Vvt двигатель: Dual VVT-i с системой VVT-iW

Содержание

Что такое Двигателя VVT-i

Эта система обеспечивает оптимальный момент впуска в каждом цилиндре для данных конкретных условий работы двигателя. VVT-i практически устраняет традиционный компромисс между большим крутящим моментом на низких оборотах и большой мощностью на высоких. Также VVT-i обеспечивает большую экономию топлива и настолько эффективно снижает выбросы вредных продуктов сгорания, что отпадает необходимость в системе рециркуляции выхлопных газов.

Двигатели VVT-i устанавливаются на всех современных автомобилях Toyota. Аналогичные системы разрабатываются и применяются рядом других производителей (например, система VTEC от Honda Motors). Система VVT-i разработки Toyota заменяет предыдущую систему VVT (2-ступенчатая система управления с гидравлическим приводом), используемую с 1991 г. на 20-клапанных двигателях 4A-GE. VVT-i используется с 1996 г. и управляет моментом открытия и закрытия впускных клапанов путем изменения передачи между приводом распредвала (ремнем, шестерней или цепью) и собственно распредвалом. Для управления положением распредвала используется гидравлический привод (двигательное масло под давлением).

В 1998 г. появился Dual («двойной») VVT-i, управляющий и впускными, и выпускными клапанами (впервые устанавливался на двигателе 3S-GE на RS200 Altezza). Также двойной VVT-i используется на новых V-образных двигателях Toyota, например, на 3,5-литровом V6 2GR-FE. Такой двигатель устанавливается на Avalon, RAV4 и Camry в Европе и Америке, на Aurion в Австралии и на различных моделях в Японии, в т. ч. Estima. Двойной VVT-i будет использоваться в будущих двигателях Toyota, в том числе новом 4-цилиндровом двигателе для нового поколения Corolla. Кроме того, двойной VVT-i используется в двигателе D-4S 2GR-FSE на Lexus GS450h.

За счет изменения момента открытия клапанов пуск и стоп двигателя практически незаметны, т. к. компрессия минимальна, а катализатор очень быстро нагревается до рабочей температуры, что резко снижает вредные выбросы в атмосферу. VVTL-i (расшифровывается как Variable Valve Timing and Lift with intelligence) Основанная на VVT-i, система VVTL-i использует распредвал, обеспечивающий также регулирование величины открытия каждого клапана при работе двигателя на высоких оборотах. Это позволяет обеспечить не только более высокие обороты и большую мощность двигателя, но и оптимальный момент открытия каждого клапана, что приводит к экономии топлива.

Система разработана при сотрудничестве с компанией Yamaha. Двигатели VVTL-i устанавливаются на современных спортивных автомобилях Toyota, таких как Celica 190 (GTS). В 1998 г. Toyota начала предлагать новую технологию VVTL-i для двухраспредвального 16-клапанного двигателя 2ZZ-GE (один распредвал управляет впускными, а другой выпускными клапанами). На каждом распредвале имеется по два кулачка на цилиндр: один для низких оборотов, а другой для высоких (с большим открытием). На каждом цилиндре – два впускных и два выпускных клапана, и каждая пара клапанов приводится в движение одним качающимся рычагом, на который воздействует кулачок распредвала. На каждом рычаге есть подпружиненный скользящий толкатель (пружина позволяет толкателю свободно скользить по «высокооборотному» кулачку, не воздействуя при этом на клапаны). Когда частота вращения вала двигателя ниже 6000 об./м, на качающийся рычаг воздействует «низкооборотный кулачок» через обычный роликовый толкатель (см. рис.). Когда же частота превышает 6000 об./м, компьютер управления двигателем открывает клапан, и давление масла сдвигает шпильку под каждым скользящим толкателем. Шпилька подпирает скользящий толкатель, в результате чего он уже не движется свободно на своей пружине, а начинает передавать качающемуся рычагу воздействие от «высокооборотного» кулачка, и клапаны открываются больше и на большее время.

Статьи — Информация — AUTOSPACE.BY

Технология VVT-i

VVT-i (Variable Valve Timing with intelligence) — система газораспределения с изменяемыми фазами от Toyota. Является разновидностью технологии VVT и CVVT. Включает в себя, по мере развития, технологии VVT-i, VVTL-i,Dual VVT-i, VVT-iE и Valvematic.

Технология VVT-i была впервые выпущена на рынок в 1996 году и заменила собой первое поколение VVT (1991 год, двигатель 4A-GE).

В зависимости от условия работы двигателя, система VVT-i плавно изменять фазы газораспределения. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 20-30° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

Основным элементом устройства является муфта VVT-i интегрированная в шкив, который выполняет роль корпуса муфты. Ротор муфты находится внутри и непосредственно соединен с распределительным валом.

Изначально фазы впускных клапанов установлены таким образом, чтобы добиться максимального крутящего момента при низкой частоте вращения коленвала. После того, как обороты значительно увеличиваются в корпусе муфты сделано несколько полостей, к которым по каналам подводится моторное масло из системы смазки.

Возросшее давление масла открывает клапан VVT-i, заполняя ту или иную полость, обеспечивает поворот ротора относительно корпуса и, соответственно, смещение распределительного вала на определенный угол.

Кулачки имеют определенную форму и при повороте коленчатого вала открывают впускные клапана немного раньше, а закрывают позже, что благоприятно сказывается на увеличении мощности и крутящего момента на высоких оборотах.

Технология VTEC

VTEC (Variable valve Timing and lift Electronic Control) — система динамического изменения фаз газораспределения, фирменная разработка компании Honda. Вначале система VTEC была успешно реализована в двигателях, применяемых в спортивных автомобилях, а затем, после признания и успеха данная система использована на двигателях гражданских автомобилей.

Особенность системы VTEC заключается в том, что возможно конструировать компактные, но очень мощные (в соотношении объем/л.с.) двигатели без применения дополнительных устройств (турбин, компрессоров), при этом технология производства подобных двигателей остается недорогой, а автомобиль с установленной на нем системой VTEC не испытывает проблем, характерных для турбированных автомобилей.

Принцип работы VTEC, в классическом виде по сравнению с другими системами газораспределения, конструктивно выглядит просто, — на распредвале между основными кулачками разместили один дополнительный кулачок большего профиля. Получается, что на каждый цилиндр приходится по одному дополнительному кулачку.

За наполнение топливной смесью камеры сгорания на низких и средних оборотах работы двигателя, отвечают два внешних кулачка, а центральный задействуется на высоких оборотах. Обратите внимание, что непосредственно на клапана воздействуют не кулачки распредвала, а через так называемые коромысла/рокеры, которых тоже три. Внешние кулачки воздействуют на рокеры, обеспечивающие открытие клапанов независимо друг от друга, а центральная пара кулачек-рокер, хотя и работает, но работает, что называется вхолостую. Клапаны имеют минимальную высоту подъема, фазы ГРМ характеризуются малой продолжительностью.

Как только двигатель достигает определенного количества оборотов, т.е. переходит в режим высоких оборотов, система VTEC активируется. Под давлением масла происходит смещение синхронизирующего штифта внутри рокеров таким образом, что все три рокера как бы становятся одной целой конструкцией, и после этого усилие на впускные клапаны передается от большого кулачка распредвала. Таким образом, увеличивается ход клапанов и фазы газораспределения.

При снижении количества оборотов система возвращается в исходную позицию.

Недостатками такой системы являются ступенчатый переход с одного режима на другой и конструктивная сложность реализации процесса блокировки.

Разновидности VTEC

На сегодняшний день существует несколько разновидностей системы VTEC. Первая категория рассчитана на увеличение мощности. Второй, VTEC-E, ставились совсем иные задачи — экономия топлива, о чем и говорит приставка «E» — econom. Итак, разновидности:

  • DOHC VTEC 1989-2001 гг, cамый мощный в семействе VTEC до 2001 года
  • SOHC VTEC 1991-2001 гг, средняя, более простая конструкция по сравнению с DOHC VTEC, но и менее мощная
  • SOHC VTEC-E 1991-2001 гг, самый экономичный VTEC
  • 3-stage VTEC-E 1995-2001 гг, совместил SOHC VTEC и VTEC-E, в отличие от них различает низкие, средние и высокие обороты
  • DOHC і-VTEC c 2001 года
  • SOHC і-VTEC c 2006 года
  • 3-stage i-VTEC (только на «гибридах») c 2006 года

Особенность данного двигателя заключается в том, что в городском цикле у автомобиля с системой VTEC-E, расход топлива составляет около 6,5-7 литров бензина на 100 км пути. Это поистине выдающийся результат, учитывая то, что такие двигатели Honda развивают мощность 115 «лошадиных сил». Но автомобили с таким двигателем лишены драйверских ощущений.

Такой результат достигается за счет того, что при небольших оборотах двигатель работает на обедненной топливовоздушной смеси, которая поступает в его цилиндры только через один впускной клапан. Это происходит по причине того, что на втором клапане, кулачек управляющий открытием и закрытием клапана, имеет профиль кольца и поэтому реально работает только один клапан.

За счёт несимметричности потока поступающей горючей смеси (один клапан закрыт, а второй открыт) возникают завихрения, происходит лучше и равномернее заполнение камеры сгорания, что позволяет двигателю работать на довольно бедной смеси. При увеличении оборотов (2500 оборотов и выше) срабатывает система VTEC, синхронизирующий шток под давлением масла перемещается, и рокер первичного клапана входит в зацепление с рокером вторичного клапана и оба клапана работают синхронно.

i-VTEC

Очередной разработкой компании Honda газораспределительного механизма с изменяемыми фазами VTEC является система, получившая обозначение i-VTEC (где буква «i» означает «Intellegence» — «интеллектуальный»).

«Интеллектуальность» же данной системы заключалась в следующем — управление изменением фаз осуществляется компьютером, при помощи функции поворота распредвала, регулируя угол опережения. Система i-VTEC позволила двигателям Honda получить больший крутящий момент на низких оборотах, что было постоянной проблемой для двигателей компании, — при высокой мощности они отличались малым крутящим моментом, получаемым на высоких оборотах.

Версия i-VTEC если не устранила, но существенно подкорректировала этот недостаток. Система i-VTEC начала устанавливаться на мощные моторы серии К и некоторых серии R, например, в автомобилях серии Type R, или Acura RSX. Другая версия, напротив, получила «экономичное» направление, и стала устанавливаться в гражданской серии двигателей (например на автомобилях CR-V, Accord, Element, Odyssey, и других).

Принцип работы SOHC i-VTEC

Компания Honda реализовала работу SOHC i-VTEC на простых принципах, которые заключаются, в том, что когда мы управляем автомобилем, то мы придерживаемся в основном двух различных стилей вождения.

Первый стиль вождения мы принимаем за спокойную езду без резких ускорений, с пустым багажником и без пассажиров. В таком режиме обороты двигателя, как правило, не превышают порог в 2,5 – 3,5 тысяч оборотов в минуту, а усилия на педаль газа минимальны. Такие условия являются наиболее благоприятными для экономии топлива.

В классическом виде воздействуя на педаль газа, мы открываем или закрываем дроссельную заслонку и регулируем подачу количества воздуха. В зависимости от количества попадающего воздуха, электронная система управления двигателем в нужной пропорции подает топливо для образования топливно-воздушной смеси. Чем сильнее нажимаем на педаль газа, тем больше открывается дроссельная заслонка (увеличивается поперечное сечение впускного канала). В это же время дроссельная заслонка являлась препятствием для прохождения воздуха.

Дроссельная заслонка — элемент впускной системы, которая регулирует подачу воздуха в двигатель.

По идее, такое поведение дроссельной заслонки должно способствовать экономии топлива — поступает меньше воздуха и соответственно компьютер уменьшает дозу подаваемого топлива. Однако это не совсем так. В такой ситуации дроссельная заслонка выступает в качестве силы сопротивления, препятствуя прохождению воздуха, когда этого требует рабочий процесс. Получается поршень, опускаясь в цилиндре вниз нижней мертвой точки, должен всасывать топливно-воздушную смесь, затрачивая на это собственную энергию. Энергию, которая в конечном итоге должна была полностью передаться на колеса. Этот побочный эффект прозвали «насосными потерями».

Попытаемся взглянуть на это с практической точки зрения на примере системы SOHC i-VTEC. Ведь именно устранение насосных потерь – преимущество нового i-VTEC на двигателях с одним распредвалом.

Все, что надо было сделать – это на низких оборотах двигателя дроссельную заслонку оставить открытой, а регулировку подачи топливно-воздушной смеси доверить системе i-VTEC. На деле, разумеется, не все так просто.

Следует учитывать следующий момент, что в период, когда дроссельная заслонка полностью открыта, во впускную систему поступает чрезмерно много воздуха и соответственно в цилиндры много топливно-воздушной смеси.

В стандартных двигателях на фазе впуска впускные клапаны открыты, поршень движется вниз к нижней мертвой точке (НМТ). Как только поршень достигает нижней мертвой точки, впускные клапаны синхронно закрываются, а поршень, начиная фазу сжатия, поднимается к верхней мертвой точке (ВМТ).

Но смесь не сгорает, как вы, наверное, подумали. Фишка системы состоит в том, что один из двух впускных клапанов в цилиндре после фазы впуска закрывается значительно позже второго.

Двигатель с SOHC i-VTEC работает несколько иначе. На фазе впуска – поршень движется к НМТ, впускные клапаны открыты. На фазе сжатия поршень начинает движение вверх к ВМТ. По условию работы i-VTEC в режиме экономии один из впускных клапанов остается открытым и под давлением движущегося вверх поршня, лишняя топливно-воздушная смесь, которая попала в цилиндр благодаря полностью открытой дроссельной заслонке, беспрепятственно возвращается во впускной коллектор.

Механизм SOHC i-VTEC

Механизм системы SOHC i-VTEC аналогичен механизму VTEC предыдущих поколений. Все двигатели с системой SOHC i-VTEC имеют два впускных клапана и два выпускных на каждый цилиндр, т.е 16 клапанов на 4 цилиндра. На каждую пару клапанов приходится 3 кулачка – два обычных крайних и один центральный большего профиля VTEC. Кулачки распредвала традиционно воздействуют на клапаны не непосредственно, а через рокеры, которых тоже три на два клапана.

При отключенной системе i-VTEC внешние кулачки обеспечивают открытие клапанов и каждый рокер работает независимо друг от друга, а центральный кулачок, хотя и вращается вместе с остальными, но работает вхолостую.

Как только двигатель переходит в режим работы, которую система Drive by Wire определяет как благоприятную для работы системы — посредством давления масла система смещает шток внутри рокеров таким образом, что два из трех рокеров работают, как единая конструкция. И с этого момента, рокер впускного клапана, который синхронизирован штоком с рокером кулачка системы VTEC, открывает клапан на величину и продолжительность в соответствии с профилем кулачка системы VTEC. Практически, как обычная система газораспределения с изменяемыми фазами VTEC, с той лишь разницей, что работают системы при разных условиях и в разных фазах.

Drive by Wire (DRW) или «управление по проводам» — электронная цифровая система управления автомобилем.

В обычной системе VTEC два внешних кулачка отвечают за работу двигателя на низких оборотах, а центральный кулачок системы VTEC, подключается на высоких оборотах, таким образом, обеспечивая большее высоту и период открытия, чтобы в цилиндры поступило как можно больше топливно-воздушной смеси. В «умном» SOHC i-VTEC все работает наоборот — рабочая зона системы находится в диапазоне от 1000 до 3500 оборотов в минуту. На «верхах» же мотор вступает в стандартный режим работы.

Однако, диапазон оборотов не единственный фактор по которому система Drive by Wire определяет момент включения и выключения системы. Иначе новый i-VTEC мало чем отличался бы от предшественников.

Новый SOHC i-VTEC в паре с «Drive by Wire» дополнительно определяет нагрузку на двигатель и в зависимости от ее величины принимает решение включать VTEC или нет.

Именно символ «i» в названии системы указывает на работу этих двух систем. Получается, что система VTEC работает при определенных оборотах двигателя и определенной величине нагрузки на двигатель. Поэтому «Drive by Wire», которая и определяет оптимальные условия, является наиважнейшей составляющей системы в целом.

Общий рабочий диапазон SOHC i-VTEC демонстрирует график. Красная зона на графике и есть благоприятная среда для работы системы.

Что означает надпись на двигатель ввт 1. Что такое Двигателя VVT-i. Vvti toyota что это или как работает газораспределение VVT-i

VVTi Toyota что это и как она устроена? VVT-i – так назвали конструкторы автоконцерна Toyota систему управления фазами газораспределения, которые придумали свою систему повышения эффективности работы двигателей внутреннего сгорания.

Это не говорит о том, что такие механизмы только у Тойоты, но рассмотрим этот принцип на её примере.

Начнём с расшифровки.

Аббревиатура VVT-i звучит на языке оригинала как Variable Valve Timing intelligent, что переводим как интеллектуальное изменение фаз газораспределения.

Впервые на рынке эта технология представлена компанией Toyota десять лет назад, в 1996 году. Аналогичные системы есть у всех автоконцернов и брендов, что говорит об их пользе. Называются они, правда, все по-разному, путая рядовых автолюбителей.

Что же привнесла VVT-i в моторостроение? В первую очередь – повышение мощности, равномерной во всём диапазоне оборотов. Моторы стали экономичнее, а следовательно более эффективнее.

Управление фазами газораспределения или управление моментом поднятия и опускания клапанов, происходит при помощи поворота на нужный угол .

Как это реализовано технически, рассмотрим далее.

Vvti toyota что это или как работает газораспределение VVT-i?

Система VVT-i Toyota что это такое и для чего, мы поняли. Время углубиться в её внутренности.

Главные элементы этого инженерного шедевра:

Алгоритм работы всей этой конструкции прост. Муфта, представляющая собой шкив с полостями внутри и ротором, закреплённым на распредвале, заполняется маслом под давлением.

Полостей несколько, и за это наполнение отвечает VVT-i клапан (OCV), действующий по командам блока управления.

Под напором масла ротор вместе с валом может поворачиваться на определённый угол, а вал уже, в свою очередь, определяет, когда подниматься и опускаться клапанам.

В стартовом положении позиция распредвала впускных клапанов обеспечивает максимальную тягу на низких оборотах мотора.

С повышением частоты вращения , система поворачивает распредвал таким образом, чтобы клапаны открывались раньше и закрывались позже – это помогает увеличить отдачу на высоких оборотах.

Как видим, технология VVT-i, принцип работы которой рассмотрели, довольно проста, но, тем не менее, эффективна.

Развитие технологии VVT-i: что ещё придумали японцы?

Есть и другие разновидности этой технологии. Так, к примеру, Dual VVT-i управляет работой не только распредвала впускных клапанов, но и выпускных.

Это позволило достичь ещё более высоких параметров двигателей. Дальнейшее развитие идеи получило название VVT-iE.

Здесь уже инженеры Toyota полностью отказались от гидравлического способа управления положением распредвала, который имел ряд недостатков, ведь для поворота вала необходимо было, чтобы давление масла поднялось до определённого уровня.

Устранить данный недостаток удалось благодаря электромоторам – теперь они поворачивают валы. Вот так вот.

Спасибо за внимание, теперь вы сами можете ответить кому угодно на вопрос «VVT-i Toyota что это такое и как оно работает».

Не забывайте подписываться на наш блог и до новых встреч!

Система VVT-i позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 40-60° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

Основным управляющим устройством является муфта VVT-i. «По умолчанию» фазы открытия клапанов выставлены для хорошей тяги на низких оборотах. После того, как обороты значительно увеличиваются, возросшее давление масла открывает клапан VVT-i, после чего распределительный вал поворачивается на определенный угол относительно шкива. Кулачки имеют определенную форму и при повороте коленчатого вала открывают впускные клапана немного раньше, а закрывают позже, что повышает мощность и крутящий момент на высоких оборотах.

Функционирование системы VVT-i определяется условиями работы двигателя на различных режимах:

[свернуть]

Конструктивные поколения VVT-i

VVT (поколение 1, 1991-2001)

Раскрыть…

Условное 1-е поколение представляет ременной привод ГРМ на оба распредвала и механизм изменения фаз с поршнем с винтовой нарезкой в шкиве впускного распредвала. Применялось на двигателях 4A-GE тип’91 и тип’95 (silvertop и blacktop).

Система VVT (Variable Valve Timing) поколения 1 позволяет ступенчато изменять фазы газораспределения в соответствии с условиями работы двигателя путём поворота распределительного вала впускных клапанов относительно шкива на 30° по углу поворота коленвала.

Корпус привода VVT (с внутренней винтовой нарезкой) соединён со шкивом, внутренняя шестерня с винтовой нарезкой соединена со впускным распредвалом. Между ними находится подвижный поршень с внутренней и внешней нарезкой. При осевом перемещении поршня происходит поворот вала относительно шкива.

1 — демпфер, 2 — винтовая нарезка, 3 — поршень, 4 — распредвал, 5 — возвратная пружина.

Блок управления на основе сигналов датчиков контролирует подачу масла в полости шкива (посредством электромагнитного клапана).

При включении по сигналу ECM электромагнитный клапан сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к поршню и сдвигает его. Смещаясь по винтовой нарезке, поршень проворачивает распредвал в направлении опережения. При выключении электромагнитного клапана поршень перемещается обратно и распредвал возвращается в исходное положение.

При высокой нагрузке и оборотах ниже средних, раннее закрытие впускных клапанов позволяет улучшить наполнение цилиндров. Благодаря этому увеличивается крутящий момента на низких и средних оборотах. На высоких оборотах позднее закрытие впускных клапанов (при отключении VVT) способствует увеличению максимальной мощности.

[свернуть]

VVT-i (поколение 2, 1995-2004)

Раскрыть…

Условное 2-е поколение представляет собой ременной привод ГРМ на оба распредвала и механизм изменения фаз с поршнем с винтовой нарезкой в шкиве впускного распредвала. Применялось на двигателях 1JZ-GE тип’96, 2JZ-GE тип’95, 1JZ-GTE тип’00, 3S-GE тип’97. Существовал вариант с механизмами изменения фаз на обоих распредвалах — первый Dual VVT Toyota (см. ниже, 3S-GE тип’98, Altezza).

Система VVT-i позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя, что достигается поворотом распредвала впускных клапанов относительно шкива в диапазоне 40-60° по углу поворота коленвала.

Привод ГРМ (серия JZ). 1 — привод VVT, 2 — клапан VVT, 3 — датчик положения распредвала, 4 — датчик положения коленвала.

Корпус привода VVT-i (с внутренней винтовой нарезкой) соединен со шкивом, внутренняя шестерня с винтовой нарезкой соединена со впускным распредвалом. Между ними находится подвижный поршень с внутренней и внешней нарезкой. При осевом перемещении поршня происходит плавный поворот вала относительно шкива.

Серия JZ. 1 — корпус (внутренняя нарезка), 2 — шкив, 3 — поршень, 4 — внешняя нарезка вала, 5 — внешняя нарезка поршня, 6 — впускной распредвал.

Привод ГРМ (серия JZ). 1 — впускной распредвал, 2 — золотник, 3 — плунжер, 4 — клапан VVT, 5 — масляный канал (от насоса), 6 — головка блока цилиндров, 7 — внешняя нарезка поршня, 8 — поршень, 9 — привод VVT, 10 — внутренняя нарезка поршня, 11 — шкив.

Блок управления на основе сигналов датчиков контролирует подачу масла в полости опережения и задержки привода VVT посредством электромагнитного клапана. На заглушенном двигателе золотник перемещается пружиной таким образом, чтобы обеспечить максимальный угол задержки.

a — пружина, b — втулка, c — золотник, d — к приводу (полость опережения), e — к приводу (полость задержки), f — сброс, g — давление масла, h — обмотка, j — плунжер.

опережения и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к левой стороне поршня и смещает его вправо. Смещаясь по винтовой нарезке, поршень проворачивает распредвал в направлении опережения.

Электромагнитный клапан по сигналу ECM переключается в позицию задержки и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к правой стороне поршня и смещает его влево. Смещаясь по винтовой нарезке, поршень проворачивает распредвал в направлении задержки.

После установки заданного положения ECM переключает управляющий клапан в нейтральную позицию (позицию удержания ), поддерживая давление с обеих сторон поршня.

Вот так выглядит клапан на примере двигателя 1JZ-GTE:

Фазы газораспределения VVT-i на примере серии JZ:

[свернуть]

VVT-i (поколение 3, 1997-2012)

Раскрыть…

Условное 3-е поколение представляет собой ременной привод ГРМ с шестерённой передачей между распредвалами и механизм изменения фаз с лопастным ротором в передней части выпускного распредвала или в задней части впускного. Применялась на двигателях 1MZ-FE тип’97, 3MZ-FE, 3S-FSE, 1JZ-FSE, 2JZ-FSE, 1G-FE тип’98, 1UZ-FE тип’97, 2UZ-FE тип’05, 3UZ-FE. Позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя путём поворота распредвала впускных клапанов относительно шкива в диапазоне 40-60° (по углу поворота коленвала).

Привод ГРМ (серия MZ). 1 — датчик положения дроссельной заслонки, 2 — датчик положения распредвала, 3 — клапан VVT, 4 — датчик температуры охлаждающей жидкости, 5 — датчик положения коленвала.

Привод ГРМ (1G-FE тип’98). 1 — клапан VVT, 2 — датчик положения распредвала, 3 — датчик температуры охлаждающей жидкости, 4 — датчик положения коленвала.

Привод ГРМ (серия UZ). 1 — клапан VVT, 2 — датчик положения распредвала, 3 — датчик температуры охлаждающей жидкости, 4 — датчик положения коленвала.

Привод VVT с лопастным ротором установлен в передней или задней части одного из распредвалов. При заглушенном двигателе фиксатор удерживает распредвал в положении максимальной задержки для обеспечения нормального запуска.

1MZ-FE, 3MZ-FE. 1 — выпускной распредвал, 2 — впускной распредвал, 3 — привод VVT, 4 — фиксатор, 5 — корпус, 6 — ведомая шестерня, 7 — ротор.

1G-FE тип’98. 1 — корпус, 2 — ротор, 3 — фиксатор, 4 — выпускной распредвал, 5 — впускной распредвал. a — при остановке, b — в работе, c — опережение, d — задержка.

2UZ-FE тип’05. 1 — привод VVT, 2 — впускной распредвал, 3 — выпускной распредвал, 4 — масляные каналы, 5 — ротор датчика положения распредвала.

2UZ-FE тип’05. 1 — корпус, 2 — ротор, 3 — фиксатор, 4 — камера опережения, 5 — камера задержки, 6 — впускной распредвал. a — при остановке, b — в работе, c — давление масла.

Электромагнитный клапан по сигналу ECM переключается в позицию опережения

Электромагнитный клапан по сигналу ECM переключается в позицию задержки

[свернуть]

VVT-i (поколение 4, 1997-…)

Раскрыть…

Условное 4-е поколение VVT-i представляет собой цепной привод ГРМ на оба распредвала и механизм изменения фаз с лопастным ротором на звездочке впускного распредвала. Применялось на двигателях серий NZ, AZ, ZZ, SZ, KR, 1GR-FE тип’04. Позволяет плавно менять фазы газораспределения в соответствии с условиями работы двигателя путём поворота распредвала впускных клапанов относительно звездочки привода в диапазоне 40-60° по углу поворота коленвала.

Привод ГРМ (серия AZ). 1 — управляющий клапан VVT-i, 2 — датчик положения распредвала, 3 — датчик температуры охлаждающей жидкости, 4 — датчик положения коленвала, 5 — привод VVT.

На впускном распредвале установлен привод VVT с лопастным ротором. При заглушенном двигателе фиксатор удерживает распредвал в положении максимальной задержки для обеспечения нормального запуска. В некоторых модификациях может использоваться вспомогательная пружина, которая прикладывает момент в направлении опережения для возврата ротора и надежного срабатывания фиксатора после выключения двигателя.

Привод VVT-i. 1 — корпус, 2 — фиксатор, 3 — ротор, 4 — распредвал. a — при остановке, b — в работе.

4-лепестковый ротор позволяет изменять фазы в пределах 40° (например, на двигателях серий ZZ и AZ), но если требуется увеличить угол поворота (до 60° у SZ) — применяется 3-лепестковый или расширяются рабочие полости. Принцип действия и режимы работы этих механизмов абсолютно аналогичны, разве что за счёт расширенного диапазона регулировки становится возможным вообще исключить перекрытие клапанов на холостом ходу, при низкой температуре или запуске.

Блок управления посредством электромагнитного клапана контролирует подачу масла в полости опережения и задержки привода VVT, основываясь на сигналах датчиков положения распредвалов. На заглушенном двигателе золотник перемещается пружиной таким образом, чтобы обеспечить максимальный угол задержки. Управляющие сигналы от блока к клапану VVT используют широтно-импульсную модуляцию (чем больше опережение, тем импульсы шире, при задержке соответственно короче).

1 — электромагнитный клапан. a — пружина, b — втулка, c — золотник, d — к приводу (полость опережения), e — к приводу (полость задержки), f — сброс, g — давление масла, h — обмотка, j — плунжер.

Электромагнитный клапан по сигналу ECM переключается в позицию опережения и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости опережения, проворачивая его вместе с распредвалом в направлении опережения.

Электромагнитный клапан по сигналу ECM переключается в позицию задержки и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости задержки, проворачивая его вместе с распредвалом в направлении задержки.

При удержании ECM рассчитывает необходимый угол опережения в соответствии с условиями движения, и после установки заданного положения переключает управляющий клапан в нейтральную позицию до следующего изменения внешних условий.

Фазы газораспределения (2AZ-FE):

[свернуть]

VVTL-i (подвид 4-го поколения, 1999-2005)

Раскрыть…

VVTL-i, Variable Valve Timing and Lift intelligent system — подвид технологии VVT-i, которая также умеет управлять высотой и длительностью подъема клапанов (ступенчатой — с использовнием двух кулачков разного профиля). Была впервые внедрена на двигателе 2ZZ-GE. Традиционная VVT-i отвечает за улучшение тяги на низких оборотах, а дополнительная часть — за максимальную мощность и максимальный момент, «подбрасывая угля» при частоте вращения более 6000 об/мин (высота подъема клапанов увеличивается с 7,6 мм до 10,0/11,2 мм).

Сам по себе механизм VVTL-i устроен достаточно просто. Для каждой пары клапанов на распредвале имеется два кулачка с разным профилем («спокойным» и «агрессивным»), а на рокере — два разных толкателя (соответственно, роликовый и скользящий). В нормальном режиме рокер (и клапан) приводится от кулачка со спокойным профилем через роликовый толкатель, а подпружиненный скользящий толкатель работает вхолостую, перемещаясь в рокере. При переходе в форсированный режим давлением масла перемещается стопорный штифт, который подпирает шток скользящего толкателя, жестко соединяя его с рокером. Когда давление жидкости снимается, пружина отжимает штифт и скользящий толкатель вновь освобождается.

Изощренная схема с разными толкателями объясняется тем, что роликовый (на игольчатом подшипнике) дает меньшие потери на трение, но, при равной высоте профиля кулачка, обеспечивает меньшее наполнение (мм*град), а на высоких оборотах потери на трение почти выравниваются, так что с точки зрения получения максимальной отдачи становится выгоднее скользящий. Роликовый толкатель изготовлен из закаленной стали, а скользящий, хоть и использует ферросплав с повышенными противозадирными свойствами, все равно потребовал применения особой схемы орошения маслом, установленной в головке блока.

Самой ненадежной частью схемы является стопорный штифт. Он не может за один оборот распредвала встать в рабочее положение, поэтому неизбежно происходит соударение штока со штифтом при их частичном перекрытии, от чего износ обоих деталей только прогрессирует. В конце концов он достигает такой величины, что штифт постоянно будет отжиматься штоком в исходное положение и не сможет зафиксировать его, поэтому постоянно будет работать только кулачок низких оборотов. С этой особенностью боролись тщательной обработкой поверхностей, уменьшением веса штифта, увеличением давления в магистрали, но до конца победить ее не смогли. На практике по-прежнему случаются поломки оси и штифтов этого хитроумного рокера.

Второй распространенный дефект — срезается болт крепления оси коромысел, после чего та начинает свободно вращаться, подвод масла к рокерам прекращается, и VVTL-i в принципе не выходит в форсированный режим, не говоря уж о нарушении смазки всего узла. Таким образом, схема VVTL-i осталась технологически недоведенной для серийного производства.

[свернуть]

Dual VVT-i

Представляет собой развитие VVT-i условного 4-го поколения.

DVVT-i (2004-…)

Раскрыть…

Система DVVT-i (Dual Variable Valve Timing intelligent) представляет собой цепной привод ГРМ на оба распредвала и механизм изменения фаз с лопастными роторами на звездочках впускного и выпускного распредвалов. Впервые применена на двигателе 3S-GE в 1998 году. Применялась на двигателях серий AR, ZR, NR, GR, UR, LR.

Позволяет плавно изменять фазы газораспределения на обоих распредвалах в соответствии с условиями работы двигателя путём поворота распределительных валов впускных и выпускных клапанов относительно звездочек привода в диапазоне 40-60° (по углу поворота коленвала). Фактически — обычная система VVT-i «в двойном комплекте».

Обеспечивает:

  • бОльшую топливную экономичность как на низких, так и на высоких оборотах;
  • лучшую эластичность — крутящий момент распределен равномерно по всему диапазону оборотов двигателя.

Привод ГРМ (серия ZR). 1 — клапан VVT (выпуск), 2 — клапан VVT (впуск), 3 — датчик положения распредвала (выпуск), 4 — датчик положения распредвала (впуск), 5 — датчик температуры охлаждающей жидкости, 6 — датчик положения коленвала.

Поскольку в Dual VVT-i не используется управление высотой подъема клапанов, как в VVTL-i, то и недостатки VVTL-i также отсутствуют.

На распредвалах установлены приводы VVT с лопастными роторами. При заглушенном двигателе фиксатор удерживает распредвал в положении максимального опережения для обеспечения нормального запуска.

В некоторых модификациях может использоваться вспомогательная пружина, которая прикладывает момент в направлении опережения для возврата ротора и надежного срабатывания фиксатора после выключения двигателя.

Привод VVT (впуск). 1 — корпус, 2 — ротор, 3 — фиксатор, 4 — звездочка, 5 — распредвал. a — при остановке, b — в работе.

Привод VVT (выпуск). 1 — корпус, 2 — ротор, 3 — фиксатор, 4 — звездочка, 5 — распредвал, 6 — возвратная пружина. a — при остановке, b — в работе.

Блок управления посредством электромагнитного клапана контролирует подачу масла в полости опережения и задержки привода VVT, основываясь на сигналах датчиков положения распредвалов. На заглушенном двигателе золотник перемещается пружиной таким образом, чтобы обеспечить максимальный угол задержки для впуска и максимальный угол опережения для выпуска. Управляющие сигналы используют широтно-импульсную модуляцию (аналогично).

Клапан VVT (впуск). a — пружина, b — втулка, c — золотник, d — к приводу (полость опережения), e — к приводу (полость задержки), f — сброс, g — давление масла.

Клапан VVT (выпуск). a — пружина, b — втулка, c — золотник, d — к приводу (полость опережения), e — к приводу (полость задержки), f — сброс, g — давление масла.

Электромагнитный клапан по сигналу ECM переключается в позицию опережения и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости опережения, проворачивая его вместе с распредвалом в направлении опережения (верхняя картинка — впуск, нижняя — выпуск):

Электромагнитный клапан по сигналу ECM переключается в позицию задержки и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости задержки, проворачивая его вместе с распредвалом в направлении задержки (верхняя картинка — впуск, нижняя — выпуск):

При удержании ECM рассчитывает необходимый угол опережения в соответствии с условиями движения, и после установки заданного положения переключает управляющий клапан в нейтральную позицию до следующего изменения внешних условий.

Фазы газораспределения Dual-VVT (2ZR-FE):

[свернуть]

VVT-iE (2006-…)

Раскрыть…

VVT-iE, Variable Valve Timing — intelligent by Electric motor — интеллектуальное изменение фаз газораспределения с помощью электромотора. Отличается от базовой технологии VVT-i тем, что управление фазами газораспределения на впуске производится не гидравлическим давлением масла, а специальным электромотором (выпуск по-прежнему управляется гидравликой). Впервые была применена в 2007 году на двигателе 1UR-FSE.

Принцип работы: электромотор VVT-iE вращается вместе с распределительным валом на тех же оборотах. При необходимости электромотор либо притормаживается, либо ускоряется относительно звездочки распределительного вала, смещая распределительный вал на необходимый угол и тем самым управляя фазами газораспределения. Преимуществом такого решения является возможность высокоточного управления фазами газораспределения, независимо от оборотов двигателя и рабочей температуры масла (в обычной системе VVT-i на низких оборотах и на непрогретом масле давление в маслосистеме недостаточно для сдвига лопастей муфты VVT-i).

[свернуть]

VVT-iW (2015-…)

Раскрыть…

VVT-iW (Variable Valve Timing intelligent Wide) представляет собой цепной привод ГРМ на оба распредвала и механизм изменения фаз с лопастными роторами на звездочках впускного и выпускного распредвалов и расширенным диапазоном регулировки на впуске. Применялась на двигателях 6AR-FSE, 8AR-FTS, 8NR-FTS, 2GR-FKS. Позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя путём поворота распредвала впускных клапанов относительно звездочки привода в диапазоне 75-80° по углу поворота коленвала.

Расширенный, по сравнению с обычным VVT, диапазон приходится главным образом на угол задержки. На втором распредвалу в этой схеме установлен привод VVT-i.

Система VVT-i (Variable Valve Timing intelligent) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала выпускных клапанов относительно звездочки привода в диапазоне 50-55° (по углу поворота коленвала).

Совместная работа VVT-iW на впуске и VVT-i на выпуске обеспечивает следующий эффект:

  1. Режим пуска (EX — опережение, IN — промежуточное положение). Для обеспечения надежного запуска используются два независимых фиксатора, удерживающих ротор в промежуточном положении.
  2. Режим частичной нагрузки (EX — задержка, IN — задержка). Обеспечивается возможность работы двигателя по циклу Миллера/Аткинсона, при этом уменьшаются насосные потери и улучшается экономичность.
  3. Режим между средней и высокой нагрузкой (EX — задержка, IN — опережение). Обеспечивается режим т.н. внутренней рециркуляции отработавших газов и улучшаются условия выпуска.

На впускном распредвалу установлен привод VVT-iW с лопастным ротором. Два фиксатора удерживают ротор в промежуточном положении. Вспомогательная пружина прикладывает момент в направлении опережения для возврата ротора в промежуточное положение и надежного срабатывания фиксаторов. Это обеспечивает нормальный пуск двигателя, заглушенного в положении задержки.

Привод VVT-iW. 1 — центральный болт, 2 — вспомогательная пружина, 3 — передняя крышка, 4 — ротор, 5 — фиксатор, 6 — корпус (звездочка), 7 — задняя крышка, 8 — впускной распредвал. a — стопорный паз.

Управляющий клапан встроен в центральный болт крепления привода (звездочки) к распредвалу. При этом управляющий масляный канал имеет минимальную длину, обеспечивая максимальную скорость отклика и срабатывания при низких температурах. Управляющий клапан приводится штоком плунжера э/м клапана VVT-iW.

a — сброс, b — к полости опережения, c — к полости задержки, d — моторное масло, e — к фиксатору.

Конструкция клапана позволяет независимо управлять двумя фиксаторами, по отдельности для контуров опережения и задержки. Это позвоялет фиксировать ротор в промежуточном положении управления VVT-iW.

1 — внешний штифт, 2 — внутренний штифт. a — фиксатор задействован, b — фиксатор свободен, c — масло, d — стопорный паз.

Электромагнитный клапан VVT-iW установлен в крышке цепи привода ГРМ и соединен непосредственно с приводом изменения фаз впускного распредвала.

1 — электромагнитный клапан VVT-iW. a — обмотка, b — плунжер, c — шток.

При опережении

При задержке

1 — ротор, 2 — от ECM, 3 — электромагнитный клапан VVT-iW. a — направление вращения, b — полость задержки, c — полость опережения, d — к полости опережения, e — от полости задержки, f — сброс, g — давление масла.

При удержании ECM рассчитывает необходимый угол опережения в соответствии с условиями движения. После установки заданного положения ECM переключает управляющий клапан в нейтральную позицию до следующего изменения внешних условий.

На выпускном распредвалу установлен привод VVT-i лопастным ротором (традиционного или нового образца — с управляющим клапаном, встроенным в центральный болт). При заглушенном двигателе фиксатор удерживает распредвал в положении максимального опережения для обеспечения нормального запуска.

Вспомогательная пружина прикладывает момент в направлении опережения для возврата ротора и надежного срабатывания фиксатора после выключения двигателя.

Привод VVT-i (AR). 1 — вспомогательная пружина, 2 — корпус, 3 — ротор, 4 — фиксатор, 5 — звездочка, 6 — распредвал. a — при остановке, b — в работе.

Привод VVT-i (GR). 1 — центральный болт, 2 — передняя крышка, 3- корпус, 4 — ротор, 5 — задняя крышка, 6 — впускной распредвал.

Блок управления посредством электромагнитного клапана контролирует подачу масла в полости опережения и задержки привода VVT, основываясь на сигналах датчиков положения распредвалов. На заглушенном двигателе золотник перемещается пружиной таким образом, чтобы обеспечить максимальный угол опережения.

Клапан VVT (AR). 1 — электромагнитный клапан. a — пружина, b — втулка, c — золотник, d — к приводу (полость опережения), e — к приводу (полость задержки), f — сброс, g — давление масла.

Клапан VVT (GR). 1 — электромагнитный клапан. a — слив, b — к приводу (полость опережения), c — к приводу (полость задержки), d — давление масла.

При опережении электромагнитный клапан по сигналу ECM переключается в позицию опережения и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости опережения, проворачивая его вместе с распредвалом в направлении опережения.

1 — ротор, 2 — от ECM, 3 — электромагнитный клапан VVT-i. a — направление вращения, b — полость задержки, c — полость опережения, d — к полости опережения, e — от полости задержки, f — слив, g — давление масла.

При задержке электромагнитный клапан по сигналу ECM переключается в позицию задержки и сдвигает золотник управляющего клапана. Моторное масло под давлением поступает к ротору со стороны полости задержки, проворачивая его вместе с распредвалом в направлении задержки.

1 — ротор, 2 — электромагнитный клапан VVT-i, 3 — от ECM. a — направление вращения, b — давление масла, c — сброс.

1 — ротор, 2 — от ECM, 3 — электромагнитный клапан VVT-i. a — направление вращения, b — полость задержки, c — полость опережения, d — от полости опережения, e — к полости задержки, f — слив, g — давление масла.

При удержании ECM рассчитывает необходимый угол опережения в соответствии с условиями движения и после установки заданного положения переключает управляющий клапан в нейтральную позицию до следующего изменения внешних условий.

10.07.2006

Рассмотрим здесь принцип функционирования системы VVT-i второго поколения, которая применяется сейчас на большинстве тойотовских двигателей.

Система VVT-i (Variable Valve Timing intelligent — изменения фаз газораспределения) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 40-60° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

1. Конструкция

Исполнительный механизм VVT-i размещен в шкиве распределительного вала — корпус привода соединен со звездочкой или зубчатым шкивом, ротор — с распредвалом.
Масло подводится с одной или другой стороны каждого из лепестков ротора, заставляя его и сам вал поворачиваться. Если двигатель заглушен, то устанавливается максимальный угол задержки (то есть угол, соответствующий наиболее позднему открытию и закрытию впускных клапанов). Чтобы сразу после запуска, когда давление в масляной магистрали еще недостаточно для эффективного управления VVT-i, не возникало ударов в механизме, ротор соединяется с корпусом стопорным штифтом (затем штифт отжимается давлением масла).

2. Функционирование

Для поворота распределительного вала масло под давлением при помощи золотника направляется к одной из сторон лепестков ротора, одновременно открывается на слив полость с другой стороны лепестка. После того, как блок управления определяет, что распредвал занял требуемое положение, оба канала к шкиву перекрываются и он удерживается в фиксированном положении.

Режим

Фазы

Функции

Эффект

Холостой ход

Установлен угол поворота распределительного вала, соответствующий самому позднему началу открытия впускных клапанов (максимальный угол задержки). «Перекрытие» клапанов минимально, обратное поступление газов на впуск минимально. Двигатель стабильнее работает на холостом ходу, снижается расход топлива

Перекрытие клапанов уменьшается для минимизации обратного поступление газов на впуск. Повышается стабильность работы двигателя

Перекрытие клапанов увеличивается, при этом снижаются «насосные» потери и часть отработавших газов поступает на впуск Улучшается топливная экономичность, снижается эмиссия NOx

Высокая нагрузка, частота вращения ниже средней

Обеспечивается раннее закрытие впускных клапанов для улучшения наполнения цилиндров Возрастает крутящий момент на низких и средних оборотах

Обеспечивается позднее закрытие впускных клапанов для улучшения наполнения на высоких оборотах Увеличивается максимальная мощность

При низкой температуре охлаждающей жидкости

Устанавливается минимальное перекрытие для предотвращения потерь топлива Стабилизируется повышенная частота вращения холостого хода, улучшается экономичность

При запуске и остановке

Устанавливается минимальное перекрытие для предотвращения попадания отработавших газов на впуск Улучшается запуск двигателя

3. Вариации

Приведенный выше 4-лепестковый ротор позволяет изменять фазы в пределах 40° (как, например, на двигателях серий ZZ и AZ), но если требуется увеличить угол поворота (до 60° у SZ) — применяется 3-лепестковый или расширяются рабочие полости.

Принцип действия и режимы работы этих механизмов абсолютно аналогичны, разве что за счет расширенного диапазона регулировки становится возможным вообще исключить перекрытие клапанов на холостом ходу, при низкой температуре или запуске.

· 20.08.2013

Эта система обеспечивает оптимальный момент впуска в каждом цилиндре для данных конкретных условий работы двигателя. VVT-i практически устраняет традиционный компромисс между большим крутящим моментом на низких оборотах и большой мощностью на высоких. Также VVT-i обеспечивает большую экономию топлива и настолько эффективно снижает выбросы вредных продуктов сгорания, что отпадает необходимость в системе рециркуляции выхлопных газов.

Двигатели VVT-i устанавливаются на всех современных автомобилях Toyota. Аналогичные системы разрабатываются и применяются рядом других производителей (например, система VTEC от Honda Motors). Система VVT-i разработки Toyota заменяет предыдущую систему VVT (2-ступенчатая система управления с гидравлическим приводом), используемую с 1991 г. на 20-клапанных двигателях 4A-GE. VVT-i используется с 1996 г. и управляет моментом открытия и закрытия впускных клапанов путем изменения передачи между приводом распредвала (ремнем, шестерней или цепью) и собственно распредвалом. Для управления положением распредвала используется гидравлический привод (двигательное масло под давлением).

В 1998 г. появился Dual («двойной») VVT-i, управляющий и впускными, и выпускными клапанами (впервые устанавливался на двигателе 3S-GE на RS200 Altezza). Также двойной VVT-i используется на новых V-образных двигателях Toyota, например, на 3,5-литровом V6 2GR-FE. Такой двигатель устанавливается на Avalon, RAV4 и Camry в Европе и Америке, на Aurion в Австралии и на различных моделях в Японии, в т. ч. Estima. Двойной VVT-i будет использоваться в будущих двигателях Toyota, в том числе новом 4-цилиндровом двигателе для нового поколения Corolla. Кроме того, двойной VVT-i используется в двигателе D-4S 2GR-FSE на Lexus GS450h.

За счет изменения момента открытия клапанов пуск и стоп двигателя практически незаметны, т. к. компрессия минимальна, а катализатор очень быстро нагревается до рабочей температуры, что резко снижает вредные выбросы в атмосферу. VVTL-i (расшифровывается как Variable Valve Timing and Lift with intelligence) Основанная на VVT-i, система VVTL-i использует распредвал, обеспечивающий также регулирование величины открытия каждого клапана при работе двигателя на высоких оборотах. Это позволяет обеспечить не только более высокие обороты и большую мощность двигателя, но и оптимальный момент открытия каждого клапана, что приводит к экономии топлива.

Система разработана при сотрудничестве с компанией Yamaha. Двигатели VVTL-i устанавливаются на современных спортивных автомобилях Toyota, таких как Celica 190 (GTS). В 1998 г. Toyota начала предлагать новую технологию VVTL-i для двухраспредвального 16-клапанного двигателя 2ZZ-GE (один распредвал управляет впускными, а другой выпускными клапанами). На каждом распредвале имеется по два кулачка на цилиндр: один для низких оборотов, а другой для высоких (с большим открытием). На каждом цилиндре – два впускных и два выпускных клапана, и каждая пара клапанов приводится в движение одним качающимся рычагом, на который воздействует кулачок распредвала. На каждом рычаге есть подпружиненный скользящий толкатель (пружина позволяет толкателю свободно скользить по «высокооборотному» кулачку, не воздействуя при этом на клапаны). Когда частота вращения вала двигателя ниже 6000 об./м, на качающийся рычаг воздействует «низкооборотный кулачок» через обычный роликовый толкатель (см. рис.). Когда же частота превышает 6000 об./м, компьютер управления двигателем открывает клапан, и давление масла сдвигает шпильку под каждым скользящим толкателем. Шпилька подпирает скользящий толкатель, в результате чего он уже не движется свободно на своей пружине, а начинает передавать качающемуся рычагу воздействие от «высокооборотного» кулачка, и клапаны открываются больше и на большее время.

Долго выбирал для жены авто. На Тойотах езжу давно и уважаю. Королла подходила практически идеально. Но честно говоря симпатичной её назвать, язык не поворачивался. Мне она напоминала лицо несчастных красавиц после пластической операции, когда только что сняли бинты. Когда увидел фотки обновленной — желание значительно усилилось. Ставлю дизайнерам 5+. Стало по крайней мере понятно что имел ввиду тот хирург. Ну да не суть. На вкус и цвет, как известно..

Честные 11,9% кредита от ТОЙОТА-Банка довершили разгром сомнений.

Теперь к вопросу о маркетологах.

Логику этих людей мне видимо никогда не дано понять. Я могу простить «весла» в задних дверях, дешевую штатную магнитолу и т. п. Но отсутствие системы стабилизации В ЛЮБЫХ КОМПЛЕКТАЦИЯХ мягко говоря злит. Я конечно понимаю, что вам нужно разнести машины по разным сегментам, чтоб не было внутренней конкуренции у производителя и т. д. Но BOSСH продает её вам за $200!!! А она между прочим жизни спасает. Нет ничего страшнее лобовой аварии на трассе. А они частенько происходят именно из-за потери сцепления с дорогой. Я лично не моргнув глазом доплачу за неё 10-15 т. р. Уверен я такой не один.

И ещё о грустном.

Всмысле о коробках. Они никогда не были сильной стороной тойот. Не в плане надежности. Тут как раз таки полный порядок. А в плане продвинутости. Тойоты в этом вопросе безнадежно консервативны. Общепризнанно, что «робот» которым изначально оснащали эту машину не удался. Конечно же я очень рад, что его таки заменили классическим автоматом.

НО ПОЧЕМУ ЧЕТЫРЕХСТУПЕНЧАТЫМ?? У всех уже давно пять, а то и шесть передач! Да черт с ней с короллой. Как у вас рука поднялась оснастить 4-х ступкой RAV4?

Ну и наконец последняя ложка дегтя.

Подогрев сидений. Почему только два положения on/off?? Я конечно, не претендую на плавную регулировку как на лексусах. Но Hi/Lo — это ведь то, что доктор прописал. Hi — нагрелось, Lo — езди весь день. А тут On и через пару минут — ваш омлет готов, сэээр! А включать/выключать всю дорогу эти малюсенькие кнопки неудобно, да и небезопасно, так как обе они расположены справа за кочергой коробки передач и нащупать их неглядя редко получается. А слева на этот месте заглушка. But Why???

Вот пожалуй и все из неприятного.

Положа руку на сердце, говорю — машина отличная! Что и неудивительно. Это «мясо» продаж тойот. Инженеры не имеют права на ошибку в этой модели.

Движок 1.6 Dual VVTi — выше всяких похвал! Аплодирую мотористам стоя. Великолепно тянет как снизу так и вверху. Должно быть это, в большой степени, сглаживает длинные передачи коробки. Кстати, несмотря на 4 ступени, коробка как это ни странно, все равно заслуживает как минимум отметки 4+. Недостаток пятой передачи на трассе и не очень большое желание прыгать вниз при обгонах, скорее всего лишь мои выдуманные придирки. Все вполне ожидаемо для автомата родом из 20-го века. Зато в городе коробка ведет себя однозначно на твердую 5! Никаких лишних кикдаунов невОвремя, когда уже поздно визжать мотором, окно в соседнем ряду уже заняли.

Закончить с альянсом движок коробка хотелось бы на позитивных цифрах расхода топлива. По трассе комп. показал 6,4, и судя по заправкам, это недалеко от истины. Про городской расход топлива писать не буду. У всех он будет разный. Опираясь на собственный опыт, могу смело заявлять, что он зависит от двух важных факторов: от темперамента водителя и от его честности. К тому же город-городу рознь. У кого-то проспекты со светофорами через 3 км. А кто-то по жизни стоит в пробках

Теперь о подвеске.

На мой взгляд почти идеальный баланс комфорта и управляемости. Ездил на камри — слишком мягко. Очень валкая в поворотах. Но оно и понятно. Её же делали под толстый зад поедателей гамбургеров с колой. Фактически Россия единственная страна, кроме штатов где камри продают. Видимо никто и не пытался переделать её под нас.

Ездил на тест драйв нового авенсиса. Очень жестко. Особенно сзади. А жаль. Предыдущий «веник» был очень приятным.

Так что королла — это золотая середина. В меру энергоемка. Отлично рулится. Конечно не BMW. но для своего сегмента управляемость весьма приятная

В плане эргономики — все по мне. Может потому что давно езжу на тойотах. А может просто «евромобилль — 1 штука». В салоне ничего не скрипит, не гремит. Пластик конечно мог бы быть и помягче, но глядя на ценник понимаешь — нормально. Сиденья очень удобны. Приятная боковая поддержка. Сзади конечно троим взрослым тесновато. Но господа! Имейте совесть. Это ведь «C» класс! Багажник заслуживает оценки 4. Он вполне вместительный, НО петли крышки конечно же портят впечатление.

Немного расстраивает бюджетный вариант рестайлинга задних фонарей. Я конечно понимаю что переделывать железную крышку багажника — дорого. Но это вставки из белых катафотов внизу на темных машинах — как бельмо в глазу. Именно поэтому она у нас банально серебристая. Кстати рестайлинг американской короллы, все таки затронул эту самую крышку багажника. Фонари там Уже. Опять таки вопрос к маркетологам — вам правда дешевле штамповать разные металлические детали, для разных рынков???

Менеджеры утверждают что дорожный просвет один из самых больших в классе. Поверим им на слово. Конечно же в сравнение с моим крузаком вериться в это с трудом. Поэтому следующая машины для жены — без вариантов паркетник. Убежден, что раскручивтаь два колеса об дорогу — это неправильно:)

Всем удачи на дорогах!

Система Toyota VVT-i

10.07.2006

Рассмотрим здесь принцип функционирования системы VVT-i второго поколения, которая применяется сейчас на большинстве тойотовских двигателей. Система VVT-i (Variable Valve Timing intelligent — изменения фаз газораспределения) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 40-60° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

1. Конструкция

Исполнительный механизм VVT-i размещен в шкиве распределительного вала — корпус привода соединен со звездочкой или зубчатым шкивом, ротор — с распредвалом.
Масло подводится с одной или другой стороны каждого из лепестков ротора, заставляя его и сам вал поворачиваться. Если двигатель заглушен, то устанавливается максимальный угол задержки (то есть угол, соответствующий наиболее позднему открытию и закрытию впускных клапанов). Чтобы сразу после запуска, когда давление в масляной магистрали еще недостаточно для эффективного управления VVT-i, не возникало ударов в механизме, ротор соединяется с корпусом стопорным штифтом (затем штифт отжимается давлением масла).


Управление VVT-i осуществляется при помощи клапана VVT-i (OCV — Oil Control Valve).
По сигналу блока управления электромагнит через плунжер перемещает основной золотник, перепуская масло в том или ином направлении. Когда двигатель заглушен, золотник перемещается пружиной таким образом, чтобы установился максимальный угол задержки.

2. Функционирование

Для поворота распределительного вала масло под давлением при помощи золотника направляется к одной из сторон лепестков ротора, одновременно открывается на слив полость с другой стороны лепестка. После того, как блок управления определяет, что распредвал занял требуемое положение, оба канала к шкиву перекрываются и он удерживается в фиксированном положении.


При повороте распредвала в сторону более раннего открытия клапанов


При повороте распредвала в сторону более позднего открытия клапанов


В режиме удержания

Функционирование системы VVT-i определяется условиями работы двигателя на различных режимах.

Режим

Фазы

Функции

Эффект

Холостой ход

1

Установлен угол поворота распределительного вала, соответствующий самому позднему началу открытия впускных клапанов (максимальный угол задержки). «Перекрытие» клапанов минимально, обратное поступление газов на впуск минимально. Двигатель стабильнее работает на холостом ходу, снижается расход топлива

Низкая нагрузка

2

Перекрытие клапанов уменьшается для минимизации обратного поступление газов на впуск. Повышается стабильность работы двигателя

Средняя нагрузка

3

Перекрытие клапанов увеличивается, при этом снижаются «насосные» потери и часть отработавших газов поступает на впуск Улучшается топливная экономичность, снижается эмиссия NOx

Высокая нагрузка, частота вращения ниже средней

4

Обеспечивается раннее закрытие впускных клапанов для улучшения наполнения цилиндров Возрастает крутящий момент на низких и средних оборотах

Высокая нагрузка, высокая частота вращения

5

Обеспечивается позднее закрытие впускных клапанов для улучшения наполнения на высоких оборотах Увеличивается максимальная мощность

При низкой температуре охлаждающей жидкости

Устанавливается минимальное перекрытие для предотвращения потерь топлива Стабилизируется повышенная частота вращения холостого хода, улучшается экономичность

При запуске и остановке

Устанавливается минимальное перекрытие для предотвращения попадания отработавших газов на впуск Улучшается запуск двигателя

3. Вариации

Приведенный выше 4-лепестковый ротор позволяет изменять фазы в пределах 40° (как, например, на двигателях серий ZZ и AZ), но если требуется увеличить угол поворота (до 60° у SZ) — применяется 3-лепестковый или расширяются рабочие полости.

Принцип действия и режимы работы этих механизмов абсолютно аналогичны, разве что за счет расширенного диапазона регулировки становится возможным вообще исключить перекрытие клапанов на холостом ходу, при низкой температуре или запуске.

При повороте распредвала в сторону более раннего открытия клапанов При повороте распредвала в сторону более позднего открытия клапанов В режиме удержания

Евгений, Москва
© Легион-Автодата


Комментарии и вопросы
можно направлять на
[email protected]

VVT-i (регулируемая система фаз распределения газа)

Двигатель Toyota нового поколения объединяет в себе удовольствие от езды и ответственность за окружающую среду

Двигатели Toyota VVT-i, VVT-i D4, VVTL-i, Гибридная система Toyota (THS) и D4D прошли долгий путь, совершенствуя Ваш опыт вождения, предоставляя более высокую мощность и экономичность.

  • VVT-i (регулируемая система фаз распределения газа)
  • VVT-i D4
  • VVTL-i (регулируемая система фаз распределения газа и движения)

VVT-i (регулируемая система фаз распределения газа) Предназначена для увеличения мощности и сохранения активного состояния.

В завоевавшей награды технологии регулируемой системы фаз распределения газа (VVT-i) применяется современный компьютер для изменения времени работы впускных клапанов в зависимости от условий движения и нагрузки двигателя.

При установке времени закрытия выпускных клапанов и времени открытия впускных клапанов характеристики двигателя могут быть изменены так, чтобы был обеспечен нужный крутящий момент двигателя во время его работы. Это дает наилучшие результаты в двух областях: мощное ускорение и большую экономию. Кроме того, более полное сгорание топлива при более высокой температуре уменьшает загрязнение окружающей среды. 

Начиная с того момента, когда Toyota была создана VVT-i технология, открылась возможность последовательно изменять время, обеспечивая оптимальную работу двигателя при любых условиях. Вот почему нет необходимости устанавливать время работы клапанов, стараясь заранее подготовить двигатель к заданным условиям езды. Или, иначе говоря, Ваш двигатель работает одинаково ровно как в городе, так и на горных Альпийских дорогах.

Многоклапанная технология Toyota VVT-i применяется во многих моделях Тойоты, включая Corolla, Avensis, RAV4 .

VVT-i D4 Технология двигателя с прямым впрыском, новая щелевидная форсунка Toyota увеличивают эффективность сгорания

Завоевавший награды двигатель Toyota VVT-i (регулируемая система фаз распределения газа) был усовершенствован с помощью небольшой, но очень эффективной идеи. Топливо теперь впрыскивается прямо в каждый цилиндр через новую щелевидную форсунку (см. ниже диаграмму и фотографию).

Как работает щелевидная форсунка:

Вы, наверное, помните свои детские игры с водяным шлангом на приусадебном участке: после того, как Вы сжимали конец шланга, вода выпрыскивалась из него под большим давлением. В новом VVT-i D4 двигателе Toyota применена та же идея для впрыскивания топлива и распределения его внутри.

Прямой впрыск – это небольшое, но важное усовершенствование в Вашем двигателе:

  • Увеличенная пульверизация топлива для достижения равномерного сгорания. 
  • Увеличен уровень компрессии до 11.0 (по сравнению с 9.8 в двигателе VVT-i). 
  • Топливо больше не остается на форсунках при холодном двигателе, вследствие чего уменьшается количество углерода, а это означает более чистый и эффективный двигатель.
  • Двигатель VVT-i D4 на 8% эффективнее, чем завоевавший награды и очень экономичный двигатель VVT-i.
  • Но самое главное – у D4 есть отличие, которое Вы в самом деле можете увидеть и почувствовать!
  • Уменьшенная загрязненность означает чистые города, леса, реки и озера.
  • Уменьшенный расход топлива означает больше денег в Вашем кармане.
  • Увеличенная мощность означает большее удовольствие при езде!

VVTL-i (регулируемая система фаз распределения газа и движения) Еще больше мощности и способности реагировать при более высоких оборотах в минуту

Новая технология Тoyota VVTL-i (регулируемая система фаз распределения газа и движения) основана на новаторской и завоевавшей награды системе управления клапанами VVT-i. Но чем отличается от нее VVTL-i? Здесь применен кулачковый механизм, который не только изменяет время, но и величину хода впускного и выпускного клапанов. На самом деле технология VVTL-i имеет много общего с телом человека: атлеты тренируются, стараясь увеличить количество воздуха, входящего в их легкие и выходящего из них. Электронный прибор контроля Toyota (ECU) работает по тому же принципу при больших скоростях двигателя. Он приподнимает четыре клапана, находящихся над цилиндром, так, чтобы был увеличен объем воздуха, попадающего в камеру сгорания, и объем отработанных продуктов. Увеличенный объем воздуха при больших скоростях двигателя (выше 6000 об/мин), означает более высокую мощность, более хорошее сгорание и уменьшение загрязнения окружающей среды. 

Аппетитные рабочие данные: Celica T Sport , оснащенная двигателем VVTL-i 1,8 л, может достичь 100 км/ч всего за 7,2 с, а максимальная скорость достигает 225 км/ч (зарегистрирована на закрытой испытательной трассе). Ее легкий двигатель, заставляющий выделяться адреналин, достигает мощности 192 л.с. при 7800 об./мин.

В двигателе VVTL-i есть также много дизайнерских новинок, предназначенных для жизни на трассе: блок цилиндров сделан из алюминиевого сплава, а стенки цилиндров выполнены по технологии MMC (Metal Matrix Composite) для увеличения износостойкости. Кроме того, инженеры Toyota создали поршни с высокими рабочими характеристиками, стараясь продлить время службы двигателя а также улучшить взаимодействие между цилиндрами и поршнями.

В результате этих усовершенствований появился легкий, но ошеломляюще мощный двигатель. Взгляните на автомобиль Celica T-Sport с новым VVTL-i двигателем.

как же они все работают?

Системы изменения фаз газораспределения стали революцией для двигателей внутреннего сгорания, а популярными они стали благодаря японским моделям 90-ых. Но как же самые известные системы отличаются в работе друг от друга?

Двигатели внутреннего сгорания с самого своего создания не были максимально эффективными. Средний КПД таких моторов равен 33 процентам — вся остальная энергия, созданная сгорающей топливо-воздушной смесью, тратится впустую. Поэтому любой способ сделать ДВС более энергоэффективным был востребован, а система изменения фаз газораспределения стала одним из самых удачных решений.

Система меняет фазы газораспределения (момент, в который каждый клапан открывается и закрывается во время рабочего цикла), их длительность (момент, когда клапан открыт) и подъём (насколько клапан может открыться).

Как вы знаете, впускной клапан в двигателе запускает в цилиндр топливо-воздушную смесь, которая затем сжимается, сжигается и выталкивается в открывающийся выпускной клапан. Эти клапана приводятся в движение толкателями, которыми управляет распредвал, используя набор кулачков для идеального соотношения закрытия и открытия.

К сожалению, обычные распредвалы делаются таким образом, что можно управлять только открытием клапанов. В этом и заключается проблема, так как для максимальной эффективности клапана должны закрываться и открываться по-разному на разных оборотах двигателя.

Например, на большой скорости работы мотора впускной клапан нужно открывать несколько раньше из-за того, что поршень движется настолько быстро, что не даёт попасть внутрь достаточному количеству воздуха. Если клапан открыть чуть раньше, то в цилиндр попадёт больше воздуха, что увеличит эффективность сгорания.

Поэтому вместо компромисса между распредвалами для больших и малых оборотов появилась система изменения фаз газораспределения, признанная одной из наиболее эффективных в этой области. Разные компании по-разному интерпретировали эту технологию, поэтому давайте разберёмся с самыми популярными из них.

VTEC.

Решение от Honda заключалось в форме распредвала, так как каждый распредвал имел два набора кулачков, смена между которыми происходила в зависимости от оборотов двигателя. VTEC (Variable Valve Timing and Lift Electronic Control) при помощи гидравлики выбирает между одним набором кулачков, когда мотор работает на низких оборотах, и другим, когда он приближается к красной зоне. Такая система в свою очередь позволила одновременно и снизить расход топлива, и повысить мощностные показатели при использовании одного распредвала, сделав моторы Honda очень разносторонними.

Гидравлическое переключение контролируется блоком управления, который использует информацию о давлении масла, температуре двигателя, скорости автомобиля и оборотов двигателя. После этого программа решает, какой из двух вариантов кулачков использовать, используя соленоид, который отправляет масляное давление посредством специфического клапана, а затем запирает механизм штифтом, закрепляя выбор за одним из вариантов.

Такая смена вариантов кулачков подразумевала, что двигатели Honda с VTEC в самом высоком диапазоне оборотов выдают максимальную мощность, как раз после того, как система «срабатывает». И пусть эффект от неё не такой, как от турбины, но многие фанаты всё равно останутся верны VTEC-моторам, рассказывая о том, как они едут на самых высоких оборотах.

VVT-i.

Система изменения фаз газораспределения от Toyota создана по пути использования шестерён распредвала для изменения отношений между ремнём или цепью ГРМ и распредвалом. Специальный ротор внутри шкива распредвала может вращаться под нагрузкой от пружины, поворачивая распредвал на дополнительные несколько градусов, задерживая или опережая взаимодействие между зубьями шкива и вращающейся цепи.

Такая система сдвига фаз газораспределения, при которой внутренний ротор в шкиве распредвала может влиять на положение распредвала, тем самым изменяя время взаимодействия кулачков и толкателей, применяется на многих моторах Toyota. Впервые технология была представлена на двигателе 2JZ-GE, устанавливаемом на знаменитую Toyota Supra в кузове A80.

Vanos.

Vanos (или Variable Nockenwellensteuerung) — попытка компании BMW создать систему изменения фаз газораспрделения, и впервые она была применена на моторе M50, устанавливаемом на 5-серию в 90-ых годах прошлого века. Он также использует принцип задерживания или опережения взаимодействия механизмов ГРМ, но с использованием зубчатой передачи внутри шкива распредвала, которая двигается вместе или против распредвала, изменяя фазы работы. Этот процесс контролируется электронным блоком управления, который использует давление масла для движения зубчатой передачи вперёд или назад.

Как и в случае с остальными системами, зубчатая передача движется вперёд для того, чтобы открывать клапана немного раньше, увеличивая количество воздуха, поступающего в цилиндры и увеличивая выходную мощность двигателя. На самом деле, сначала BMW представили одиночный Vanos, который работал только на впускном распредвале в определённых режимах на разных оборотах двигателя. Немецкая компания позже разработала систему с двумя Vanos, которая считается более продвинутой, так как влияет на оба распредвала, а также регулирует положение дроссельной заслонки. Двойной Vanos был создан для S50B32, который ставили на BMW M3 в кузове E36, а также Z3 M.

Сейчас практически у каждого крупного производителя есть собственной название для системы фаз газораспределения — у Rover это VVC, у Nissan — VVL, а Ford разработали VCT. И в этом нет ничего удивительного, учитывая, что это одна из самых удачных находок для двигателей внутреннего сгорания. Благодаря ей производители смогли и уменьшить расход, и увеличить мощность своих моторов.

Но с приходом пневматического управления клапанами эти системы уйдут на покой. Однако сейчас — как раз их время.

Двигатели нового поколения внедорожника Chevrolet Traverse на сайте дилера в Москве

Интеллектуальная технология STOP/START

3,6-литровый двигатель V6 оснащен интеллектуальной технологией STOP/START, Chevrolet впервые решил включить ее в базовую комплектацию.

По своей сути она мало чем отличается от технологий STOP/START, реализованных на других моделях Chevrolet. Тем не менее в этой модификации удалось обеспечить более тихую остановку и запуск двигателя с минимальной вибрацией — владельцы Traverse будут приятно удивлены тем, насколько плавно все работает. Эта система также умеет распознавать определенные маневры, например, когда водитель заезжает в гараж или паркуется задним ходом, а необходимость остановки/запуска теперь определяется более точно.

Принцип работы

Никаких действий со стороны водителя не требуется. Интеллектуальная технология Stop/Start автоматически заглушает двигатель, когда автомобиль останавливается при определенных условиях, например, на перекрестке, когда горит красный сигнал светофора. Это позволяет снизить расход топлива. Когда водитель убирает ногу с педали тормоза, двигатель автоматически запускается.

Система контролирует скорость автомобиля, режим работы климат-контроля и другие факторы, чтобы оценить целесообразность отключения двигателя. В некоторых ситуациях, например, при частых остановках во время городских пробок, двигатель заглушаться не будет. Функция остановки двигателя работает по определенному алгоритму. Повторный запуск двигателя произойдет примерно через две минуты, если водитель не убрал ногу с педали тормоза раньше.

Уникальные комплектующие системы Stop/Start:

  • Стартер с двумя соленоидами обеспечивает более быстрый и плавный пуск, даже когда двигатель еще не полностью остановился.
  • Уникальный преобразователь постоянного тока (DC-DC) помогает избежать скачков напряжения во время остановки/запуска, предотвращая кратковременное изменение интенсивности освещения, а также самопроизвольную перезагрузку или шумы в мультимедийной/информационно-развлекательной системе.
  • Накопитель с электронным управлением удерживает давление трансмиссионной жидкости, чтобы удерживать сцепление и обеспечить возможность немедленного начала движения, когда водитель убирает ногу с педали тормоза.
  • Подрамник двигателя гасит реакцию от крутящего момента и вибрации, связанные с повторным пуском, обеспечивая плавную и почти незаметную работу.

Что такое двигатель VVT-i? | News

VVT-i означает Variable Valve Timing-Intelligence, что является названием Toyota для технологии регулируемого клапана, которую она использует в большинстве своих автомобилей.

Большинство производителей используют технологию изменения фаз газораспределения, и, хотя детали различаются, все системы вносят небольшие коррективы в то, когда впускные клапаны двигателя открываются и закрываются, чтобы подавать топливно-воздушную смесь в двигатель, в зависимости от того, как движется автомобиль. Это сделано для максимальной производительности и снижения выбросов.Некоторые системы регулируемых клапанов также воздействуют на выпускные клапаны, которые открываются, выпуская топливно-воздушную смесь из двигателя.

Связано: Горит ли индикатор проверки двигателя? 5 наиболее распространенных причин

При изменении фаз газораспределения клапаны открываются на более короткие периоды во время небольшого ускорения или холостого хода, поэтому в двигатель поступает меньше воздушно-топливной смеси, что способствует снижению выбросов. При резком ускорении клапаны открываются дольше, поэтому в двигатель поступает больше топливовоздушной смеси и увеличивается мощность.

В Toyota VVT-i электронный блок управления — «мозг», который управляет работой двигателя — постоянно вычисляет наилучшее время для открытия и закрытия клапанов и активирует клапан давления масла, чтобы изменить время, изменяя скорость распределительного вала.

В некоторых двигателях Toyota, таких как 3,5-литровый V-6 внедорожника Highlander, используются электродвигатели для изменения фаз газораспределения впускных клапанов, и Toyota маркирует их как VVT-iE (для электромобилей). На таких двигателях, как 3,5-литровый и 2,5-литровый, используемые в седане Camry, выпускные клапаны также имеют регулируемые фазы газораспределения, и они называются Dual VVT-i.Toyota заявляет, что за счет оптимизации фаз газораспределения в зависимости от условий движения, VVT-i увеличивает мощность, улучшает экономию топлива и снижает выбросы.

Alfa Romeo была первым производителем, предложившим систему регулирования фаз газораспределения в 1980 году, за ней последовали и другие производители, в том числе Honda в 1989 году со своей системой VTEC. Toyota анонсировала VVT-i в 1995 году, и он был представлен в США на модернизированном Lexus LS 400 1998 года. Celica 2000 модельного года была первой моделью Toyota в США с ним.

Все текущие модели Toyota в U.S. используют двигатели VVT-i, за исключением автомобиля Mirai на топливных элементах, купе 86 и спортивного автомобиля Supra. 86 использует двигатель Subaru, а Supra — двигатель BMW, и оба имеют регулируемые фазы газораспределения.

Ещё на Cars.com:

Редакционный отдел Cars.com — ваш источник автомобильных новостей и обзоров. В соответствии с давней политикой этики Cars.com редакторы и рецензенты не принимают подарки или бесплатные поездки от автопроизводителей. Редакция не зависит от Cars.com, отделы рекламы, продаж и спонсируемого контента.

Toyota разрабатывает новую технологию двигателя VVT-i

Повышенная экономия топлива и снижение выбросов NOx и углеводородов

Перекрытие клапанов (момент, когда впускные и выпускные клапаны открыты), создаваемое непрерывным широким контролем времени впускных клапанов в зависимости от нагрузки и скорости двигателя, увеличивает экономию топлива и снижает выбросы NOx и углеводородов.

В обычном бензиновом двигателе дроссельная заслонка управляет впуском воздуха, когда педаль акселератора нажата не полностью (движение с частичной нагрузкой).Это создает вакуумное давление в цилиндре, вызывая дополнительную нагрузку на поршень (насосные потери).

Напротив, двигатель с VVT-i увеличивает время открытия впускного клапана во время движения с частичной нагрузкой, увеличивает перекрытие клапанов и втягивает частичный выхлопной газ обратно в цилиндр. Это дает три результата: (1) пониженное давление внутри цилиндра снижается, чтобы уменьшить потери на впуске и увеличить экономию топлива; (2) температура горения понижается, чтобы уменьшить выбросы NOx; и (3) несгоревший газ возвращается в камеру сгорания для повторного сжигания, восстанавливая углеводороды.

Клапаны не перекрываются для стабилизации сгорания, когда двигатель работает на холостом ходу, а частота вращения на холостом ходу снижается для улучшения экономии топлива.

Увеличенный крутящий момент и мощность

В условиях движения с высокой нагрузкой, требующих высокого крутящего момента и мощности, синхронизация впускных клапанов регулируется оптимально (непрерывно и в широком диапазоне) в зависимости от частоты вращения двигателя. Эффект инерции всасывания полностью используется для увеличения всасываемого воздуха, таким образом увеличивая крутящий момент и мощность.

Чтобы увеличить количество всасываемого воздуха, время закрытия впускного клапана должно определяться с учетом эффекта инерции впуска и возврата всасываемого воздуха, вызванного поднимающимся поршнем.Оптимальные временные изменения в зависимости от оборотов двигателя.

Двигатель VVT-i увеличивает крутящий момент на низких и средних оборотах за счет предварительного управления закрытием впускных клапанов в диапазонах низких и средних оборотов. При увеличении частоты вращения двигателя время закрытия впускного клапана замедляется, чтобы увеличить мощность.

Регулируемая синхронизация клапана (VVT)

регулируемый клапан ГРМ (VVT)

Базовый Теория

После мультиклапанная технология стала стандартом в конструкции двигателя, регулируемые фазы газораспределения. становится следующим шагом к увеличению мощности двигателя, независимо от мощности или крутящего момента.

Как ты знаете, клапаны активируют дыхание двигателя. Время дыхания, которое время впуска и выпуска воздуха регулируется формой и фазой угол кулачков. Чтобы оптимизировать дыхание, двигатель требует разных фаз газораспределения на разных оборотах. Когда обороты увеличиваются, продолжительность такта впуска и выпуска уменьшается, так что свежий воздух не достаточно быстро, чтобы попасть в камеру сгорания, при этом выхлоп становится не быстрым достаточно, чтобы покинуть камеру сгорания.Поэтому лучшее решение — открыть впускные клапаны раньше и закрытие выпускных клапанов позже. Другими словами, Перекрытие между периодом впуска и периодом выпуска должно быть увеличивается с увеличением оборотов.


Без переменной Технология Valve Timing, инженеры использовали для выбора лучшего компромиссного времени. Например, фургон может иметь меньшее перекрытие из-за преимущества низкой скорости. выход.Гоночный двигатель может иметь значительное перекрытие для высокой скорости власть. Обычный седан может принять оптимизацию фаз газораспределения. для средних оборотов, так что и управляемость на низких скоростях, и выход на высоких скоростях будут не нужно слишком много жертвовать. Независимо от того, какой из них, результат просто оптимизируется для конкретной скорости.

с Регулируемая синхронизация клапана, мощность и крутящий момент могут быть оптимизированы в широком диапазоне оборотов. Наиболее заметные результаты:

    • Двигатель может вращаться выше, тем самым повышается пиковая мощность.Например, 2-литровый Neo VVL от Nissan. мощность двигателя на 25% больше пиковой мощности, чем у его версии без VVT.
    • Низкоскоростной крутящий момент увеличивается, тем самым улучшая управляемость. Например, двигатель Fiat Barchetta 1.8 VVT обеспечивает максимальный крутящий момент 90%. между 2000 и 6000 об / мин.


Причем все эти преимущества приходят без каких-либо недостатков.

переменная Подъемник

В некоторых конструкции, высота подъема клапана также может изменяться в зависимости от частоты вращения двигателя.На высоком скорость, более высокий подъем ускоряет впуск и выпуск воздуха, таким образом, еще больше оптимизируя дыхание. Конечно, на меньшей скорости такой подъемник вызовет противодействующие эффекты, такие как ухудшение процесса смешивания топлива и воздух, что снижает мощность или даже приводит к пропускам зажигания. Поэтому подъемник должен изменяться в зависимости от частоты вращения двигателя.

1) Кулачок сменный VVT

Honda впервые применила VVT для дорожных автомобилей в конце 80-х. запустив свою знаменитую систему VTEC (Valve Timing Electronic Control).Первый появился в Civic, CRX и NS-X, затем стал стандартным для большинства моделей.

Можно рассматривайте это как 2 набора кулачков разной формы, чтобы обеспечить различное время и поднимать. Один комплект работает на нормальной скорости, скажем, ниже 4500 об / мин. Другой заменяет на более высокой скорости. Очевидно, такая компоновка не допускает непрерывного изменение фаз газораспределения, поэтому двигатель работает скромно ниже 4500 об / мин, но выше этого он внезапно превратится в дикое животное.

Это Система действительно улучшает пиковую мощность — она ​​может поднять красную линию почти до 8000 об / мин. (даже 9000 об / мин в С2000), как двигатель с гоночными распредвалами, и увеличить максимальную мощность на целых 30 л.с. за 1.6-литровый двигатель !! Тем не мение, чтобы использовать такой прирост мощности, вам нужно поддерживать кипение двигателя на уровне выше пороговые обороты, поэтому требуется частое переключение передач. Как низкоскоростной крутящий момент слишком мало (помните, кулачки нормального двигателя обычно 0-6000 об / мин, при этом «медленные кулачки» двигателя VTEC еще должны обслуживать на 0–4500 об / мин), ходовые качества не будут слишком впечатляющими. Суммируя, Система кулачкового переключения лучше всего подходит для спортивных автомобилей.

Honda уже улучшил свой 2-ступенчатый VTEC до 3-ступенчатого для некоторых моделей.Конечно, чем больше в нем ступеней, тем более утонченным он становится. Он по-прежнему предлагает менее широкий распространение крутящего момента, как и в других бесступенчатых системах. Однако кулачковый система остается самой мощной VVT, так как никакая другая система не может изменить Lift клапана как это делает.

Преимущество:

Мощный на верхнем конце

Недостаток:

2 или только 3 этапа, непостоянно; нет значительного улучшения крутящего момента; комплекс

Кто используй это ?

Honda VTEC, Mitsubishi MIVEC, Nissan Neo VVL.

Хонды последний 3-ступенчатый VTEC был применен в Civic sohc двигатель в Японии. Механизм имеет 3 кулачка с разным синхронизацией и профилем подъема. Обратите внимание, что их размеры тоже разные — средний кулачок (быстрый тайминг, высокий подъем), как показано на диаграмме выше, является самым большим; кулачок правой стороны (медленный ГРМ, средний подъем) среднего размера; левый кулачок (медленный выбор времени, низкий лифт) самый маленький.

Это механизм работает так:

Этап 1 (низкая скорость): 3 шт. коромысел перемещается самостоятельно. Поэтому левый коромысел, который приводит в действие левый впускной клапан приводится в действие левым кулачком пониженного подъема. Правая коромысла, которая приводит в действие правый впускной клапан, приводится в движение правым кулачком среднего подъема. Оба синхронизация кулачков относительно медленная по сравнению со средним кулачком, который не срабатывает. клапан сейчас.

Этап 2 (средняя скорость) : гидравлическое давление (на картинке окрашен оранжевым) соединяет левую и правую коромысла вместе, оставляя среднюю коромысло и кулачок работать самостоятельно.Поскольку правый кулачок больше, чем левый, эти соединенные коромысла на самом деле приводится в движение правым кулачком. В результате оба впускных клапана работают медленно, но средний подъем.

Этап 3 (высокая скорость): гидравлическое давление соединяет все 3 коромысла вместе. Поскольку средний кулачок самый большой, оба впускных клапаны фактически приводятся в движение этим быстрым кулачком. Таким образом, быстрое время и высокий подъем достигается в обоих клапанах.

Очень похож на систему Хонды, но правильный и левые кулачки с таким же профилем.На малой скорости приводятся оба коромысла. независимо от этих правых и левых кулачков с низкой синхронизацией и низким подъемом. На высоком скорости, 3 коромысла соединены вместе таким образом, что они приводятся в движение быстродействующий средний кулачок с высоким подъемом.

Вы может подумать, что это должна быть двухступенчатая система. Нет это не так. Начиная с Nissan Neo VVL дублирует такой же механизм в выпускном распредвале, может быть 3 ступени получается следующим образом:

Этап 1 (низкая скорость): как впускной, так и выпускной клапаны находятся в медленном состоянии.
Этап 2 (средняя скорость): быстро конфигурация впуска + конфигурация медленного выпуска.
Этап 3 (высокая скорость): оба впускные и выпускные клапаны в быстрой комплектации.

2) Кулачок VVT

Кулачковый VVT — самый простой, дешевый и наиболее часто используемый механизм на данный момент. Тем не менее, его прирост в производительности также минимальный, очень действительно справедливо.

В основном, он изменяет фазы газораспределения, изменяя фазовый угол распредвалов.Для Например, на высоких оборотах распредвал впускных клапанов будет повернут заранее на 30, так что для более раннего приема. Это движение контролируется системой управления двигателем. система в соответствии с потребностями и приводится в действие шестернями гидравлического клапана.

Обратите внимание, что фаза кулачка VVT не может изменять длительность. открытия клапана. Он просто позволяет раньше или позже открыть клапан. Ранее открыт приводит, конечно, к более раннему закрытию. Он также не может изменять подъем клапана, в отличие от кулачковый VVT.Однако VVT с фазированием кулачка — самая простая и дешевая форма VVT, потому что каждому распределительному валу нужен только один гидравлический привод фазирования, в отличие от другие системы, использующие индивидуальный механизм для каждого цилиндра.

Непрерывный или дискретный

Проще фазировка кулачка VVT имеет 2 или 3 фиксированных угла сдвига на выбор, например как 0 или 30. Лучшая система имеет непрерывное переключение переменной, скажем, любое произвольное значение от 0 до 30, зависит от оборотов.Очевидно, это обеспечивает наиболее подходящие фазы газораспределения на любой скорости, поэтому значительно повысить гибкость двигателя. Более того, переход настолько гладкий, что практически незаметен.

Впускной и выхлоп

Некоторые дизайн, такой как система BMW Double Vanos, имеет фазовращение VVT как на впускном, так и на выпускном распредвалах, что позволяет перекрытие, следовательно, более высокая эффективность. Это объясняет, почему BMW M3 3.2 (100 л.с. / литр) более эффективен, чем его предшественник M3 3.0 (95 л.с. / литр), VVT которого ограничены впускными клапанами.

В E46 3-й серии, Двойной Ванос сдвигает впуск распредвал в пределах максимального диапазона 40. Выпускной распредвал 25.

Преимущество:

Дешево и простой, непрерывный VVT улучшает передачу крутящего момента на всех оборотах диапазон.

Недостаток:

Отсутствие переменного подъема и переменной продолжительности открытия клапана, что снижает мощность на верхнем конце чем кулачковый VVT.

Кто используй это ?

Мост автопроизводители, такие как:

Audi V8 — впускной, 2-ступенчатый дискретный

BMW Double Vanos — впуск и выпуск, непрерывный

Феррари 360 Модена — выхлоп, 2-ступенчатый дискретный

Fiat (Альфа) СУПЕР ПОЖАР — впускной, 2-ступенчатый дискретный

Ford Puma 1.7 Zetec SE — впускной, 2-ступенчатый дискретный

Jaguar AJ-V6 и обновленные AJ-V8 — впускной, непрерывный

Lamborghini Diablo SV двигатель — впускной, 2-ступенчатый дискретный

Porsche Variocam — впускной, 3-ступенчатый дискретный

Рено 2.0-литровый — впускной, 2-ступенчатый дискретный

Toyota VVT-i — впускной, непрерывный

Volvo 4/5/6 цилиндров модульные двигатели — впускные, непрерывного действия

По картинке легко понять его работу. Конец распределительный вал имеет зубчатую резьбу. Нить соединена колпачком, который может двигайтесь по направлению к распределительному валу и от него. Поскольку резьба шестерни не в параллельно оси распределительного вала, фазовый угол сместится вперед, если крышка толкнул в сторону распредвала.Аналогичным образом снимаем колпачок с распредвала. приводит к сдвигу фазового угла назад.

Ли толкать или тянуть определяется гидравлическим давлением. Есть 2 камеры рядом с крышкой, и они заполнены жидкостью (эти камеры окрашены в зеленый и желтый цвета соответственно на картинке) Тонкий поршень отделяет Эти 2 камеры, первая жестко крепится к крышке. Жидкость попадает в камеры через электромагнитные клапаны, которые регулируют гидравлическое давление действующие на какие камеры.Например, если система управления двигателем сигнализирует клапан в зеленой камере открывается, затем гидравлическое давление действует на тонкую поршень и подтолкните его вместе с крышкой к распределительному валу, таким образом сдвинуть фазовый угол вперед.

Непрерывный вариацию по времени легко реализовать, поместив колпачок на подходящую расстояние в зависимости от оборотов двигателя.


Макрос иллюстрация привода фазирования

Toyota VVT-i (Регулируемая синхронизация клапана — Интеллектуальная) распространяется на все больше и больше свои модели, от крошечного Yaris (Vitz) к Supra.Его механизм более или менее такой же, как у BMW Vanos, но это также бесступенчатая конструкция.

Однако слово «Integillent» подчеркивает умный программа управления. Не только меняет время в зависимости от оборотов двигателя, но и рассмотрите другие условия, такие как ускорение, подъем или спуск.

3) Замена кулачка + Кулачковый Фазинг VVT

Комбинация VVT с переключением кулачков и VVT с фазированием кулачка может удовлетворить требование максимальной мощности и гибкости на всем обороте диапазон, но он неизбежно более сложен.На момент написания только Toyota и Porsche имеют такие конструкции. Однако я верю, что в будущем будет все больше и больше спортивных автомобилей. принять на вооружение этот вид VVT.

Toyota VVTL-i это самая изощренная конструкция VVT на сегодняшний день. Его мощные функции включают:

    • Непрерывный фаза газораспределения регулируемая фаза газораспределения
    • 2-ступенчатая переменная подъем клапана плюс продолжительность открытия клапана
    • Применяется к обоим впускные и выпускные клапаны


Система может быть рассматривается как комбинация существующих VVT-i и Honda VTEC, хотя механизм вариатора отличается от Хонда.

Нравится VVT-i, регулировка фаз газораспределения реализована сдвиг фазового угла всего распределительного вала вперед или назад с помощью Гидравлический привод закреплен на конце распредвала. Время рассчитывается системой управления двигателем с частотой вращения коленчатого вала двигателя, ускорением, при подъеме или спуске с холма и т. д. с учетом. Более того, изменение непрерывно в широком диапазоне до 60, поэтому Одна только переменная синхронизация — это, пожалуй, самая совершенная конструкция на сегодняшний день.

Что делает VVTL-i лучше обычного VVT-i — это буква «L», что означает «подъем» (подъем клапана). как всем известно. Давайте посмотрим на следующую иллюстрацию:

Как и VTEC, в системе Toyotas используется одиночный качающийся рычаг. толкатель для приведения в действие обоих впускных клапанов (или выпускных клапанов). Он также имеет 2 камеры лепестки действуют на толкатель коромысла, лепестки имеют другой профиль — один с более длительным профилем времени открытия клапана (для высокой скорости), другой с более короткий профиль продолжительности открытия клапана (для низкой скорости).На низкой скорости медленный кулачок приводит в действие толкатель коромысла через роликовый подшипник (для уменьшения трения). Высокоскоростной кулачок не влияет на толкатель коромысла, потому что под его гидравлическим толкателем имеется достаточный зазор.

<Плоский крутящий момент выход (синяя кривая)

Когда скорость увеличилась до пороговой, скользящий штифт толкается гидравлическое давление для заполнения промежутка. Включается высокоскоростной кулачок.Обратите внимание, что быстрый кулачок обеспечивает более длительное открытие клапана, в то время как скользящий штифт увеличивает подъем клапана. (для Honda VTEC продолжительность и подъем реализуется кулачками)

Очевидно, переменная продолжительность открытия клапана является двухступенчатой ​​конструкцией, в отличие от непрерывной конструкции Rover VVC. Однако VVTL-i предлагает регулируемый подъемник, что значительно увеличивает его выходную мощность на высоких скоростях. Сравнивать с Honda VTEC и аналогичными конструкциями для Mitsubishi и Nissan система Toyotas имеет бесступенчатую регулировку. фаза газораспределения, которая помогает ему достичь гораздо лучших низких и средних оборотов гибкость.Поэтому это, несомненно, лучший VVT на сегодняшний день. Однако это также более сложный и, вероятно, более дорогой в сборке.

Преимущество:

Непрерывный VVT улучшает передачу крутящего момента во всем диапазоне оборотов; Переменный лифт и длительность подъема на высоких оборотах.

Недостаток:

Подробнее сложный и дорогой

Кто используй это ?

Тойота Селика GT-S

Variocam Plus использует гидравлический фазирующий привод и регулируемые толкатели

Variocam из 911 Carrera

использует цепь привода ГРМ для

фазировка кулачка.


Porsches Variocam Plus, как сообщается, был разработан на основе Variocam, который обслуживает Carrera. и Боксстер. Однако я нашел их механизмы практически ничего не поделитесь. Variocam был первым введен в 968 в 1991 году. В нем использовалась цепь привода ГРМ для изменения фазового угла распределительного вала, при этом предусмотрена 3-х ступенчатая система изменения фаз газораспределения. 996 Carrera и Boxster также используют ту же систему. Этот дизайн уникальный и запатентованный, но на самом деле он уступает гидравлическому приводу, который предпочитают другие производители автомобилей, тем более, что он не позволяет столько же вариаций фазового угла.

Следовательно, Variocam Plus, используемый в новом 911 Turbo, наконец Follow использует популярный гидравлический привод вместо цепи. Один известный Эксперт Porsche охарактеризовал изменение фаз газораспределения как непрерывное, но, похоже, противоречит официальному заявлению, сделанному ранее, в котором раскрывается система имеет 2-х ступенчатые фазы газораспределения.

Однако Самым значительным изменением «Плюса» является добавление регулируемый подъем клапана. Это реализуется за счет использования регулируемых гидравлических толкателей.В качестве Как показано на рисунке, каждый клапан обслуживается 3 кулачками, центральная часть имеет очевидно меньший подъем (всего 3 мм) и меньшее время открытия клапана. В Другими словами, это «медленный» кулачок. Два наружных выступа кулачка точно так же, с быстрой синхронизацией и большим подъемом (10 мм). Выбор камеры лепестки выполнены регулируемым толкателем, который на самом деле состоит из внутреннего толкатель и внешний (в форме кольца) толкатель. Они могли быть заперты вместе проходящий через них штифт с гидравлическим приводом.Таким образом, «быстрый» выступы кулачка приводят в действие клапан, обеспечивая высокий подъем и длительное открытие. Если толкатели не заблокированы вместе, клапан будет приводиться в действие «медленный» выступ кулачка через внутренний толкатель. Внешний толкатель будет двигаться независимо от толкателя клапана.

Как Как видно, механизм регулируемого подъема необычайно прост и экономит место. В регулируемые толкатели лишь немного тяжелее обычных толкателей и зацепляются почти не осталось места.

Тем не менее, на данный момент Variocam Plus предлагается только для впускные клапаны.

Преимущество:

VVT улучшает передачу крутящего момента на низкой / средней скорости; Переменный подъем и продолжительность подъемник на высоких оборотах.

Недостаток:

Подробнее сложный и дорогой

Кто используй это ?

Порше 911 Турбо

4) Ровер уникальный Система ВВЦ

Rover представил собственные системные вызовы VVC (Variable Valve Control) в MGF в 1995 г.Многие эксперты считают его лучшим VVT по универсальности. способность — в отличие от кулачкового VVT, он обеспечивает плавную регулировку времени, таким образом улучшается передача крутящего момента на низких и средних оборотах; и в отличие от кулачкового VVT, он может увеличивать продолжительность открытия клапанов (и непрерывно), тем самым увеличивая власть.

В основном, VVC использует эксцентриковый вращающийся диск для привода впускных клапанов каждых двух цилиндр. Поскольку эксцентричная форма создает нелинейное вращение, открытие клапанов период можно варьировать.Все еще не понимаете? ну, любой умный механизм должен трудно понять. В противном случае Rover будет не единственным автопроизводителем, использующим Это.

ВВЦ имеет один недостаток: поскольку каждый отдельный механизм обслуживает 2 соседних цилиндра, Для двигателя V6 нужно 4 таких механизма, а это недешево. V8 тоже нужно 4 таких механизм. V12 невозможно установить, так как недостаточно места для установите эксцентриковый диск и ведущие шестерни между цилиндрами.

Преимущество:

Постоянно изменяемые сроки и продолжительность открывания позволяют добиться как управляемости, так и высокой скорость мощность.

Недостаток:

Нет в конечном итоге такой же мощный, как VVT с переключением кулачков, из-за отсутствия переменной поднимать; Дорого для V6 и V8; невозможно для V12.

Кто используй это ?

Ровер Двигатель 1.8 VVC, обслуживающий MGF, Caterham и Lotus Elise 111S.

EGR (рециркуляция выхлопных газов) принятый метод снижения выбросов и повышения топливной экономичности.Однако это VVT действительно раскрывает весь потенциал системы рециркуляции отработавших газов.

В Теоретически необходимо максимальное перекрытие между впускными и выпускными клапанами открывается всякий раз, когда двигатель работает на высоких оборотах. Однако когда машина работает на средней скорости по шоссе, другими словами, двигатель работает на небольшая нагрузка, максимальное перекрытие может быть полезно как средство уменьшения расхода топлива потребление и выбросы. Поскольку выпускные клапаны не закрываются, пока впускные клапаны были открыты некоторое время, некоторые выхлопные газы рециркулируют обратно в цилиндр одновременно с впрыскивается новая топливно-воздушная смесь.В составе топливовоздушной смеси заменяется на выхлопные газы, нужно меньше топлива. Поскольку выхлопные газы состоят в основном из негорючий газ, такой как CO2, двигатель работает нормально на бедном топливе / воздушная смесь не загорается.

Что такое VVT и нужно ли его отключать?

С самого начала разработки «горячих родов» редукторы пытались повысить производительность двигателей внутреннего сгорания за счет оптимизации фаз газораспределения.Раз за разом доказывалось, что распредвал — это сердце двигателя, и замена этого одного компонента может оказаться столь же катастрофической, сколь и героической. Многие катаются на таком решении, но отдача может быть совершенно особенной. По этой причине замена кулачка часто является первым местом, где можно увеличить мощность в ориентированном на производительность уличном автомобиле, а для современных автомобилей это означает столкновение с системой изменения фаз газораспределения, или сокращенно VVT.

Посмотреть все 15 фото

Как вы уже догадались, замена камеры — это еще не все; есть компромиссы. Завод приложил много усилий, чтобы найти лучший компромисс между экономичностью, выбросами и выходной мощностью. В этом поиске золотой середины производители оригинального оборудования разработали технологию VVT, и большинство отечественных высокопроизводительных автомобилей из Детройта предлагают ту или иную форму этого технологического стандарта. VVT обладает волшебной способностью сочетать лучшее из обоих миров, улучшая фазу газораспределения для большей максимальной мощности и замедляя фазу газораспределения для улучшения уличных манер (экономия топлива, вакуум в двигателе и низкие характеристики).

Просмотреть все 15 фотографий

Если кажется, что VVT уменьшит или устранит необходимость замены распредвалов, вы на правильном пути. В случае наиболее распространенных двигателей с толкателем, оснащенных VVT с горячим стержнем — GM Gen IV LS и FCA Gen III «Eagle» Hemi — система изменения фаз газораспределения стала огромным шагом вперед в улучшении всех аспектов работы. Проблема, конечно, в том, что большего никогда не бывает.Когда вы понимаете, что хотите еще большего, вы можете задаться вопросом, хорошая ли идея — сохранить VVT или отбросить его, и именно на это мы здесь сегодня, чтобы ответить. Чтобы ответить на этот вопрос, мы сначала должны взглянуть на основную функцию VVT.

Как работает VVT?

Посмотреть все 15 фото Обратите внимание на плунжер слева, который регулирует давление в контуре с помощью силового двигателя на крышке привода ГРМ.

В случае GM Gen IV LS и FCA Hemi, VVT работает с одним кулачком внутри блока, а с Ford Coyote — с двумя верхними распредвалами (всего четыре).Во всех трех случаях масло под давлением управляет фазированием кулачков распределительного вала относительно коленчатого вала, так что изменение давления в масляном контуре непосредственно влияет на фазу газораспределения. В случае Ford Coyote моментом срабатывания впускных клапанов можно управлять независимо от выпускных клапанов, но для нашего обсуждения именно событие закрытия впускного клапана имеет значительно большее влияние на такие вещи, как мощность и экономичность.

Закрытие впускного клапана

Посмотреть все 15 фотографий Иллюстрация Дэвида Кимбалла схемы смазки VVT GM в двигателе GM LT1 Gen V V-8.

Перемещение закрытия впускного клапана рано или поздно в цикле сжатия оказывает глубокое влияние почти на все аспекты работы двигателя и является причиной, по которой GM и FCA сосредоточили свои усилия в этой области. При перемещении события закрытия впускного клапана раньше, больший объем воздуха и топлива задерживается в камере сгорания, обеспечивая большую направленную вниз силу (мощность) в случае сгорания. Это приводит к повышению мощности и эффективности работы на низких оборотах.

По мере увеличения оборотов двигателя динамика поступающего воздуха начинает играть дополнительную роль.Инерция входящей воздушной пробки продолжает заполнять цилиндр после того, как он достиг своей вместимости — при условии, что впускной клапан все еще открыт. Подвешивание впускного клапана открытым на несколько градусов дольше при более высоких оборотах двигателя обеспечивает этот легкий эффект наддува, а регулировка фаз газораспределения использует это преимущество за счет увеличения мощности. Задерживая событие закрытия впускного клапана, можно заставить двигатель работать так, как если бы у него был кулачок длительного действия на высоких оборотах, но как кратковременный на низких оборотах.Это чрезмерное упрощение, поскольку три других события распределительного вала — открытие впускного клапана, закрытие выпускного клапана и, в большей степени, открытие выпускного клапана — также имеют некоторое влияние, но они далеко не так важны, как событие закрытия впускного клапана.

Зачем удалять VVT?

Посмотреть все 15 фотографий Для снятия VVT (кулачковая звездочка слева) необходимо установить специальную кулачковую звездочку без VVT (номер детали GM 12586481) и крышку привода ГРМ без VVT.

Если VVT делает такую ​​звездную работу по предоставлению лучшего из обоих миров, зачем его удалять? В двух словах: больше мощности.По мере того, как все становится больше, а заводские детали заменяются нестандартными, система VVT будет изо всех сил пытаться приспособить кулачки с более высоким подъемом и более жесткие пружины клапанов. В какой-то момент сила более сильных клапанных пружин будет подавлять контур смазки VVT, и положение кулачка перейдет в опасную зону, что приведет к повреждению клапанов и поршней.

Эксперты VVT

Посмотреть все 15 фотографий Кулачок GM LS без VVT в сравнении с кулачком VVT (обратите внимание на стрелку на отверстии контура смазки).

В этой области многое может пойти не так в спешке, поэтому при принятии решений о более крупных распредвалах, большем количестве кубов или сумматоров мощности рекомендуется проконсультироваться со специалистами по двигателям с VVT-характеристиками.В связи с этим Brian Tooley Racing, COMP Cams и Mast Motorsports потратили много времени на разработку компонентов, которые помогут вам интегрировать VVT в вашу программу двигателя или, наоборот, полностью исключить его из вашего двигателя, в зависимости от ваших потребностей. (Мужчины Ford захотят ознакомиться с линейкой MMR специфичных для Ford Coyote механизмов VVT здесь.)

См. Все 15 фотографий

Большинство экспертов сходятся во мнении, что точка безубыточности для использования VVT на модифицированном V-8 составляет около 600 л.с. Это почти предел, при котором стандартный контур смазки VVT — в первую очередь насос и подъемники — может не отставать от более сильных пружин клапана и распределительных валов с более высоким подъемом.Степень, в которой эти компоненты будут ограничивать вас по мощности, совершенно не связана с проблемой столкновения поршня с клапаном. Крушение клапана может произойти с большими кулачками, поскольку схема VVT пересекает свой диапазон полномочий оригинального оборудования, который довольно значительный в стандартной форме (более 60 градусов угла поворота коленчатого вала). Удаление VVT с двигателя с помощью комплекта (например, BTR) обеспечит большую гибкость для агрессивных кулачков и более сильных компонентов клапанного механизма. В случае LS Gen IV VVT является полностью внешним по отношению к блоку, поэтому его можно удалить (или даже добавить в LS Gen III или IV, у которых его не было) без особой помпы.

Могу ли я добавить VVT к двигателю?

Посмотреть все 15 фотографий Для механического преобразования Gen III LS в VVT требуется крышка привода ГРМ, кулачок и звездочка цепи привода ГРМ.

Сначала вы могли подумать, что удаление VVT — это просто часть склонности хотроддера к устранению сложных заводских уловок, но вы можете оставить VVT или даже добавить его к своему LS без VVT. (Требуется убедительность? Проверьте этот динамометрический тест здесь.) Идея иметь распределительный вал, который в нужное время может работать как в большом, так и в маленьком размерах, возможно, является воплощением мечты, и упомянутые выше производители разработали некоторые интересные технологии, которые позволяют хот-роддеру работать в режиме реального времени. воспользоваться преимуществами регулируемых фаз газораспределения на более высоких уровнях мощности.В этой ситуации вопрос не столько в устранении VVT, сколько в ограниченном управлении VVT.

Посмотреть все 15 фотографий

Доступны ограничители фаз газораспределения, которые безопасно регулируют диапазон хода распределительного вала, предотвращая столкновение клапанов с поршнями, но при этом позволяя VVT выполнять свою работу. Специальные распредвалы (например, этот от BTR) будут учитывать важные проблемы VVT, такие как диапазон движения кулачка и подъем, который совместим с VVT. Более того, клапанные пружины, которые предназначены для работы в пределах VVT, обычно доступны, и при использовании на уличном двигателе ваш двигатель будет демонстрировать отличные уличные манеры, при этом перекрывая дорожку на другой полосе на светофоре.Однако в конечном итоге ваши собственные потребности в мощности и привычки вождения должны будут определять ваш выбор VVT.

Просмотреть все 15 фотографийСмотреть все 15 фотографий

Соленоид с регулируемой синхронизацией клапана (VVT)

Другие условия производителя для электромагнитного клапана VVT

Автопроизводители, использующие соленоид VVT

Электронная система регулирования фаз газораспределения, впервые разработанная компанией Nissan в начале 90-х годов, теперь стала почти универсальной функцией на серийных автомобилях, чтобы соответствовать более строгим нормам выбросов.

Технология VVT может быть обычным явлением, но многие компании используют разные торговые марки и патенты для одной и той же системы.

Многие приложения для соленоида Spectra VVT носят другое название оригинального оборудования:

Производитель Акроним / термин Определение
Audi Клапанный подъемник
BMW VANOS Переменный Nockenwellensteuerung
Fiat MultiAir
Форд Ti-VCT / VCT Независимая система фаз газораспределения с двумя независимыми переменными фазами фаз газораспределения / фаза фаз газораспределения с изменяемой геометрией
Дженерал Моторс DCVCP Двойное непрерывное регулирование фазы кулачка
Хонда, Акура VTEC, я-VTEC Электронное управление с изменяемой синхронизацией клапана и подъемом
Hyundai, Kia, Volvo CVVT Непрерывная регулировка фаз газораспределения
Hyundai, Киа VTVT Клапанный механизм с регулируемым распределением фаз
Мазда S-VT Последовательная синхронизация клапана
Мицубиси MIVEC Система электронного управления синхронизацией клапанов Mitsubishi Innovative
Nissan, Инфинити CVTCS / VVEL Непрерывное управление синхронизацией клапана / Событие и подъем клапана переменного тока Nissan
Nissan N-VCT / VVL Система фаз газораспределения Nissan / Экологически ориентированные регулируемые клапаны Nissan, подъем и синхронизация
Порше VarioCam
Тойота, Лексус VVT-i, VVTL-i Регулируемая синхронизация клапана с интеллектом
Субару AVCS / AVLS Активная система управления клапаном

Общие симптомы неисправности соленоида VVT

  • Неровный холостой ход двигателя
  • Проверьте свет двигателя
  • Пропуски зажигания в двигателе под нагрузкой

Больше информации

Распространенные причины сбоев

Загрязнения в моторном масле являются основной причиной выхода из строя системы VVT.Неисправный агрегат приведет к нестабильной работе двигателя на холостом ходу и низкой экономии топлива. Несоблюдение замены умирающего узла может привести к выходу из строя зубчатой ​​передачи двигателя и цепи привода ГРМ. Всегда следите за индикатором «Проверьте двигатель»

.

Chrysler Engine VVT ​​Система изменения фаз газораспределения

В следующих разделах мы описываем основные характеристики нескольких версий VVT, используемых в различных двигателях Chrysler. Имейте в виду, что, как и многие компоненты, системы и функции трансмиссии, VVT все больше интегрируется в системы управления двигателем.При поиске неисправностей и устранении неисправностей двигателя начните с использования заводской диагностической системы или аналогичного диагностического прибора. Кроме того, как и во всех диагностических ситуациях, прежде чем пытаться диагностировать сложные электронные или механические системы, убедитесь, что основные параметры — механическое состояние двигателя, подача топлива и электропитание — находятся в правильном диапазоне.

Система изменения фаз газораспределения (также часто называемая изменяемой фазой фаз газораспределения) повышает гибкость и эффективность двигателя, позволяя производителю соответствовать экологическим целям и стандартам топливной эффективности, обеспечивая при этом высокую производительность.За счет опережения фаз газораспределения впускных клапанов на средних оборотах двигателя насосные потери снижаются, а КПД двигателя повышается. Эта функция также действует как внутренняя система рециркуляции ОГ и снижает выбросы NOx, устраняя необходимость в дополнительном внешнем канале рециркуляции ОГ. Точно так же опережение фаз газораспределения выпускных клапанов при определенных условиях позволяет лучше заполнить цилиндр и повысить эффективность двигателя.

Технический термин для системы, используемой в системе управления изменяемой фазой газораспределения Chrysler, — «гидравлическое переключение фаз газораспределения».Система постоянно меняет целевое положение распределительного вала в зависимости от рабочих параметров двигателя. На основе этих параметров модуль управления трансмиссией (PCM) рассчитывает или моделирует оптимальное положение распределительного вала. Угловое положение распределительного вала регулируется масляным регулирующим клапаном. Соленоид (VVT) нажимает на плунжер (подпружиненный золотниковый клапан) в центре масляного регулирующего клапана (OCV), который направляет давление масла на гидравлический привод (фазер) на звездочке распределительного вала, чтобы изменить положение распределительного вала относительно коленчатого вала. позиция.Соленоид (VVT), действующий на масляный регулирующий клапан (OCV) и (фазер), управляется (PCM), а датчик распределительного вала (CMP) используется для контроля положения распределительных валов.

На 2016 год двигатели Pentastar V-6 дополнительно оснащались двухступенчатым подъемом клапана. На умеренных скоростях клапаны работают с малым подъемом, но когда водитель требует большей мощности, активируется фаза высокого подъема клапана. Система, управляемая PCM, использует электромагнитные клапаны, приводимые в действие моторным маслом, для блокировки или разблокировки кулачкового толкателя в двух разных положениях.

VVT: Регулируемая синхронизация клапанов — знайте свои детали

К началу 1990-х годов почти все производители автомобилей имели в производстве успешную систему изменения фаз газораспределения (VVT). Системы VVT обеспечивают более высокую производительность при более высоких оборотах.

VVT Эксплуатация


Системы VVT просты в диагностике. Большинство деталей не обслуживаются и имеют встроенные датчики. В обычном двигателе выпускные и впускные клапаны открыты или закрыты в зависимости от коленчатого вала, и рисунок не может быть изменен.С помощью VVT можно изменить время в соответствии с частотой вращения двигателя, требованиями к крутящему моменту и перекрытием клапанов. Это увеличивает производительность и экономию топлива. Еще одним большим преимуществом VVT является его способность снимать часть нагрузки с коленчатого вала, открывая клапан до конца такта сгорания. Системы VVT сделали клапаны рециркуляции выхлопных газов (EGR) устаревшими. Клапаны системы рециркуляции ОГ создают дым, вызывающий возврат оксидов азота во впускной коллектор. Система VVT контролирует синхронизацию, чтобы оставить инертный газ в камере для следующего цикла сгорания, таким образом регулируя температуру сгорания и образование оксидов азота.

VVT — через диагностический разъем


Два общих кода ошибок, с которыми техники сталкиваются при работе с системами VVT, — это P0011 и P0021 (датчик положения распределительного вала «ряд 1» и датчик положения распределительного вала «ряд 2» соответственно). Эти коды (как и любой другой) не означают, что датчик неисправен, поэтому проверьте систему VVT на наличие неисправности и проверьте датчик. Некоторые из общих областей, на которые следует обратить внимание: фаза газораспределения, масляный регулирующий клапан, сетка фильтра масляного регулирующего клапана, фаза фаз газораспределения / шестерни, а также электрическая сторона работы, а также PCM.Первое, что нужно сделать, это проверить масло, потому что грязное масло может привести к накоплению шлама, который может повредить масляные каналы в кулачке, что приведет к выходу кулачка из строя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *