Как найти ток утечки в автомобиле
Многие автолюбители сталкивались с проблемой запуска автомобиля, у которого разрядился аккумулятор. «Симптомы», как правило, однотипные:
- стартер едва прокручивается;
- из-под капота доносятся характерные щелчки реле;
- индикаторы приборной панели гаснут при проворачивании ключа зажигания.
Еще хуже – аккумулятор настолько разряжен, что даже центральный замок не срабатывает. Одним словом, ситуация не из приятных, особенно когда она возникает после ночного простоя автомобиля, а вам необходимо срочно ехать на работу или по делам. Причина может быть банальной – забыли выключить внешнее освещение. В таком случае для быстрого запуска авто достаточно воспользоваться пускозарядным устройством, попросить у кого-нибудь «прикурить» от его автомобиля или поставить аккумулятор на зарядку и провести день в тесном кругу с другими пассажирами общественного транспорта.
Причины разрядки аккумулятора
Глубокая разрядка аккумулятора плохо сказывается на его работе. Но намного хуже, если эта ситуация повторяется изо дня в день. И вот тут стоит задуматься, в чем же именно причина такого поведения вашего железного коня. Из основных можно выделить:
- изношенность аккумулятора;
- несоответствие соотношения «зарядка/разрядка» от генератора;
- выход из строя генератора;
- плохая работа стартера;
- внештатные токи утечки.
В первую очередь необходимо проверить сам аккумулятор. Если он у вас более 3-5 лет, то он теряет свои свойства удерживать заряд. Для проверки отсоединяем клеммы аккумулятора, оставляем его на 2-3 часа и проверяем напряжение на контактах. Для этого достаточно обычного мультиметра – подсоединяем его к клеммам аккумулятора, придерживаясь полярности (плюс к плюсу, минус к минусу). Оптимальное значение напряжения 12,65 В, минимально допустимое – 11,9 В.
Зависимо от характера использования автомобиля аккумулятор может не успевать восстанавливать заряд от генератора. На это могут влиять короткие поездки, простои в пробках, частые запуски и глушение двигателя. Эти факторы имеют большое влияние на аккумулятор в холодную пору года.
В автомобилях с большим пробегом достаточно часто причиной может быть выход из строя генератора. Как правило, на приборной панели должно появиться соответствующее предупреждение, но иногда мы можем на это не обратить внимания. Также причина может быть в стартере – из-за изношенности подшипника или заклинивания втулки он начинает брать больше питания при прокручивании. В таких случаях нужна замена запчасти новой или ее восстановление на СТО.
Ток утечки
Если все перечисленные выше причины не подтвердились на разных этапах диагностики, тогда нужно перейти на следующий – поиск токов утечки. Причинами их возникновения могут быть:
- загрязнение и окисление клемм аккумулятора;
- повреждение изоляции автомобиля;
- некорректное подключение дополнительного оборудования (внештатная магнитола, сигнализация).
Первые две можно определить визуально, а для последней уже понадобится дополнительное оборудование для диагностики. Опять таки, можно использовать обычный мультиметр или токоизмерительные клещи.
Измерение тока утечки
Перед началом диагностики нужно провести подготовительные работы. В первую очередь оставляем открытым капот и выключаем все потребители тока – магнитолу, внешнее и внутреннее освещение, вынимаем ключ из замка зажигания, закрываем двери. Во время измерения мультиметром аккумулятор будет выключаться и выключаться, может сработать центральный замок. Поэтому, для доступа в авто лучше оставить окна открытыми.
Для измерения вам понадобятся:
Мультиметр переключаем в режим измерения тока Отсоединяем минусовую клемму от аккумулятора. Подсоединяем один щуп к снятой клемме, другой к контакту аккумулятора Проверяем значения тока утечкиДостаточно удобно измерять ток утечки токоизмерительными клещами – не нужно ничего отсоединять, просто обжимаем провод и проводим измерения. Недостатком клещей считается их неточность и способность улавливать паразитные токи. Но при помощи обнуления кнопкой «Zero» можно достичь точных результатов.
Обжимать необходимо или плюсовый или минусовый провод со всеми проводами, которые подсоединены к одной из клемм (если такие есть). Единственный момент – клещи должны измерять постоянный ток. Как правило, их цена на порядок выше в сравнении с обычными клещами для измерения только переменного тока.
Допустимые границы тока утечки – 20-80 мА. Как правило, нормы потребления тока штатными устройствами следующие:
- память магнитолы – 5-10 мА;
- сигнализация – 20-25 мА;
- электронный блок питания – 3-5 мА.
К наиболее популярным внештатным устройствам можно отнести «неродную» акустическую систему (магнитола, усилители) и сигнализацию. Также может быть утечка тока из-за таких потребителей как видеорегистратор и GPS-навигатор, которые подключены через гнездо прикуривателя, поскольку в некоторых автомобилях на него питание подается независимо от замка зажигания. Довольно часто причиной является закорачивание концевика подсветки багажника, из-за этого лампа постоянно включена.
Сразу после того как мы подключили мультиметр, значение тока утечки может быть больше допустимых пределов. Не нужно сразу паниковать. Подключая мультиметр в разрыв, мы фактически замыкаем цепь и подаем питание на приборы. Зависимо от автомобиля нужно некоторое время, чтобы он снова перешел в режим простоя – от 1 до 20 минут.
Значение тока утечкинепосредственно после подключения мультиметра Значение тока утечки
после перехода авто в состояние покоя (простоя)
Если все же значение силы тока не уменьшается, тогда переходим на следующий этап – диагностика блока предохранителей и реле.
Проверка реле и предохранителей
Распределительная коробка с предохранителями и реле находится под капотом. Дополнительно возможно размещение еще одного блока в салоне автомобиля возле приборной панели, под задним сидением, а также в багажнике. Поиск возможного потребителя лишнего тока проводим следующим образом:
- мультиметр должен быть подключен таким же образом, как при измерении тока утечки;
- каждый предохранитель по очереди вынимаем и вставляем на место, при этом смотрим, не меняется ли значение тока на дисплее мультиметра;
- если обнаруживаем существенное уменьшение (до уровня допустимого), тогда смотрим в технической документации автомобиля за что отвечает этот предохранитель и переходим к детальной диагностике устройств, за которые он отвечает.
Вы проверили все предохранители, но проблема с током утечки остается не решенной?
В таком случае нужно проверить оборудование, которое предохранителями не защищено. К нему относятся:
- генератор;
- стартер.
Проверка генератора
Одной из основных причин потребления тока генератором, как правило, является выход из строя силовых диодов его выпрямляющего блока (диодного моста). Это негативно влияет на состояние аккумуляторной батареи, как при простое автомобиля, так и при его перемещении. При простое происходит паразитное потребление тока, а при перемещении (или просто при работе двигателя) ток, который вырабатывает генератор, частично или полностью не поступает для зарядки аккумулятора. Для проверки токов утечки через генератор необходимо в первую очередь отсоединить аккумулятор от общей сети автомобиля (достаточно снять минусовую клемму).
После этого отсоединяем от генератора 2 силовых провода и соединяем их надежно вместе. Учитывая тип разъема, можно использовать для соединения болт и гайку соответствующего диаметра. Также необходимо место соединения заизолировать диэлектриком, подойдет обычная изолента. Теперь подключаем наш мультиметр в сеть автомобиля в режиме измерения тока и следим за показателем:
- если значение тока не изменилось, значит проблема не в генераторе;
- если уменьшилось до допустимых пределов, тогда нужно генератор ремонтировать или заменить его новым.
Проверка стартера
Сразу скажем – тока утечки в стартере нет. Тут немного другое понятие – рост величины пускового тока стартера, в результате чего не хватает тока аккумулятора для того, чтобы завести двигатель автомобиля. Одной из причин может также быть неправильно подобранный по мощности аккумулятор. Но если с ним все в норме, тогда нужно измерить пусковой ток вашего авто. Для этого вам понадобятся токоизмерительные клещи и наш видеообзор о том, как это правильно сделать.
Первичную проверку генератора и стартера можно сделать самостоятельно при наличии мультиметра и токоизмерительных клещей. Но их ремонт или замену лучше все же доверить работникам СТО.
Проверка проводки
Довольно часто при поиске тока утечки приходится сталкиваться с ситуацией, когда удалось выявить проблемную линию потребления тока, но все приборы, подключенные к ней, работают корректно. Причиной может быть повреждение проводки. Для этого необходимо протестировать мультиметром в режиме омметра. Как правило, заводская проводка прокладывается таким образом, что нарушения ее целостности возможно только в результате ДТП или умышленного повреждения. Поэтому в первую очередь источник токов утечки необходимо искать, проверяя проводку приборов, которые установлены внештатно.
Если у вас возникают трудности с запуском автомобиля из-за проблемы с аккумулятором, не нужно откладывать «на потом» поиск причин этого явления. Завышенные токи утечки медленно, но уверенно убивают ваш аккумулятор. Также проблемы с проводкой могут привести к короткому замыканию и пожару в автомобиле. Дешевле будет вовремя провести диагностику самостоятельно или поручить это работникам СТО.
Наш интернет-магазин предлагает широкий ассортимент мультиметров, токоизмерительных клещей и пускозарядных устройств, которые вам в этом помогут. В случае возникновения вопросов по подбору оборудования или дополнительной консультации всегда обращайтесь, будем рады помочь.
Команда Toolboom
Копирование материалов с сайта toolboom.com разрешается только при условии указания авторства и размещения обратной текстовой ссылки на каждый скопированный контент.
Утечка тока на горнодыбывающих предприятиях, как защитить работников
© Источник:. v-kip.ru
07 Июн 2021, 23:52Для того, чтобы обезопасить себя от удара током, в местах где есть утечка тока необходимо использовать специальную защиту.
Обратите ваше внимание на аппарат защиты от утечки тока АЗУР.1МК. Его можно использовать в горнорудных предприятиях, в шахтах или подземных выработках. Применяться может не только в подземных выработках, но и на поверхности. Он защитит вас от опасности и спасет вам жизнь.
Что такое утечка электричества в землюВажно отметить, что утечка электричества в землю — это очень опасное явление, которое может нанести ущерб не только имуществу, но и здоровью, а также жизни человека. Это происходит когда ток протекает в землю. Для того, чтобы это произошло, необходима замкнутая электрическая цепь. Помимо этого дожен быть проводник, который имеет непосредственный контакт с землей.
Основные причины утечки тока под землю:
- замыкание;
- повышенная влажность, подтопление;
- если изоляция проводника была повреждена или произошел ее износ;
- электрические провода оборвались и упали на землю;
- большая нагрузка на изоляцию.
Утечка тока может произойти не только на предприятиях, шахтах или под землей. Даже владельцы частных домов могут ощутить это явление на себе.
Что такое аппарат защиты АЗУР.1МК
Аппарат защиты АЗУР.1МК встраивается в передвижные трансформационные станции. Он устанавливается для того, чтобы защитить людей от удара током. Визуально он представляет собой блок, который состоит из внешней стороны, на которой установлены защемляемые зажимы и токоведущие, благодаря чему аппарат можно подключать к КТП. В комплект его поставки входит:
- сам аппарат;
- руководство по использованию;
- информационный блок;
- килоомметр.
Работать данный аппарат может в таких условиях:
- он может работать при температуре воздухе от -10 до +70 градусов цельсия;
- не должно быть резких толчков или втрясок;
- запыленность по газу и метану до 1200 мг/м3.
Аппарат защиты обеспечивает постоянный контроль сопротивления изоляции сети, а в случае чего автоматически адаптируется к напряжениям 380 или 660 вольт.
Благодаря конструкции аппарат обладает следующими свойствами:
- осуществляет самоконтроль исправности аппарата;
- автоматически адаптируется к перепадам и изменениям напряжения;
- блокировка исполнительного реле в случае аварии;
- дистанционную проверку срабатывания;
- регистрация аварийных ситуаций и хранение информации;
- данные о текущем состоянии аппарата могут передаваться диспетчеру.
Перед тем, как спускать систему защиты в шахту, необходимо проверить его на исправность. Важно:
- провести внешний осмотр и осуществить расконсервацию;
- проверить все ли документы в порядке;
- проверить резьбовые элементы аппарата;
- просмотреть разъемы, они должны быть целостными;
- есть ли заземляющие устройства.
При выявлении каких либо деффектов, необходимо отложить спуск аппарата, до выяснения причин.
Как работает аппарат защиты АЗУР.1МК
После того, как была осуществлена подача напряжения на прибор, аппарат автоматически определяет величину напряжения, после чего сам определяет уставку срабатывания.
Как можно перевозить аппарат защиты
В случае необходимости транспортировки аппарата защиты необходимо соблюдать следующие условия:
- необходимо надежно защитить аппарат от механических повреждений;
- на него не должна попадать влага;
- храниться аппарат должен в соответствии ГОСТ 15150-69
Любые работы по аппарату необходимо выполнять лишь на поверхности. А проверку осуществлять, только специальные подготовленные люди.
Как найти утечку тока в бортовой электросети автомобиля? ― 130.com.ua
Утечка тока в автомобиле — достаточно распространенная неисправность, с котрой, рано или поздно, сталкиваются все водители. Это может случиться даже с новыми автомобилями. Если это произошло, очень важно своевременно выявить и устранить отток тока. Из этой статьи вы узнаете причины, которые могут привести к утечке, а так же как решить эту проблему.
Какие могут быть причины утечки электричества?
Среди оборудования, используемого в автомобиле, оказаться источником потери тока может:
Сигнализация
Охранная система должна продолжать активную работу, когда все другие устройства в машине отдыхают. Именно она очень часто становится причиной потерь тока, так как является одним из наиболее существенных потребителей.
Во многих современных сигнализациях есть приемопередатчик, что периодически связывается с управляющим брелоком, кроме того, они оснащаются системами GPS, GSM и другими полезными опциями, которіе требуют питания. Многие производители автосигнализаций стремятся минимизировать уровень потребления электричества, когда система находится в режиме охраны.
Автомагнитола
Именно это устройство чаще всего становится причиной потери тока в сети. Большинство моделей для поддержания энергозависимой части памяти (сбережение пользовательских настроек, отсчет времени и т.д.) постоянно нуждаются в подаче питания. Если окажется, что устройство неисправно, то через магнитолу будет утекать ток. Но даже исправная магнитола может давать незначительную утечку тока, примерно до 10 миллиампер.
Блок управления двигателем
На этот участок напряжение подается всегда, и даже если блок находится в исправном состоянии, то утечка все равно будет иметь место, правда совсем небольшая — до пары единиц миллиампер. Это не критичный показатель.
Генератор
На генератор напряжения поступает всегда с положительно заряженной клеммы аккумулятора. Если имеются неполадки в его работе, то разрядить батарею генератор может всего за полчаса. В исправном состоянии он также постоянно потребляет энергию, только в небольшом объеме, до нескольких микроампер.
Стартер
Если машина заглушена, то исправный стартер не должен потреблять энергию, несмотря на то, что на него постоянно, даже во время стоянки, подается напряжение. Потребление обычно начинается лишь в момент запуска двигателя.
Аккумуляторная батарея
Часто на поверхности контактных клемм АКБ образуется налет — это тоже электролиз, который приводит к разряду стартерной батареи. Это все в свою очередь приводит к утечке энергии. Но также не стоит забывать и о таком понятии, как внутренний саморазряд аккумулятора, который провоцируется нарушением целостности аккумуляторных пластин или низким качеством электролита. Для старых батарей, которые отработали уже не один год, этот показатель может превышать токи утечки транспортного средства.
Негативные последствия потери тока в бортовой сети
Из-за утечки могут происходить самые разные неприятности, в том числе:
- Разряд аккумулятора — это одно из самых часто встречающихся последствий. При этом оно довольно безобидное, и быстро устраняется. Рассчитать утечку довольно легко, при показателе 0,5 А за 10 часов стоянки машины батарея потеряет порядка 5 Ач своего заряда, а за 100 часов – 50 Ач. То есть АКБ полностью разрядится всего за четверо суток стоянки. Чтобы этого избежать, рекомендуется снять клемму АКБ, чтобы отключить ее от сети, пока машина стоит без движения в гараже.
- Отказ отдельных блоков — это уже более существенная проблема. При показателе тока 0,5 А сила рассеивания составит порядка 6 Вт. Если энергия теряется на каком-нибудь одном элементе, например, на участке транзистора или в микросхеме блока управления, он начнет сильно нагреваться, что приведет к его полному отказу.
- Возгорание электропроводки — самое опасное и серьезное следствие. Например, утечка на уровне 1 А, может приводить к тому, что мощность рассеивания составит порядка 12 Вт. Подобная мощность сама не сможет вызвать возгорание, но изоляция в таких условиях может начать плавиться. Это провоцирует замыкание электропроводки, тут в процесс вступят токи большой величины, именно они и будут источником воспламенения. Все это приводит к так называемому “самовозгоранию” автомобиля.
Как проверить, есть ли в автомобиле утечка тока?
На самом деле, проверить, есть ли в сети машины утечка электричества, можно довольно просто при помощи специального прибора — мультиметра.
Последовательность действий в этом случае должна быть следующей:
- 1. Заранее найдите схему расположения автомобильных предохранителей. Как правило, все это указывает производитель в руководстве по эксплуатации транспортного средства. Иногда можно найти расшифровку расположения предохранителей на крышке блока с предохранителями, но это делают не все производители.
- 2. Снимите положительно заряженную клемму с АКБ. Важно, чтобы все установленные в машине потребители электричества и зажигание перед проверкой было отключено.
- 3. Возьмите мультиметр и активируйте режим, в котором измеряется постоянный ток, контакты устройства при этом подсоединяются к соответствующим разъемам, лучше всего на них надеть специальные крепления крокодилы, так работать будет удобнее, так как контакты будут надежно зафиксированы.
- 4. При подключении строго соблюдайте полярность: плюсовой (красный) контакт крепится на “+” клемме аккумулятора, а отрицательный – на снятой клемме, которая идет к оборудованию авто. Обратите внимание, что соединение надо тщательно защитить от возможного контакта с кузовом транспортного средства (достаточно временно изолировать это место ветошью). Это важно, чтобы не возникло короткое замыкание.
- 5. На дисплее измерительного прибора появится информация о токе утечки. Если значение ниже 0,2 А, значит, все в пределах нормы и дополнительного контроля и проверки не требуется. Если на дисплее прибора высветилось значение выше 0,5 А, это плохо, так как это критический показатель. В таком случае необходимо реализовать специальный комплекс действий по поиску и устранению утечки. Когда прибор показывает от 0,2 до 0,5 А, автовладелец может самостоятельно принимать решение о необходимости совершения каких-либо еще действий.
- 6. На этом этапе проводится поиск точной причины утечки тока и ее источника. Тут может потребоваться помощник, который будет последовательно вынимать предохранители и возвращать их обратно, на свои места. Второй человек при этом должен постоянно контролировать динамику показаний мультиметра.
Если после удаления предохранителя, показания прибора не меняются, значит, через него ток не утекает. Если же, например, при снятии предохранителя, что отвечает за блок управления кузовом, утечка тока резко уменьшилась, надо тщательно проверить другие предохранители из его цепи, отвечающие за дворники, свет, омыватель и прочие компоненты оборудования кузова. Таким образом перебрать надо каждый предохранитель, только так можно будет оценить, как будут меняться показатели мультиметра на разных участках электрической цепи. Это поможет найти точную причину потери тока.
- 7. Усложненный метод проверки, тут уже не надо привлекать помощников. Сначала плюсовая клемма батареи накидывается обратно. Предохранители также последовательно отключаются. Щупы мультиметра при этом подключаются к разъемам снятого предохранителя, это позволяет контролировать ток в пределах одной конкретной цепи. Метод, конечно, довольно трудоемкий, но он позволяет получить более точные данные.
- 8. После расшифровки расположения всех предохранителей во всех цепях, где имеется утечка, можно приступать к поиску конкретной причины. Тут не помешает опыт и знания работы со схемами автомобильного электрооборудования. Самыми распространенными причинами обычно являются:
- замыкание электрической проводки;
- поломка отдельных электронных блоков;
- залипание реле.
Как только причина найдена, то утечку следует устранить. Временно проблему можно решить. Для этого просто не возвращайте предохранитель, который показал наличие потерь тока, на место. Например, если в ходе измерений стало понятно, что причина утечки — неполадки в работе автомагнитолы, то соответствующий предохранитель можно отключить на время стоянки авто.
Кроме того, уменьшить утечку можно путем обработки контактов, клемм, проводников и разъемов специальными защитными средствами. Для этого можно взять простую силиконовую смазку или спрей.
В нашем интернет-магазине 130.com.ua вы можете купить различные автомобильные аксессуары и электронное оборудование в Киеве, Харькове и Одессе по выгодной цене. Доставка осуществляется по всей Украине.
Материалы по теме
Утечка тока — как найти самостоятельно
Как самостоятельно проверить с помощью бытового мультиметра или индикаторной отвертки утечку тока
С утечкой тока довольно часто сталкиваются профессиональные электрики во время обследования электропроводки, особенно старой, электроприборов ненадлежащего качества и другого электрооборудования. Проблема тока утечки также довольно часто встречается и при эксплуатации автомобилей и обуславливает быструю разрядку аккумуляторной батареи. В этой статье будут рассматриваться действия по выявлению утечек электричества относительно домашней сети 220В, но принципиальных различий между ней и автомобильной электросетью нет.
Причины возникновения утечки тока довольно банальны, со временем изнашивается защитная изоляция провода, меняются её характеристики. При неправильной эксплуатации проводки на изоляции провода появляются заломы, трещины, потёртости. Главная задача изоляции проводки и токопроводящих элементов — защищать человека от поражения электрическим током и предотвратить утечку электричества.
Даже новые электроприборы и проводка имеют небольшие утечки тока. Практически любая изоляция не идеальна, особенно это касается дешевого кабеля низкой ценовой категории. На дешевой электропроводке, как правило, с завода есть микротрещины, она менее устойчива к температурным и перепадам влажности, часто встречаются мелкие дефекты толщины. Неправильная эксплуатация, перегрев провода при нагрузках превышающих расчетные — всё это выводит изоляцию из строя и приводит к утечкам тока.
Утечку тока можно определить по следующим характерным признакам – прикосновение к корпусу электроприбора, стене, трубопроводу вызывает легкое покалывание в кончиках пальцев. Но будьте осторожны — величина истекания не превышающая величину в 10 мА считается безопасной, но ток утечки более 30 мА смертельно опасен.
Если у вас возникло подозрение на утечку тока, необходимо сразу обесточить помещение и вызвать профессионалов. Автомобиль со значительными утечками также эксплуатировать небезопасно. Вторым признаком утечек тока является непропорционально использованию повышенный расход и как следствие большие счета за электроэнергию или разрядка аккумулятора в автомобиле.
Какими приборами можно зафиксировать утечку электричества?
Специалисты электролаборатории используют профессиональный прибор для измерения сопротивления изоляции — мегаомметр. Такие приборы стоят довольно дорого, в быту не используются.
У многих дома или в гараже, можно встретить бытовой мультиметр и индикаторную отвёртку, ими и можно самостоятельно приблизительно обнаружить место утечки тока или электроприбор с дефектной изоляцией.
Что бы с помощью «бытового мультиметра» проверить сопротивление изоляции электроприбора, необходимо обязательно полностью отключить проверяемый прибор от электросети. На мультиметре перевести регулятор в положение 20 МОм. Одним щупом прикоснуться к штырю вилки, вторым металлической части электроприбора, лучше последовательно в нескольких местах. Если на дисплее отображается цифра «1», то тока утечки нет, изоляция исправна, показатели на экране ниже единицы свидетельствуют о токах утечки и чем ниже показатель, тем больше ток утечки.
Если у вас нет мультиметра, то обнаружить утечку можно обычной, даже самой дешевой индикаторной отвёрткой. Современные индикаторы чувствительны даже к небольшим токам. Алгоритм действий еще проще, необходимо включить прибор в сеть и коснуться жалом отвертки до металлических частей прибора, трубопровода или стен в нескольких местах. Лучше предварительно затенить помещение, если ток утечки присутствует, индикатор засветится с разной степенью интенсивности.
Как отыскать место утечки в электропроводке или кабеле
Найти дефект изоляции в скрытой проводке без специального оборудования невозможно. В этом случае необходимо вызывать специалисты электротехнической лаборатории. В открытой можно визуально внимательно осмотреть провод на предмет повреждений изоляции, особенно в местах соприкосновения кабеля со стенами, стояками, металлическими деталями.
Средства защиты человека от токов утечки
Для защиты от утечек тока в распределительном щитке устанавливаются УЗО или АВДТ (дифавтомат). В случае возникновения, даже небольшого, но опасного для человека тока утечки, УЗО или АВДТ моментально отключат подачу электричества. Правильная работа активного защитного электрооборудования гарантированно только при наличие рабочего заземления. Еще очень важно выбрать качественную автоматику и протестировать её. Все это могут выполнить специалисты наше электроизмерительной лаборатории. Не экономьте на своей безопасности!
Всё о утечке тока на землю
Утечка тока на «землю»
Большинство людей, чья работа связана с электричеством, слышали о понятиях «ток утечки на землю», «утечка тока», «норма утечки тока». Однако не все могут правильно объяснить это явление, его причины, организовать поиск утечки на «землю» и не умеют пользоваться аппаратом защиты утечки токов.
Утечка на «землю»
Понятно, что просто «уйти в землю» электрический ток не может. Для протекания тока нужно создать электрическую цепь: источник тока (фаза) – нагрузка (проводник) – источник тока (ноль). Проводником может быть любой объект: кусок трубы, сырая почва, человек. Если норма утечки тока превышена, возникает опасность поражения людей током.
На рис. 1 схематически показан процесс протекания тока утечки (Iут) при прикосновении человека к электроустановке, в которой уменьшилось сопротивление изоляции (Rиз) токоведущих частей по отношению к корпусу.
В электроустановках с заземлённым корпусом уменьшение сопротивления изоляции проводников (Rиз) может создать условия для возгорания. При прохождении тока утечки на «землю» (Iут) в точке крепления заземляющего проводника к корпусу будет выделяться тепло, которое может привести к пожару.
На рис. 2 пожароопасное место отмечено красной штрихпунктирной линией. Предотвращение этого опасного явления особо важно в горнорудной промышленности, где существует большая вероятность выделения взрывоопасных газов и горючих веществ.
Вышеприведённые примеры относятся к сетям с глухозаземлённой нейтралью трансформатора. В случаях, когда нейтраль изолирована, например, в трёхфазных сетях, ток утечки на «землю» будет проходить между фазой с нарушенной изоляцией и другими «здоровыми» фазами по земле, через корпус трансформатора, опоры ЛЭП, изоляторы.
Это хорошо видно на рис. 3. Несмотря на то, что сопротивление изоляторов и опор большое, их много, а согласно законам физики при их параллельном подключении сопротивление уменьшается. В таких случаях есть вероятность попадания человека под «шаговое напряжение».
Во всех случаях, когда норма утечки тока превышена, необходимо немедленно организовать поиск утечки на «землю» и найти источник неисправности.
Причины утечки
Ток утечки на «землю», в открытые или сторонние токопроводящие части электрооборудования зависит от величины сопротивления изоляции проводников, которая не может иметь бесконечно большое значение. Поэтому через изоляцию из любой токоведущей части оборудования, находящейся под напряжением, постоянно протекает небольшой ток. Его безопасное значение регламентируется нормативными актами и существует норма утечки тока.
При длительной эксплуатации, влиянии агрессивной среды, например, в рудной промышленности, механических повреждениях сопротивление изоляции может уменьшиться. В таких случаях снижение величины сопротивления часто происходит лавинообразно. Для повышения электрической и пожарной безопасности существуют аппараты защиты утечки токов.
Устройства защиты от токов утечки на «землю»
В горнорудной промышленности, где к электрооборудованию выдвигаются особые требования, нашли широкое применение такие аппараты защиты утечки токов:
Также для защиты от поражения током утечки используются УЗО (устройства защитного отключения) и РУ-127/220МК (реле утечки).
Основная задача этих приборов – отключение электропитания при превышении нормы утечки тока, возникновении опасности для жизни людей, появлении угрозы возникновения пожара или разрушения оборудования.
Как проверить утечку тока на автомобиле мультиметром: допистимая утечка, норма, при выключенном зажигании
Автор Master OffRoad На чтение 14 мин. Просмотров 1k. Опубликовано
Что такое утечка тока и почему она вредна
Утечка тока представляет собой незапланированный и не скомпенсированный разряд аккумуляторной батареи автомобиля. В зависимости от интенсивности и периода действия, она может практически не сказываться на работоспособности авто, а может привести к полному расходованию емкости аккумулятора,когда невозможно будет запустить двигатель.
При этом не все протечки нуждаются в устранении. Некоторые приборы расходуют незначительное количество тока в выключенном состоянии, что необходимо для поддержания их работоспособности. Опасны лишь высокие токи утечки, при которых разряд АКБ осуществляется за несколько дней или даже часов.
Принцип подключения потребителей тока к бортовой сети
Электроток будет течь по проводнику, только если замкнуть электроцепь. Потребление электричества должно быть штатным — клемма аккумулятора «плюс»—потребитель—клемма «минус», при этом цепь не должна разрываться. В качестве примера мы привели простейшую схему. В вашей машине потребители подсоединены к схеме, сложность которой в несколько раз выше. Поэтому непрофессиональному автоэлектрику будет трудно понять все нюансы.
Как выполнить проверку утечки тока в автомобиле? Ориентируйтесь на расположенное выше изображение. На нем вы можете увидеть, что есть единый «минус» у лампы и клеммы 85 реле, обычно он соединяется с «массой» (кузов).
При этом на положительном проводе установлен выключатель, размыкающий цепь. Когда контакты выключателя замыкаются, электричество идет через катушку реле, которая подсоединена к 85-му и 86-му контактам. За счет электромагнитного поля катушка начинает замыкать 87-й и 30-й контакты, а электроток идет через лампы.
Описанная схема стандартная для большинства транспортных средств. Однако обычно цепь размыкает дополнительный выключатель — замок зажигания, при этом плавкий предохранитель бывает врезан в положительный провод. Чтобы было удобнее, один или два монтажных блока объединяют в себе реле с предохранителями. Зная это, вы не испытаете шок, когда увидите множество жгутов проводки. А также сможете, подразделив огромное количество объединенных цепей на мини-схемы, провести проверку утечки тока в автомобиле клещами.
Часть автоприборов объединяются в общие сети. Вообразите, что это — один потребитель, но просто разросшийся в пространстве. Выявлена утечка тока в автомобиле после проверки? Причина — разные цепи подключаются друг к другу или же к «массе» машины по причине того, что изоляция проводки пришла в негодность. Также утечка может происходить из-за «мостов» электротока, которые появляются из-за грязи.
Почему садится аккумулятор — основные причины утечки
Основной причиной повышенного разряда аккумуляторной батареи (АКБ) является неисправность электрооборудования. Причём неисправность может быть и неявной. Стартер с разбитыми подшипниками может крутить, но потреблять повышенный ток. Сильно разряженный аккумулятор просто не успевает пополнить энергию во время поездки, и после нескольких пусков батарея оказывается полностью разряженной.
Неисправная охранная система или музыкальный центр могут отлично справляться со своими обязанностями, но потреблять в несколько раз больше энергии, чем, как говорится, положено по штату. Особенно неприятна такая неисправность именно в системе охраны, работающей на стоянке длительное время.
Ну и самой серьёзной проблемой будет утечка тока. Если она относительно небольшая, скажем, пол-ампера, то во время поездки будет компенсироваться генератором. Но при выключенном зажигании проблема проявит себя по-настоящему — утром на стоянке запустить двигатель может не получиться.
Важно! Утечка тока есть практически в любом автомобиле, но это значение имеет свои нормы (см. раздел ниже), и если мы в эти нормы укладываемся, то всё в порядке.
Что вызывает утечку тока? Причин не очень много. К примеру, неудачная конструкция автомобиля. На некоторых старых моделях ВАЗ, в частности в ВАЗ 2110, ток утечки изначально велик. Недаром владельцы этого автомобиля на длительной стоянке скидывают наконечник с клеммы АКБ или устанавливают размыкатель массы и пользуются им.
Далее, износ электропроводки и оборудования. Если машина старенькая, то электрооборудование вроде работает, но даже в отключённом состоянии потребляет энергию. Колодки забиваются пылью, провода трескаются и промасливаются, изоляция перетирается.
Вызвать чрезмерную утечку может и нештатное оборудование, если оно установлено неспециалистом и непродуманно. К примеру, навигатор может продолжать вычислять своё место расположения, держа связь со спутниками даже при выключенном зажигании. Музыкальные центры, регистраторы и прочее подобное сервисное оборудование тоже могут работать некорректно, продолжая потребление энергии даже при выключенном зажигании и при отсутствии хозяина.
Мнение экспертаАлексей БартошСпециалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Задать вопрос Отсюда делаем вывод: если наш аккумулятор заметно садится даже не на очень длительной стоянке, то не стоит бежать в магазин за новым или лезть в генератор. Сначала нужно выяснить, не виновата ли в этой проблеме повышенная утечка тока.
Дополнительные признаки
Если под рукой нет мультиметра, наличие утечки тока можно оценить в темное время суток визуально. Для этого необходимо выключить зажигание, всё электрооборудование, открыть капот, закрыть автомобиль, не включая автосигнализацию на охрану.
Далее необходимо отключить положительную клемму АКБ, подождать минут пять. После этого необходимо подключить клемму аккумуляторной батареи. Если в момент подключения клеммы будет образовываться большая искра, утечка, скорее всего, есть.
Примечание: искра будет в любом случае, так как во время подключения клеммы может временно включаться дежурное освещение, сигнализация.
Такую проверку можно сделать, если есть главный признак утечки тока: разряд АКБ после непродолжительной стоянки. Считается критическим, если достаточно свежий аккумулятор разряжается через одну неделю стоянки. Проверить это удается не всегда, так как авто находится в постоянной эксплуатации.
Видео — как померить ток утечки в автомобиле мультиметром:
Еще один признак – наличие посторонних шумов, тресков, жужжаний, искрений в автомобиле при выключенном электрооборудовании.
Наличие посторонних запахов с привкусом дыма при посадке в авто утром после стоянки – серьезный признак неисправности. Если в автомобиле есть большая утечка тока, то согласно законам сохранения энергии она может проявить себя в виде механической, тепловой или световой энергии.
К сожалению, такими методами найти истинную причину практически невозможно. Необходимо прибегнуть к помощи мультиметра. Автоэлектрики выявление причин и устранение утечки тока в автомобиле относят к сложным ремонтным работам.
Диагностика и норма тока утечки АКБ
В автомобиле присутствуют устройства, потребляющие ток регулярно. К ним относятся:
- Часы:
- Память ЭБУ;
- Иммобилайзер;
- Сигнализация.
Их функционирование подразумевает постоянное питание. Энергозависимая память после перезагрузки снова начинает работать, запоминая текущие установочные функции. Охрана автомобиля осуществляется с момента постановки на стоянку. Все эти приборы нуждаются в токе, что говорит о возможности потребления небольшого объема энергии в регулярном режиме.
Так как ток уходит на работу многих энергозависимых устройств, то следует указать, что существует норма утечки. Она является постоянной величиной, которая высчитывается путем суммирования объема потребления каждого устройства. Если в автомобиле постоянными потребителями выступаю часы, сигнализация, аудиосистема, то сумма их токопотребления составит 1мА+20мА+3мА соответственно. При складывании величин тока для всех устройств, работающих постоянно, получается общая сумма в пределах 50–80 мА.
При сравнении с лампочкой фары, потребляющей около 500 мА, норма утечки тока в 50 мА не может повлиять на разряд АКБ.
Чтобы определить норму утечки тока в собственном автомобиле, следует провести диагностику. Она осуществляется путем замеров токопотребления. При выявлении величины потребления больше нормы, появляется необходимость поиска и устранения неполадки в работе электрооборудования или бортовой сети.
Как найти утечку
Утечка может быть вызвана несанкционированным потребителем или коротким замыканием в цепи. Поиски начинаются с нештатных приборов и электронных компонентов. В отличие от заводской проводки вновь установленное оборудование может питаться от проводов, уложенных в первое попавшееся место. При желании быстро все разместить мастер не обращает внимания на то, что проводка может лежать вблизи мотора. При работе агрегат выделяет тепло, действующее на изоляционный слой проводов. В результате появляются оплавленные участки.
При расположении кабелей вблизи металлических мест, которые соприкасаются постоянно, можно наблюдать перетирание. Целостность проводки нарушается, что ведет к короткому замыканию.
Поэтому после предварительной диагностики с помощью мультиметра стоит осмотреть визуально отдельные участки и элементы оборудования, размещенного после покупки машины. Часто концевики сигнализации размещаются в местах соприкосновения дверей. Искать необходимо обгоревшие, коррозионные или нарушенные участки. Если такие не найдены, то стоит перейти к стадии глубокой диагностики.
Чем грозит большой ток утечки на машине
Самая частая (хотя и не самая страшная) проблема из-за непомерной утечки тока в автомобиле — это быстро и часто разряжающийся аккумулятор. Замечают это обычно тогда, когда АКБ отслужила несколько лет, и уже не способна накапливать много энергии. Непомерный ток утечки, может быть, появился на машине намного раньше. Однако, пока аккумулятор «молодой и бодрый», его запасов хватает на многодневное потребление в несколько миллиампер. У старой батареи ампер-часов меньше, чем у новой, вот она и садится быстро.
Для нового аккумулятора большие токи утечки тоже далеко не полезные. Постоянная нагрузка будет, намного или нет — неважно, разряжать батарею. А стартёрные аккумуляторы сохраняют свой ресурс тем дольше, чем больше времени они пребывают в полностью (или почти) заряженном состоянии. Если же каждый божий день АКБ будет высаживаться сначала чуть-чуть, а потом до половины и так далее — двигатель запускать по утрам будет можно, но ресурс аккумулятора быстро сократится. Начнётся сульфатация пластин, постепенно уменьшится ёмкость, и прощай новый АКБ через пару лет после покупки.
Более серьёзные проблемы могут возникнуть, когда утечка тока в автомобиле вызвана короткими замыканиями, повреждениями изоляции и попаданием воды. В таких случаях возможен нагрев проводников или деталей электрооборудования. А это уже грозит самовозгоранием. Причём, что самое страшное, машина из-за этого чаще загорается ночью, когда рядом никого нет. Соответственно, своевременных мер никто не принимает, в результате чего автомобиль выгорает до голого кузова.
Такое, конечно, встречается не сплошь и рядом. Но и менее страшные проблемы, например, когда разряжается новый аккумулятор, неприятны, и указывают на наличие неисправности. А это значит, что надо знать о возможных причинах утечки тока.
Замер утечки тока в автомобиле мультиметром
Теперь рассмотрим самое главное — как замерить утечку тока в автомобиле. Всё, что для этого понадобится — это абсолютно любой мультиметр. При замерах крайне важно придерживаться правил безопасности. В противном случае можно и мультиметр сжечь, и травмироваться, и электронику автомобиля повредить.
Алгоритм проверки такой:
- Откройте капот и зафиксируйте кнопку, которая подаёт сигнал на охранную систему о его открывании.
- Переведите автомобиль в режим стоянки — отключите всё, кроме того, что обычно остаётся в ждущем режиме. Например, сигнализацию, пишущий видеорегистратор и так далее.
- Снимите с аккумулятора клемму со знаком минус. Вопреки расхожему мнению снимать можно и плюсовую. Однако «массу» отключать более правильно и на 100% безопасно.
- Мультиметр переведите в режим измерения тока в диапазоне до 10 А. Соответствующим образом переставьте на приборе плюсовой щуп. Никогда не пытайтесь измерять ток утечки на автомобиле, используя малый диапазон на мультиметре (до 200 мА). В момент подключения клеммы будет скачок тока, которого предохранитель в измерительном приборе может не выдержать.
- Один щуп мультиметра закрепите на снятом минусовом зажиме, а второй на клемме АКБ, с которой этот зажим был снят. Называется такое подключение — в разрыв цепи. Когда вы сняли клемму, вы разорвали цепь, а теперь подключили в разрыв мультиметр.
- Если в результате отключения АКБ от бортовой сети сбросилась охранная сигнализация, включите её повторно.
- Подождите некоторое время. В некоторых случаях ждать не нужно — ток утечки можно засекать сразу. В машинах, напичканных электроникой, необходимо дать время на то, чтобы все системы перешли в ждущий режим. В редких случаях приходится ждать до 5 минут. Если на это не обратить внимание, то можно забить панику без причины.
- Когда показания мультиметра выровняются — зафиксируйте их. Это и есть утечка тока на вашем автомобиле.
- Ни в коем случае ничего не включайте во время проведения измерений! Даже слабая нагрузка включается со скачком тока, что может привести к перегоранию предохранителя в мультиметре.
- Тем более не пытайтесь запускать двигатель, когда в разрыве цепи находится мультиметр!!! Он рассчитан всего лишь на 10 ампер, а во время работы стартера по цепи потечёт ток силой 100 — 200 А.
Дальше остаётся только сравнить полученные показатели с нормами, описанными выше. В целом, если мультиметр намерял менее 0,12 А (120 мА), то причин для беспокойства нет. Если же утечка тока больше, чем эта цифра, то следует заняться поиском причины.
Определение источника
Для определения источника утечки необходимо поочерёдно отключать штатные и внештатные устройства и приборы, анализируя показатели мультиметра, работающего в режиме амперметра. Проверка утечки тока в автомобиле мультиметром будет завершена, как только устройство обнаружит допустимые показатели тока одного из отключённых приборов. Не забудьте внимательно изучить состояние проводки, изоляции. Также стоит определить работоспособность генератора, чтобы исключить утечки тока из-за его дефектов.
Если показатели вольтметра не будут превышать 12,8 В, генератор следует отремонтировать или заменить, поскольку АКБ не получает от него зарядки.
Часто задаваемые вопросы
Какой нормальный ток утечки в автомобиле?
Утечка тока есть практически в каждом автомобиле, а норма будет зависеть от количества дополнительно установленной электроники, которая может потреблять энергию даже в режиме ожидания, а также особенности питания бортсети. Поэтому 0.05 Ампер – это норма для современного автомобиля. А в некоторых случаях даже 70 мА тоже допустимо.
Какой ток утечки через сигнализацию?
В рабочем режиме охранное устройство потребляет до 200 мА тока зависимо от ее сложности, количества датчиков и способа подключения. Ток утечки через сигнализацию – 20-30 мА это нормально, главное, чтобы к такому показателю потребление уменьшалось спустя 5-10 минут после ее включения. Проблемными ее местами считают концевики дверей капота и багажника, а также модуль связи (появляются окислы на плате).
Какой ток утечки через магнитолу?
На автомобиле с правильно подключённой 1 din магнитолой утечка не превышает 0.01A или 0.02А если стоит 2 din. Основная проблема заключается в подключении провода питания (красного) и провода отвечающего за сохранения настроек (желтого в одну скрутку) и прямо на АКБ. Постоянное питание должен получать лишь жёлтый провод «памяти». Также ток утечки через магнитолу, как и в случае с сигнализацией, при полном выключении зажигания, должен снижаться после 10 минут покоя.
Как измерить ток утечки?
Измерить ток утечки можно мультиметром либо токовыми клещами (позволяет измерять ток утечки безконтактно) поставив перед этим сигнализацию автомобиля в охрану и выждав 10-15 минут так как есть ЭБУ которые уходят в спящий режим не сразу.
Чтобы измерить ток утечки мультиметром необходимо последовательно подключится в цепь питания бортсети, перед минусовой клеммой на АКБ. Сначала нужно выставить на включенном тестере режим измерения постоянного тока 10А. Затем, скинув клемму «минус» с отрицательной клеммы на аккумуляторе, подключите один его щуп на минусовую клемму автомобиля, а вторым (красным) на минусовую клемму аккумуляторной батареи. На циферблате отобразится утечка тока.
При измерении тока утечки клещами на приборе нужно выставить измерение силы постоянного тока, а измеряемый проводник, может быть, как вся скрутка, идущая к минусовой клемме аккумуляторной батарее, так и от отдельных потребителей, помещается в кольцо клещей предварительно выключив зажигание полностью. На табло можно будет сразу увидеть потребление тока электроники авто в состоянии покоя.
Общие рекомендации
При появлении признаков утечки тока в автомобиле, необходимо измерить его величину с помощью мультиметра.
Если утечка выше критического значения (0,5 Ампера), необходимо снять клемму АКБ (лучше отрицательную) и вызвать специалиста или самостоятельно приступить к устранению проблемы.
Для уменьшения утечек тока, связанных с электрохимическими процессами, обработайте контакты, проводники, клеммы и разъемы специальными составами, можно обычной силиконовой смазкой в виде спрея.
Если утечка тока превышает 10 Ампер, эксплуатация автомобиля опасна, следует выключить зажигание и немедленно снять клеммы с АКБ.
Видео — как проверить ток утечки в автомобиле мультиметром:
Источники
- https://priorik.ru/lajfhak-kak-proverit-multimetrom-utechku-toka-v-avtomobile/
- https://rad-star.ru/pressroom/articles/proverka-utechki-toka-v-avto/
- https://Acums.ru/akkumulyatory/kak-proverit-utechku-toka-na-avtomobile-multimetrom
- https://voditeliauto.ru/poleznaya-informaciya/avtoustrojstva/akb/kak-proverit-utechku-toka.html
- https://pricurivatel.ru/opredelit-utechku-toka.html
- https://a6s.info/ru/elektrooborudovanie/77-utechka-toka
- https://motorsguide.ru/advice/utechka-toka
- https://etlib.ru/calc/leakage-current
Реле типа «РКТУ–01» от ООО «Релематика»
Технические особенности «РКТУ-01» Общие технические характеристики Схемы подключения Диаграммы срабатывания Варианты исполнения
Принцип действия реле основан на непрерывном контроле тока в цепях постоянного, переменного или выпрямленного напряжения (в том числе контроля изоляции цепей газовой защиты) и выдачи сигнала срабатывания при превышении контролируемым током величины выбранной уставки (задается пользователем с помощью DIP-переключателя на лицевой панели). Срабатывание реле указывает на недопустимое снижение сопротивления изоляции, приводит к выводу газовой защиты из действия и действует в схему предупредительной сигнализации.
Широкий диапазон уставок срабатывания «РКТУ–01» делает возможным его применение при различных номинальных значениях оперативного напряжения от 24 до 220 В. Выбор уставки срабатывания может быть осуществлен на основании требований ПУЭ, согласно которому сопротивление изоляции каждого присоединения вторичных цепей должно быть не менее 0,5 МОм. Таким образом, например, для номинального оперативного напряжения 220 В значение допустимого тока утечки составляет не более 440 мкА, соответственно уставка срабатывания реле «РКТУ–01» выставляется равной 500 мкА.
В случае замыкания контакта газового реле во входной цепи «РКТУ–01» протекает ток, определяемый нагрузкой цепи газовой защиты и заведомо превышающий фиксированную уставку блокировки. При этом устройством автоматически обеспечивается запрет на выдачу сигнала срабатывания цепи контроля изоляции. Входная цепь «РКТУ-01» допускает длительное протекание тока величиной до 3 А, падение напряжение на входной цепи устройства при максимальном токе не превышает 4 В.
Устройство имеет дополнительный контактный выход, сигнализирующий о наличии напряжения питания. Данный выход может быть использован также для сигнализации о состоянии автомата питания газовой защиты или наличия напряжения на шинках.
Кроме контактных выходов устройство содержит на лицевой панели органы визуальной сигнализации о наличии напряжения питания (индикатор «Питание») и состоянии контролируемой цепи (индикатор «Сраб»). Индикатор «Сраб» обеспечивает выдачу непрерывной световой сигнализации при превышении контролируемым током значения уставки срабатывания и прерывистой сигнализации (мигание) при замыкании контактов газового реле (входной ток превышает уставку блокировки). Сигнализация включенного состояния уставки блокировки обеспечивается индикатором «БЛК ВКЛ».
При отключении уставки блокировки устройство может также использоваться для контроля целостности общесекционных шинок, например шинки УРОВ. Единственным дополнительным условием является установка в крайней ячейке секции параллельно контактам реле УРОВ присоединений высокоомного резистора R (порядка 1МОм), с помощью которого создается искусственный ток утечки, заведомо превышающий уставку срабатывания «РКТУ-01», но недостаточный для срабатывания цепи УРОВ вводного выключателя. При обрыве шинок УРОВ ток во входной цепи «РКТУ–01» пропадает и осуществляется возврат выходного реле К1, которое в нормальном режиме находится в состоянии срабатывания. Для блокирования выдачи сигнала о срабатывании при отключении автомата питания шинок УРОВ в данном случае может использоваться последовательно включенный контакт выходного реле К2.
Диапазон рабочих температур «РКТУ–01» составляет от минус 40°С до плюс 55°С.
Наименование параметра |
Значение |
Значения уставки срабатывания, мкА |
50; 100; 150; 200; 300; |
Уставка блокировки срабатывания, мА |
10±1 |
Коэффициент возврата по цепям контроля тока, не более |
0,8 |
Основная погрешность срабатывания, не более, % |
20 |
Диапазон напряжений питания (постоянное, переменное), В |
от 19 до 265 |
Потребляемая мощность, не более, Вт (ВА) |
4 |
Входное сопротивление цепи контроля тока (при токе менее 20 мА), не более, Ом |
75 |
Максимальный ток в контролируемой цепи, А |
3 |
Падение напряжения во входной цепи «РКТУ–01» |
4 |
Задержка срабатывания при превышении уставки, с, не более |
1 |
Коммутационная способность выходных реле «РКТУ–01»: |
250
192 |
Схема подключения — контроль шинок
Схема подключения — контроль изоляции
Основы измерения тока утечки | Fluke
В любой электрической установке некоторый ток будет течь через провод защитного заземления на землю. Обычно это называется током утечки. Чаще всего ток утечки протекает через изоляцию вокруг проводов и в фильтрах, защищающих электронное оборудование дома или в офисе. Так в чем проблема? В цепях, защищенных GFCI (прерыватели тока замыкания на землю), ток утечки может вызвать ненужное и прерывистое отключение.В крайних случаях это может вызвать повышение напряжения на доступных проводящих частях.
Причины утечки тока
Изоляция имеет как электрическое сопротивление, так и емкость — и она проводит ток по обоим путям. Учитывая высокое сопротивление изоляции, на самом деле должен протекать очень небольшой ток. Но — если изоляция старая или повреждена, сопротивление ниже и может течь значительный ток. Кроме того, более длинные проводники имеют более высокую емкость, что приводит к большему току утечки.Вот почему производители выключателей GFCI рекомендуют ограничить длину одностороннего питателя до 250 футов максимум.
Электронное оборудование, тем временем, содержит фильтры, предназначенные для защиты от скачков напряжения и других сбоев. Эти фильтры обычно имеют конденсаторы на входе, что увеличивает общую емкость системы проводки и общий уровень тока утечки.
Минимизация эффектов тока утечки
Итак, как можно устранить или минимизировать влияние тока утечки? Определите ток утечки, а затем определите источник.Один из способов решить эту проблему — использовать токоизмерительные клещи для измерения тока утечки. Они очень похожи на токоизмерительные клещи, используемые для измерения токов нагрузки, но обеспечивают значительно лучшие характеристики при измерении токов ниже 5 мА. Большинство клещей просто не регистрируют такие низкие токи.
Если вы поместите клещи токоизмерительных клещей вокруг проводника, значение тока, которое он считывает, зависит от силы переменного электромагнитного поля, окружающего проводники.
Для точного измерения малых уровней тока важно, чтобы сопрягаемые поверхности губок были защищены от повреждений, содержались в чистоте и были полностью закрыты вместе без воздушного зазора при испытании.Избегайте перекручивания губок токоизмерительных клещей, так как это может привести к ошибочным измерениям.
Токоизмерительные клещи обнаруживают магнитное поле вокруг проводников, таких как одножильный кабель, кабель с проволочной броней, водопроводная труба и т. Д .; или спаренные фазный и нейтральный проводники однофазной цепи; или все токоведущие проводники (3-проводные или 4-проводные) трехфазной цепи (например, GFCI или устройство защитного отключения).
При тестировании сгруппированных токоведущих проводов цепи магнитные поля, создаваемые токами нагрузки, нейтрализуют друг друга.Любой ток дисбаланса возникает из-за утечки из проводов на землю или где-либо еще. Для измерения этого тока токоизмерительные клещи должны показывать менее 0,1 мА.
Например, измерение в цепи 240 В переменного тока при отключенных нагрузках может привести к утечке величиной 0,02 А (20 мА). Это значение соответствует сопротивлению изоляции:
240 В / (20 x 10-6) = 12 МОм. (Закон Ома R = V / I)
Если вы провели испытание изоляции в цепи, которая была отключена, результат будет в районе 50 МВт или более.Это связано с тем, что тестер изоляции использует для тестирования постоянное напряжение, которое не учитывает емкостный эффект. Значение импеданса изоляции — это фактическое значение, которое существует при нормальных условиях эксплуатации.
Если вы измеряете одну и ту же схему, загруженную офисным оборудованием (ПК, мониторы, копировальные аппараты и т. Д.), Результат будет значительно отличаться из-за емкости входных фильтров этих устройств. Когда в цепи работает много единиц оборудования, эффект будет кумулятивным; то есть ток утечки будет выше и вполне может быть порядка миллиампер.Добавление нового оборудования в цепь, защищенную GFCI, может отключить GFCI. И поскольку величина тока утечки варьируется в зависимости от того, как работает оборудование, GFCI может отключиться случайным образом. Такие периодические проблемы бывает сложно диагностировать.
Токоизмерительные клещи обнаруживают и измеряют широкий диапазон переменных или изменяющихся токов, проходящих через проверяемый проводник. При наличии телекоммуникационного оборудования величина утечки, показываемая токоизмерительными клещами, может быть значительно больше, чем величина утечки, вызванная сопротивлением изоляции при 60 Гц.Это связано с тем, что в телекоммуникационное оборудование обычно входят фильтры, которые производят функциональные токи заземления, и другое оборудование, генерирующее гармоники и т.д. частоты.
Измерение тока утечки на землю
Когда нагрузка подключена (включена), измеренный ток утечки включает утечку в нагрузочном оборудовании.Если утечка при подключенной нагрузке достаточно мала, то утечка в проводке цепи еще ниже. Если требуется только утечка проводки цепи, отключите (выключите) нагрузку.
Испытание однофазных цепей путем зажима фазного и нейтрального проводов. Измеренное значение будет любым током, протекающим на землю.
Проверить трехфазные цепи , зажимая все трехфазные провода. Если есть нейтраль, ее следует зажать вместе с фазными проводниками.Измеренное значение будет любым током, протекающим на землю.
Измерение тока утечки через заземляющий провод
Чтобы измерить полную утечку, протекающую до предполагаемого заземляющего соединения, поместите зажим вокруг заземляющего проводника.
Измерение тока утечки на землю через непреднамеренные пути к земле.
Фаза зажима / нейтраль / земля вместе определяют ток дисбаланса, который представляет утечку в розетке или электрической панели через непреднамеренные пути к земле (например, панель, установленная на бетонном основании).Если существуют другие электрические соединения (например, соединение с водопроводной трубой), может возникнуть подобный дисбаланс.
Отслеживание источника тока утечки
Эта серия измерений определяет общую утечку и источник. Первое измерение можно провести на главном проводе к панели. Затем выполняются измерения 2, 3, 4 и 5 для выявления цепей, в которых протекает больший ток утечки. j k l m n
Резюме
Ток утечки может быть индикатором эффективности изоляции проводов.В цепях, в которых используется электронное оборудование с фильтрами, могут присутствовать высокие уровни тока утечки, и они могут вызывать напряжения, нарушающие нормальную работу оборудования. Можно определить местонахождение источника тока утечки, используя слаботочные клещи для измерения тока утечки для проведения методических измерений, как описано выше. При необходимости это позволяет более сбалансировано перераспределить нагрузки по установке.
Характеристики тока утечки конденсаторов — Блог пассивных компонентов
Источник: блог Capacitor Faks
Конденсаторы, как и другие электронные компоненты, изготовлены из несовершенных материалов.Несовершенства и дефекты этих материалов существенно влияют на электрические характеристики конденсаторов. Некоторые из параметров, определяемых этими дефектами и несовершенствами, включают импеданс, коэффициент рассеяния, индуктивное реактивное сопротивление, эквивалентное последовательное сопротивление и ток утечки. При проектировании электронной схемы необходимо учитывать эти характеристики.
Постоянный ток утечки — одна из ключевых характеристик, которые следует учитывать при выборе конденсатора для вашей конструкции.Другие важные параметры включают рабочее напряжение, номинальную емкость, поляризацию, допуск и рабочую температуру.
Ток утечки и его влияние на характеристики конденсаторовПроводящие пластины конденсатора разделены диэлектрическим материалом. Этот материал не обеспечивает идеальную изоляцию и позволяет току течь через него. Ток утечки постоянного тока относится к этому небольшому току, который протекает через конденсатор при приложении напряжения.Величина этого тока в основном зависит от приложенного напряжения, температуры конденсатора и периода зарядки.
Величина тока утечки варьируется от одного типа конденсатора к другому в зависимости от характеристик диэлектрического материала и конструкции. Алюминиевые электролитические конденсаторы имеют большой ток утечки, в то время как керамические, фольговые и пластиковые пленочные конденсаторы имеют небольшие токи утечки. Очень небольшой ток утечки обычно называют «сопротивлением изоляции».
В электронных схемах конденсаторы используются для широкого спектра применений, включая развязку, фильтрацию и развязку.Для некоторых приложений, таких как системы электропитания и системы связи усилителей, требуются конденсаторы с низкими токами утечки. Алюминиевые электролитические конденсаторы и танталовые конденсаторы имеют высокие токи утечки и обычно не подходят для таких применений. Пластиковые и керамические конденсаторы имеют более низкие токи утечки и обычно используются для связи и хранения.
Зависимость тока утечки от времениТоки утечки некоторых конденсаторов зависят от времени.В момент подачи напряжения на алюминиевый электролитический конденсатор ток достигает своего пика. Возникновение этого пикового тока зависит от формирующих характеристик конденсатора и внутреннего сопротивления источника напряжения. Когда конденсатор заряжен, его ток утечки со временем падает до почти постоянного значения, называемого рабочим током утечки. Этот небольшой ток утечки зависит как от температуры, так и от приложенного напряжения.
Алюминиевые электролитические конденсаторы обладают самовосстанавливающимися свойствами.Процесс самовосстановления существенно влияет на токи утечки алюминиевых электролитических конденсаторов. Временная зависимость токов утечки также вызвана формированием диэлектрического материала. Другие параметры, которые определяют значение этого небольшого тока, включают тип электролита, емкость и формирующее напряжение анода. Ток утечки керамического конденсатора не меняется со временем.
Зависимость тока утечки от температурыТок утечки конденсатора зависит от температуры.Уровень зависимости варьируется от одного типа конденсаторов к другому. В случае алюминиевого электролитического конденсатора повышение температуры увеличивает скорость химической реакции. Это приводит к увеличению тока утечки.
По сравнению с керамическими конденсаторами танталовые конденсаторы имеют высокие токи утечки. Постоянный ток утечки танталового конденсатора увеличивается с повышением температуры. Токи утечки танталовых конденсаторов немного увеличиваются, когда они хранятся в высокотемпературной среде.Это небольшое увеличение тока утечки носит временный характер, и его можно устранить, подав номинальное напряжение в течение нескольких минут. Кроме того, ток утечки танталового конденсатора немного увеличивается, когда компонент подвергается воздействию высокой влажности. Преобразование напряжения помогает обратить вспять это временное увеличение тока утечки.
Керамические и пленочные конденсаторы имеют небольшие токи утечки по сравнению с электролитическими конденсаторами. Для многослойных керамических конденсаторов (MLCC) собственные токи утечки возрастают экспоненциально с увеличением температуры.Сопротивление изоляции пленочного конденсатора определяется свойствами диэлектрического материала. Для этого типа конденсатора повышение температуры вызывает уменьшение сопротивления изоляции и увеличение тока утечки.
Зависимость тока утечки от напряженияПостоянный ток утечки конденсатора сильно зависит от приложенного напряжения. Для алюминиевых электролитических конденсаторов этот ток увеличивается с увеличением рабочего напряжения.Когда рабочее напряжение превышает номинальное и приближается к напряжению формования, ток утечки увеличивается экспоненциально. Когда напряжение, приложенное к алюминиевому электролитическому конденсатору, превышает импульсное напряжение, возрастает тенденция к повышению температуры, деградации электролита, образованию избыточного газа и другим вторичным реакциям. По этой причине эксплуатация алюминиевого электролитического конденсатора за пределами номинального напряжения недопустима. Постоянный ток утечки алюминиевого электролитического конденсатора резко падает, когда приложенное напряжение снижается ниже номинального.
Ток утечки алюминиевого электролитического конденсатора увеличивается, когда компонент хранится в течение длительного периода времени. Таким конденсаторам восстанавливаются исходные характеристики путем ремонта. Процесс включает приложение номинального напряжения к конденсатору в течение примерно получаса.
Для керамических конденсаторов собственные токи утечки сильно зависят от напряжения. Увеличение напряжения приводит к сверхлинейному увеличению собственного тока утечки. Сопротивление изоляции керамического конденсатора не зависит от напряжения.
ЗаключениеМатериалы, используемые при производстве электронных компонентов, имеют дефекты. Эти недостатки существенно влияют на электрические характеристики электронных компонентов. Диэлектрический материал конденсатора представляет собой несовершенный изолятор, который позволяет небольшому количеству тока течь между двумя проводящими пластинами. В алюминиевых электролитических конденсаторах ток утечки в первую очередь вызван дефектами оксидного слоя.Этот ток изменяется в основном в зависимости от приложенного напряжения, времени и температуры конденсатора. Электролитические конденсаторы имеют большие токи утечки, в то время как пластиковые и керамические конденсаторы имеют очень малые токи утечки. Конденсаторы с низким током утечки широко используются в устройствах связи и накопления.
Проверка тока утечки | Цветность
Тест тока утечки сетевого напряжения имитирует воздействие человека, касающегося открытых металлических частей продукта, и определяет, остается ли ток утечки, который может протекать через тело человека, ниже безопасного уровня.
Человек обычно воспринимает ток, протекающий через его тело, когда он достигает или превышает 1 мА (одну тысячную ампер). Сила тока выше порога может вызвать неконтролируемый мышечный спазм или шок. Эквивалентная схема человеческого тела состоит из входного сопротивления 1500 Ом, зашунтированного емкостью 0,15 мкФ.
Чтобы обеспечить запас безопасности для потребителя, регулирующие органы обычно требуют, чтобы у продукта был ток утечки сетевого напряжения менее 0.5 мА. Для некоторых продуктов, оснащенных трехконтактными вилками и предупреждающими наклейками, допустимый ток утечки может достигать 0,75 мА, но типичный предел составляет 0,5 мА. Поскольку высокоточные испытания обычно требуются для 100% блоков производственной линии, и поскольку высокоточные испытания являются более строгими, испытания утечки сетевого напряжения обычно указываются как испытания конструкции или типа, а не как испытания производственной линии. Испытания на утечку сетевого напряжения обычно требуются для всех медицинских изделий в качестве производственного испытания.
Испытания на утечку линейного напряжения проводятся с помощью схемы, аналогичной показанной на Рисунке 17, с измерением тока утечки при различных условиях неисправности, таких как «отсутствие заземления» или при обратном подключении линии и нейтрали.Сначала подается напряжение с нормальной линией и нейтралью, затем проводится испытание с обратным подключением, а затем без заземления.
Измерение тока утечки является требованием для типовых испытаний любого изделия с питанием от сети. Лаборатория соответствия или Национальная признанная испытательная лаборатория (NRTL) обычно проводит типовые испытания образцов продукции на этапе проектирования. После завершения типовых испытаний, как правило, дальнейшие испытания на утечку на производственной основе не требуются, за исключением изделий медицинского назначения.Из соображений безопасности на производственной линии медицинских изделий обычно проводятся измерения тока утечки.
Класс | Тип оборудования | Максимальный ток утечки |
II Незаземленный | Все | 0,25 мА |
I Заземленный | Портативный | 0,75 мА |
I Заземленный | Movablebv (не переносной) | 3.5 мА |
I Заземленный | Стационарный, тип A | 3,5 мА |
Таблица 4: Некоторые значения UL для пределов тока утечки
Типы тока утечки
Существует несколько различных типов тока утечки: утечка линии заземления, утечка касания / шасси (ранее — корпуса), утечка пациента и вспомогательный ток пациента. Основные различия между токами утечки зависят от того, как человек может контактировать с продуктом или измерением.Например, утечка, которая будет протекать через тело человека, если он коснется внешнего корпуса продукта, будет утечкой касания / шасси или корпуса.
Утечка на землю: Линейный ток утечки измеряется, когда разъем заземления разомкнут, вставляется схема, имитирующая импеданс человеческого тела, и измеряется напряжение на ней.
Утечка касания / шасси (корпуса): Линейный ток утечки, измеренный при подключении схемы, имитирующей импеданс человеческого тела, к любой открытой части шасси тестируемого устройства.Это имитирует прикосновение человека к корпусу / шасси тестируемого устройства.
Утечка у пациента (прикладная часть): Утечка в линии, измеренная от или между подключенными частями ИУ, например ток, который может протекать от отведений пациента и датчиков на медицинском устройстве.
Пациент Вспомогательная утечка: Линейный ток утечки, протекающий в пациенте при НОРМАЛЬНОМ использовании между рабочими частями ИУ и не предназначенный для оказания физиологического эффекта.
Каков безопасный уровень тока утечки?
В зависимости от типа оборудования были определены допустимые уровни тока утечки, которые обычно указаны в соответствующем международном или региональном стандарте.Допустимые уровни тока утечки зависят от классификации конкретного типа оборудования. Основной принцип защиты от поражения электрическим током — наличие как минимум двух уровней защиты.
Класс I
В продуктахкласса I используется основная изоляция в сочетании с защитным заземлением. У этих продуктов будет трехконтактный шнур питания, а заземляющий нож будет прикреплен к любому доступному металлу на продукте. Продукты класса I имеют более высокие допустимые токи утечки, поскольку заземление обеспечивает уровень защиты для оператора и эффективно отводит ток утечки, с которым может соприкоснуться человек.Пределы тока утечки для продуктов класса I также различаются в зависимости от того, является ли шнур питания съемным или постоянным.
Класс II
Изделия с двухконтактным шнуром питания относятся к Классу II. Для продуктов класса II требуется не только основная изоляция, но и дополнительная или усиленная изоляция. Эти изделия часто называют изделиями с двойной изоляцией, поскольку защита от ударов основана на двухслойной изоляции. Поскольку нет защитного заземления для отвода избыточного тока утечки, пределы допустимого тока утечки для продуктов класса II ниже, чем у продуктов класса I.
Измерение тока утечки
Затем измеренные значения тока утечки сравниваются с допустимыми пределами в зависимости от типа тестируемого продукта (класса), точки контакта с продуктом (заземление, прикосновение, пациент) и работы продукта в нормальных условиях и в условиях единичной неисправности.
Измерения тока утечки выполняются при включенном устройстве и во всех условиях, таких как режим ожидания и полная работа. Напряжение питания обычно подается на изделие через изолирующий трансформатор.
Напряжение сети питания должно составлять 110% от наивысшего номинального напряжения питания и наивысшей номинальной частоты питания. Это означает, что продукт, рассчитанный на работу при 115 В переменного тока 60 Гц и 230 В переменного тока 50 Гц, будет протестирован при 110% от 230 В переменного тока, что равно 253 В переменного тока, и при частоте сети 60 Гц.
Измерительный прибор, называемый MD, должен иметь входное сопротивление (Z) 1 МВт и плоскую частотную характеристику от постоянного тока до 1 МГц. См. Рисунок 20. Прибор должен показывать истинное значение R.РС. значение напряжения на измерительном импедансе или тока, протекающего через измерительное устройство, с погрешностью показаний не более ± 5%. Прибор также должен нагружать источник тока утечки с импедансом приблизительно 1000 Вт для частот от постоянного тока до 1 МГц.
Это достигается с помощью модели человеческого тела или сети, подключенной ко входу измерительного прибора. В зависимости от используемого стандарта импеданс модели человеческого тела или сети будет меняться.На рисунке 20 показана модель человеческого тела или сеть, используемая в стандарте IEC60601-1 для тестирования медицинских устройств. Существует ряд имеющихся в продаже приборов, специально разработанных для измерения тока утечки. Эти инструменты имеют правильную точность, входное сопротивление и типичные выбираемые модели человеческого тела для нескольких популярных стандартов, встроенных прямо в инструмент.
Токи утечки измеряются как при нормальной работе, так и при неисправности. Нормальная работа означает, что изделие находится под напряжением как в режиме ожидания, так и в режиме полной работы.Медицинские устройства также требуют подключения любого напряжения или тока, разрешенного при нормальной работе, к частям входа и выхода сигнала. К условиям единичного повреждения относятся размыкание защитного заземления и размыкание нейтрального проводника в сети. В зависимости от конструкции продукта могут возникнуть дополнительные неисправности.
Есть несколько общих правил, которые следует соблюдать при измерении тока утечки. Тестируемый продукт следует разместить на изолирующей поверхности на значительном расстоянии, 20 см, от любой заземленной металлической поверхности.Цепь измерения и кабели следует располагать как можно дальше от неэкранированных проводов питания и значительно дальше от любой заземленной металлической поверхности. Обратитесь к нашей библиотеке замечаний по применению для получения дополнительной информации о тестировании тока утечки для медицинских изделий.
Leakage Current — обзор
Чтобы избежать шума, создаваемого избыточными токами утечки, многие диоды в инфракрасной области работают как источники напряжения с разомкнутой цепью. Свет, падающий на активную область перехода, создает ток в направлении , обратном , а в условиях разомкнутой цепи накопление заряда создает прямое напряжение , которое создает равный и противоположный ток, в результате чего получается нулевое значение.(Это принцип солнечного элемента.) Используя стандартное уравнение напряжение-ток для полупроводникового диода, напряжение диода разомкнутой цепи становится равным
(24) υ = kTqln (i + IsIs) → i≪IskTqIsi = RJi
, где I S — это ток насыщения диода, а i — фотоиндуцированный ток, ℜ P . Сопротивление перехода, R J = kT / qI S , является сопротивлением нулевого смещения перехода p — n и указан источник параллельного шумового тока. по выражению шума Джонсона in2¯ = 4kTB / RJ, поскольку переход находится в тепловом равновесии.Этот шум может быть таким же, как некоррелированный дробовой шум двух равных и противоположных токов I S , протекающих через соединение. Суммарный среднеквадратичный шумовой ток затем становится этим членом шума Джонсона плюс эффективный среднеквадратичный входной шумовой ток усилителя, как обсуждалось в разделе II.B выше. Диоды, которые обычно работают в режиме обратного смещения, такие как диоды из кремния и арсенида галлия, характеризуются своим насыщением или темновым током.Диоды, которые имеют высокие обратные токи из-за туннелирования или лавины, характеризуются своим сопротивлением нулевого смещения, и стандартным показателем качества является произведение RA , сопротивление, умноженное на площадь диода. Предполагая, что поверхностная утечка незначительна, сопротивление должно быть обратно пропорционально площади, и для данного материала продукт RA как функция температуры является удобной характеристикой. Такое поведение позволяет использовать уравнение. (2) и
(25) D * = DAB = ABNEP = ABin2― = ℜAB4kTB / R = RA4kT; Aincm2, BinHz
с использованием уравнения.(19) для значения НЭП . Это, конечно, предполагает, что основным источником шума является диод, а не следующий за ним усилитель. Фактически, охлаждение фотоэлектрического диода может увеличить сопротивление перехода до такой степени, что его работа идентична работе диода с обратным смещением. И наоборот, при более длинных инфракрасных длинах волн конечные характеристики определяются тепловым фоном, за исключением случаев наблюдения за узким спектральным источником, таким как лазерное излучение.
Что такое ток утечки? — Power Electronic Tips
Ток утечки неожиданно протекает почти во всех цепях, даже когда питание отключено.Утечка тока не ограничивается электроникой, компьютерами или небольшими сигнальными цепями, а также может быть обнаружена в промышленном оборудовании и трехфазных электрических установках. Некоторый ток всегда найдет путь к земле, будь то через заземляющую изоляцию, которая должна защищать проводку в электрической установке в проводке промышленного оборудования, или утечка тока через слабые диэлектрические изоляторы внутри конденсаторов, которые предназначены для байпаса или защиты цепи. Даже незначительное количество тока может проходить через альтернативные пути, устройства защиты цепей и изоляторы всех типов.
Ток утечки становится проблемой, когда он влияет на производительность или расходует энергию, когда приоритетом является эффективное управление питанием. В вычислениях может снизиться производительность, поскольку компьютеры состоят из миллионов или триллионов транзисторов, которые в основном используются
Рисунок 1: Токоизмерительные клещи или амперметр обнаруживают и измеряют широкий диапазон переменного тока в проводнике. (Источник: Fluke)как электронные переключатели. Поскольку технология создает более компактные и более эффективные транзисторы, ток утечки становится более серьезной проблемой по сравнению с ними, поскольку изолирующие барьеры легче преодолевать.(Транзисторы могут становиться меньше, а электроны — нет, поэтому потери мощности из-за утечки тока увеличиваются благодаря прогрессу все более мелких узлов в полупроводниковой технологии. Ток утечки в большинстве случаев нежелателен.
Ток утечки может привести к постоянной трате энергии, и в кругах конечных потребителей это называется потерей «силы вампира»; ответ на этот вопрос — отключать зарядные устройства, когда они не используются. Однако потеря мощности — не единственная проблема, которую может создать ток утечки.Ток может протекать из одной цепи в другую, если ток утечки находит легкий путь к земле, и может усиливаться при изменении условий окружающей среды, таких как температура или сигналы, работающие на высоких частотах.
Ток утечки — это реальность. Однако его можно смягчить, используя более совершенные методы проектирования, другие материалы или компоненты и лучшие изоляторы. Если вы подозреваете, что проблема связана с током утечки (например, прибор всегда поражает вас электрическим током или кажется, что при выключенном выключателе питания наблюдается чрезмерная потеря энергии), вы можете определить источник тока утечки с помощью тестирования и измерения.Если величина тока утечки незначительна, то, возможно, не стоит вашего времени пытаться уменьшить ток утечки. На макроуровне (например, электропроводка в доме) вы можете использовать амперметр, чтобы отследить источник протекающего тока, когда выключатель питания выключен. Амперметр следует откалибровать, очистить и использовать в соответствии с инструкциями для проверки возможных проводников, включая неожиданные пути, такие как водопроводные трубы или заземленный экран кабелей. Однако для электронных схем на печатных платах может потребоваться более сложное оборудование, такое как осциллограф.В любом случае не забывайте проверять неожиданные проводники, в том числе изоляторы, которые могут обеспечивать заземление.
Что такое измерение и измерение тока утечки, как это делается
Ток утечки — это ток, который течет от цепи постоянного или переменного тока в оборудовании к земле или каркасу и может исходить от выхода или входа. Если оборудование не заземлено должным образом, ток течет по другим путям, например по телу человека.Это также может произойти, если заземление неисправно или случайно или намеренно нарушено.
Ток утечки в оборудовании протекает, когда возникает непреднамеренное электрическое соединение между землей и частью или проводником под напряжением. Земля может быть точкой отсчета нулевого напряжения или землей. В идеале ток, протекающий от блока питания, должен проходить через заземление и попадать в заземление установки.
Несоответствие материалов, из которых состоят такие элементы, как конденсаторы и полупроводники, являются основной причиной тока утечки.Это приводит к утечке или протеканию небольшого тока через диэлектрик в случае конденсатора.
Это измерение выполняется во время испытания устройства на электрическую безопасность. Измеряются токи, протекающие через защитный проводник или металлические части земли.
Почему важно измерение тока утечки?Электрическая система обычно состоит из заземления, обеспечивающего защиту от поражения электрическим током в случае повреждения изоляции.Система заземления состоит из заземляющего стержня, который соединяет прибор с землей. Если когда-либо произойдет катастрофическое нарушение изоляции между линией электропередачи и токопроводящими частями, напряжение будет понижено до земли. Ток, который создается из-за этого события, будет протекать, вызывая размыкание автоматического выключателя или перегорание предохранителя, что позволяет избежать опасности поражения электрическим током.
Очевидно, что опасность поражения электрическим током преобладает при случайном или преднамеренном нарушении заземления или заземления. Вероятность сотрясения может быть больше, чем предполагалось, если есть токи утечки.Даже в случае отсутствия нарушения изоляции проникновение токов утечки, протекающих через заземляющий стержень, по-прежнему создает угрозу поражения электрическим током для кого-то, кто одновременно встречает незаземленную систему и землю.
Это серьезная проблема, когда речь идет о медицинских приложениях, где пациент может быть получателем электрического шока. Шок может быть даже смертельным, если пациент слаб или без сознания, или если ток течет к внутренним органам. Двухслойная изоляция, предлагаемая в незаземленном оборудовании, обеспечивает защиту.Безопасность в этом сценарии обеспечивается, потому что оба слоя изоляции вряд ли рухнут вместе. Тем не менее ситуации, которые приводят к токам утечки, все еще существуют, и их необходимо учитывать.
Следовательно, как можно устранить или уменьшить последствия тока утечки? Измерьте ток утечки, а затем определите причину. Цель теста — измерить количество тока, который проходит через человека, когда этот человек прикасается к электрическому изделию.
Что делается во время измерения тока утечки?- Измеритель, специально разработанный для определения токов утечки.
- Ток, протекающий через заземляющий стержень, измеряется путем последовательного подключения счетчика к заземляющему соединению.
- Заземление распечатано, и измеряется ток, протекающий на нейтральную сторону линии электропередачи, для оборудования обработки данных.
- Счетчик также может быть подключен между выводами источника питания и землей.
- Условия проверки состоят в замене нейтрали и линии переменного тока, а также включении и выключении силовых выключателей при контроле тока.
- Тест выполняется, когда система нагревается до типичной рабочей температуры.
- Цель состоит в том, чтобы определить и измерить ток утечки наихудшего случая.
- При очень малых токах утечки измеритель заменяется сетью, состоящей либо из резистора, либо из резистора и группы конденсаторов.
- Затем измеряется падение напряжения в сети с помощью вольтметра переменного тока.
- Оборудование с двойной изоляцией или незаземленное проверяется путем прикрепления счетчика к любой доступной проводящей части и заземлению.
- На корпус накладывается медная фольга определенного размера для непроводящих корпусов, и определяется ток, протекающий от нее на землю. .
Тип оборудования | Максимальный ток утечки |
Класс I | 0,75 мА для портативных устройств |
3.5mA для прочих устройств | |
Класс II | 0,25 мА |
Класс III | Нет опасного напряжения |
Прямое измерение имеет точность, и используется измеритель, специально разработанный для определения токов утечки.Ток, протекающий в заземляющем проводе, измеряется путем последовательного подключения счетчика к заземляющему соединению соответствующего устройства.
Токоизмерительные клещи для измерения тока утечки — наиболее популярное устройство, используемое для измерения тока утечки. Они похожи на токоизмерительные клещи, используемые для определения токов нагрузки, но дают значительно лучшие результаты при количественном определении токов менее 5 мА. Обычно токоизмерительные клещи не регистрируют такие малые токи. После того, как мы разместим клещи токоизмерительных клещей вокруг проводящего стержня или проволоки, снимается показание тока, и значение зависит от интенсивности переменного электромагнитного поля вокруг проводника.Токоизмерительные клещи будут определять магнитное поле вокруг проводников, таких как кабель с проволочной броней, одножильный кабель, водопровод и т. Д. Парные нейтральный и фазный проводники однофазной цепи или все токоведущие проводники трехфазной цепи.
Испытание различных типов проводов:
- При тестировании сгруппированных токоведущих проводников цепи магнитные поля, создаваемые токами нагрузки, нейтрализуют друг друга. Любой неравномерный ток, идущий от проводов к земле, измеряется токоизмерительными клещами, и его показание должно быть меньше 0.1 мА.
- Если вы выполнили испытание изоляции в цепи, которая была отключена, результат будет в диапазоне 50 МОм или более, поскольку тестер изоляции использует для проверки постоянное напряжение, которое не учитывает емкостный эффект.
- Если вы измерили ту же схему, нагруженную офисным оборудованием, результат был бы значительно другим из-за емкости входных фильтров этих устройств.
- Когда в цепи работает много частей оборудования, результат будет общим, то есть ток утечки будет больше и вполне может быть в диапазоне миллиампер.Добавление нового оборудования в цепь, защищенную GFCI, может отключить GFCI. А поскольку значение тока утечки зависит от того, как работает оборудование, GFCI может непреднамеренно отключиться.
- При наличии телекоммуникационного оборудования величина утечки, показанная токоизмерительными клещами, может быть значительно больше, чем величина утечки, вызванная сопротивлением изоляции при 60 Гц, потому что телекоммуникационная система обычно состоит из фильтров, которые генерируют токи функционального заземления и других механизмов, генерирующих гармоники и т. .
Измерение тока утечки на землю
- Когда нагрузка включена, измеренный ток утечки включает утечку в нагрузочном оборудовании. Если утечка достаточно мала с присоединенной нагрузкой,
- , то утечка в проводке цепи еще меньше. Если требуется только утечка проводки цепи, отключите нагрузку.
- Если вы проверяете однофазные цепи, зажимая фазный и нейтральный проводники, полученная величина будет представлять собой любой ток, протекающий на землю.
- Проверить 3-фазные цепи, закрепив зажим на всех 3-х фазных проводах. Если присутствует нейтраль, ее необходимо зажать вместе с фазными проводниками, и измеренная величина будет любым током, протекающим на землю.
Измерение тока утечки через заземляющий провод
- Чтобы подсчитать сумму утечек, протекающих к предлагаемому заземлению, поместите зажим вокруг заземляющего стержня.
Измерение тока утечки на землю через непреднамеренные пути к земле.
- Зажим нейтрали / фазы / заземления в совокупности распознает неравномерный ток, который означает утечку в проходе или на электрической панели через непредусмотренные пути к земле.
- При подключении к водопроводу или другим электрическим соединениям может возникнуть аналогичное неравенство.
Отслеживание источника тока утечки
- Эта серия измерений определяет общую утечку и источник. Первое измерение можно провести на главном проводе к панели.
- Измерения 2–5 выполняются последовательно, чтобы выявить цепи, по которым протекает больший ток утечки.
Целью испытания на ток утечки является проверка того, что электрическая изоляция, используемая для защиты пользователя от риска поражения электрическим током, подходит для данной области применения. Тестирование тока утечки используется для проверки того, что продукт не пропускает чрезмерный ток при контакте с пользователем.Для медицинского оборудования измеряется ток, протекающий на землю.
- Чрезмерный ток утечки может вызвать фибрилляцию желудочков сердца, что приведет к остановке сердца, что может привести к смерти.
- Уровни измерения тока утечки зависят от величины емкости твердых изоляционных материалов изделия. Различные типы и количество слоев электрической изоляции приводят к различным величинам собственной емкости через изоляцию. Эта емкость вызывает «утечку» небольшого количества тока через изоляцию.
- Уровни тока утечки могут быть значительно увеличены в продуктах, которые подпадают под требования EMI (FCC, CE-EMC). Эти продукты должны включать фильтры электромагнитных помех на входе в сеть, чтобы обеспечить чистую энергию для чувствительной электроники, а также защитить от излучения обратно в линию электропередачи. Эти фильтры включают конденсаторы на землю, эти конденсаторы могут вызвать высокий ток утечки при нормальной работе. Если продукт предназначен только для профессионального использования, стандарт может допускать высокий ток утечки с предупредительной маркировкой для пользователя, чтобы гарантировать, что продукт надежно заземлен (чтобы пользователь не подвергался сильному току утечки).В противном случае необходимо добавить изолирующий трансформатор для питания продукта, тем самым изолируя продукт от земли, что почти устранит ток утечки на землю.
- Испытание HIPOT, также называемое испытанием на стойкость к диэлектрику, является стандартным испытанием, которое проводится в электротехнической промышленности. Это испытание высоким напряжением, при котором изоляция электрического изделия подвергается испытанию на расстояние до 80 М.
- Если изоляция продукта может выдерживать гораздо более высокое напряжение в течение определенного времени, то она может выдерживать нормальное напряжение в течение всего срока службы.
- Основная функция тестера HIPOT — контролировать чрезмерный ток утечки на землю. Тестер
- Hipot подает высокое напряжение на изоляцию тестируемого устройства. Обычно это выше 1400 Вольт для тестирования устройства, которое планируется работать от 220 Вольт.
- Клеммы A и B подключены к питающему напряжению 220 или 110, клемма C заземлена, обратный провод является плавающим, как показано здесь.
- Тестируемое устройство должно быть электрически отделено от земли.
- Один вывод обмотки подсоединяется к выходному датчику высокого напряжения, а обратный вывод — к корпусу двигателя. Это подает высокое напряжение на обмотку и корпус.
- Если в какой-то момент обмотка короткая или слабая, ток будет течь в обратный провод, и измеритель покажет этот ток.
- Все тестеры HIPOT имеют отключение от сверхтока для защиты самого тестера. Это важно в случае, если устройство полностью замкнуто на корпус и при подаче высокого напряжения от тестера HIPOT протекает чрезмерный ток.
Преимущества измерения тока утечки:
- Тестируемое устройство не введено в эксплуатацию, и его полярность не должна меняться
- Отсутствие нагрузки из-за высокого коммутируемого тока
Ток утечки может быть признаком неэффективности изоляции проводов. Можно отследить причину тока утечки с помощью слаботочных клещей для измерения тока утечки для интерпретации результатов измерений по мере необходимости.При необходимости это позволяет более беспристрастно перераспределять нагрузки по всей установке.
Ток утечки и длина затвора. (a) Влияние длины затвора на утечку …
Контекст 1
… КМОП-технология масштабируется, вариации длины затвора, толщины оксида и концентрации легирования становятся более значительными, особенно для вариаций внутри кристалла, которые встречаются среди устройств одного кристалла. На рис. 3а показано влияние изменения длины затвора на ток утечки.Эффекты короткого канала, такие как вызванное стоком понижение барьера, придают подпороговому току утечки экспоненциальную зависимость от длины затвора. Таким образом, отклонение даже на 10 процентов от номинальной длины может изменить ток утечки в три раза. На рисунке 3b показано ожидаемое распределение вероятности тока утечки для устройств на кристалле с учетом гауссовского распределения длин затворов со стандартным отклонением, равным 5% от среднего для 180-нм процесса. Экспоненциальное увеличение тока утечки порождает логнормальное распределение; длинный «хвост» для больших токов утечки соответствует устройствам с малой длиной затвора.Такое распределение подразумевает, что небольшой набор устройств испытывает значительно больший подпороговый ток утечки, чем среднее устройство. Поскольку кэши содержат большое количество устройств, они с высокой вероятностью содержат несколько «чрезвычайно дырявых» …
Контекст 2
… Технология CMOS масштабируется, изменения в длине затвора, толщине оксида , и концентрации легирования становятся все более значительными, особенно для изменений внутри кристалла, которые происходят между устройствами одного кристалла.На рис. 3а показано влияние изменения длины затвора на ток утечки. Эффекты короткого канала, такие как вызванное стоком понижение барьера, придают подпороговому току утечки экспоненциальную зависимость от длины затвора. Таким образом, отклонение даже на 10 процентов от номинальной длины может изменить ток утечки в три раза.