно вычислить зависимость мощности от тока.

Как перевести Амперы в Киловатты для мгновенной мощности (пример)

 Из формулы выше становится понятно, что I = P/U. То есть Амперы равны Вт, разделить на вольты. Если вы возьмете эти величины и именно в этих значениях, то есть Амперы, Вт, и вольты, то у вас получится корректный перевод одного показателя в другой. Для того чтобы вам было понятно на все 100 приведем пример. Скажем, у нас чайник потребляет 2 КВт и подключен к напряжению в 220 вольт. Какой же ток протекает в проводе? По умозаключениях, которые достигнуты в абзаце выше получаем.
I=P/U=2000/220=9.09А. То есть чайник потребляет ток более 9 Ампер, когда он включен.

Перевод Ампер в Киловатты для напряжения в 12 вольт, 220 вольт и 380 вольт (таблица)

Так как чаще всего в нашей жизни фигурируют напряжения на 12 вольт в машине, на 220 вольт в розетке и 380 вольт на промышленных предприятиях, то именно используя эти напряжения, мы и приводим таблицу конвертации тока, то есть Ампер в КВт. К этим справочным данным может обратиться тот, кому лень считать по выше приведенной нами формуле.

Особенно эта информация будет актуальна при выборе проводов под определенный ток и автоматических выключателей, так называемых автоматов.

Все это важно при выборе сечения проводов и при выборе номинал автоматов. Об этом в статье «Расчет и выбор сечения медного и алюминиевого провода, кабеля по мощности потребляемой нагрузкой».

Подводя итог о том, как перевести Амперы в Киловатты

 Наша статья получилась не такая уж и короткая, как хотели бы многие. Быть может кто-то сможет даже нас упрекнуть, мол необходимо было не тянуть резину, а сказать сразу как переводить Амперы в Киловатты да и делу край. В свое оправдание и ответ мы можем лишь аппелировать к тому, что хотели как лучше, то есть донести до читателя всю суть происходящих процессов, а значит и понимание что и откуда берется. В этом случае, если вы все поняли, то вам уже никогда не придется возвращаться к нашей статье, ведь то, что ты понял, остается с тобой навсегда!

stroyvolga.ru

Какой автомат нужно поставить на 15 кВт

Давно прошло время керамических пробок, которые вкручивались в домашние электрические щитки. В настоящее время широкое распространение получили различные типы автоматических выключателей, выполняющих защитные функции. Данные устройства очень эффективны при коротких замыканиях и перегрузках. Очень многие потребители еще не до конца освоили эти приборы, поэтому нередко возникает вопрос, какой автомат нужно поставить на 15 кВт. От выбора автомата полностью зависит надежная и долговечная работа электрических сетей, приборов и оборудования в доме или квартире.

Основные функции автоматов

Перед выбором автоматического защитного устройства, необходимо разобраться с принципами его работы и возможностями. Многие считают главной функцией автомата защиту бытовых приборов. Однако, это суждение абсолютно неверно. Автомат никак не реагирует на приборы, подключаемые к сети, он срабатывает лишь при коротких замыканиях или перегрузках.Эти критические состояния приводят к резкому возрастанию силы тока, вызывающему перегрев и даже возгорание кабелей.

Особый рост силы тока наблюдается во время короткого замыкания. В этот момент его величина возрастает до нескольких тысяч ампер и кабели просто не в состоянии выдержать подобную нагрузку, особенно, если его сечение 2,5 мм2. При таком сечении наступает мгновенное возгорание провода.

Поэтому от правильного выбора автомата зависит очень многое. Точные расчеты, в том числе и по мощности, дают возможность надежно защитить электрическую сеть.

Параметры расчетов автомата

Каждый автоматический выключатель в первую очередь защищает проводку, подключенную после него. Основные расчеты данных устройств проводятся по номинальному току нагрузки. Расчеты по мощности осуществляются в том случае, когда вся длина провода рассчитана на нагрузку, в соответствии с номинальным током.

Окончательный выбор номинального тока для автомата зависит от сечения провода. Только после этого можно рассчитывать величину нагрузки. Максимальный ток, допустимый для провода с определенным сечением должен быть больше номинального тока, указанного на автомате. Таким образом, при выборе защитного устройства используется минимальное сечение провода, присутствующее в электрической сети.

Когда у потребителей возникает вопрос, какой автомат нужно поставить на 15 кВт, таблица учитывает и трехфазную электрическую сеть. Для подобных расчетов существует своя методика. В этих случаях номинальная мощность трехфазного автомата определяется как сумма мощностей всех электроприборов, планируемых к подключению через автоматический выключатель.

Например, если нагрузка каждой из трех фаз составляет 5 кВт, то величина рабочего тока определяется умножением суммы мощностей всех фаз на коэффициент 1,52. Таким образом, получается 5х3х1,52=22,8 ампера. Номинальный ток автомата должен превышать рабочий ток. В связи с этим, наиболее подходящим будет защитное устройство, номиналом 25 А. Наиболее распространенными номиналами автоматов являются 6, 10, 16, 20, 25, 32, 40, 50, 63, 80 и 100 ампер. Одновременно уточняется соответствие жил кабеля заявленным нагрузкам.

Данной методикой можно пользоваться лишь в тех случаях, когда нагрузка одинаковая на все три фазы. Если же одна из фаз потребляет больше мощности, чем все остальные, то номинал автоматического выключателя рассчитывается по мощности именно этой фазы. В этом случае используется только максимальное значение мощности, умножаемое на коэффициент 4,55. Эти расчеты позволяют выбрать автомат не только по таблице, но и по максимально точным полученным данным.

electric-220.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о