Системы карбюратора: Теория работы карбюратора. Его основные детали

Содержание

Устройство и основные неисправности карбюраторов

Карбюраторные двигатели внутреннего сгорания, которые еще не так давно были вершиной автомобилестроения, практически отошли в прошлое – их заменили инжекторные системы. Но как показывает статистика, карбюраторы по-прежнему распространены, вот только сузились области их применения. Хоть инжекторы и принято считать более совершенными, грамотному автолюбителю хотя бы ради интереса стоит немного узнать об устройстве карбюраторных системах. Если же он владеет автомобилем с карбюратором, данный материал наверняка окажется для него еще и очень полезным. Об устройстве, эксплуатации, обслуживании и неисправностях карбюраторов – в материале АвтоПро.

Достоинства и недостатки

Говоря об отличиях карбюраторных систем от инжекторных даже знающие люди часто сводят дискуссию к обсуждению достоинств и недостатков первых. Конечно, переход на инжекторы не был спонтанным – ему предшествовали серьезные изменения в машиностроении, так и требования потенциальных покупателей к личному транспорту. Давайте рассмотрим, чем карбюратор может похвастать, а что является его слабой стороной:

  • Достоинства: простота, дешевизна, низкие требования к октановому числу топлива, относительно неплохая динамика;
  • Недостатки: низкий КПД, чувствительность к низким, а также очень высоким температурам, высокий расход топлива, невозможность соответствовать экологическим стандартом Евро.

Кстати, последнее является одной из серьезнейших причин, по которым на карбюраторы смотрят с опаской в странах Запада – он не соответствует даже самым «щадящим» требованиям экологических стандартов. На мотоциклы его, впрочем, ставят, но и экологические требования к данному виду транспорта менее жесткие. Не в пользу агрегата говорит и низкий коэффициент полезного действия. Десятая его часть уходит только на работу топливной системы. Отчасти недостатки карбюраторов компенсируются их «всеядностью» и простотой в ремонте.

Принцип работы

Карбюратор можно назвать сердцем питающей системы двигателя. Он отвечает за «приготовление» топливно-воздушной смеси, которая будет подана в цилиндры двигателя. Если вкратце, то суть работы этого агрегата в том, чтобы создавать топливовоздушную смесь

. Кроме того, в карбюраторе имеется диффузор, который отвечает за подачу топлива – двигатель не всасывает его сам, как считают многие автолюбители. Также карбюратор позволяет двигателю нормально работать при разных режимах. Среди них:

  • Холостой ход;
  • Средние обороты;
  • Высокая (максимальная) нагрузка;
  • Введение в работу при полном охлаждение, как, например, после продолжительного нахождения на морозе.

Как несложно догадаться, карбюратор по-разному обогащает топливо и подает его в разных количествах – определенный состав топливовоздушной смеси и определенное ее количество будет соответствовать определенному режиму работы двигателя. Нормальную работу силового агрегата поддерживают и смежные с ним системы, как-то система охлаждения, электросистема и т.п. Здесь особенно важно понимать, что карбюратор должен быть четко откалиброван, ведь иначе вся система не будет работать в полную меру своих возможностей.

А что внутри агрегата

Вообще, карбюратор часто делят на две части. Одна поплавковая, а вторая – смесительная. Это вполне логичное упрощение, однако неопытного автолюбителя оно может навести не на тот след. Давайте попробуем разобраться с устройством агрегата, рассматривая все ключевые элементы, входящие в его состав. Для начала перечислим их, а уже потом рассмотрим в подробностях:

  1. Поплавковая камера;
  2. Система холостого хода;
  3. Главная дозирующая система;
  4. Экономайзер;
  5. Эконостат;
  6. Смесительная камера;
  7. Ускорительный насос.

Одним из самых важных элементов принято считать поплавковую камеру. Она работает так: когда двигатель потребляет топлива, камера начинает опустошаться, причем по мере движения находящегося в ней поплавка вниз открывается игольчатый канал. В работу включается уже топливный насос – как только объем топлива в камере будет достаточным, поплавок спровоцирует закрытие канала. Кстати, если в систему добавить достаточно мощный электрический бензонасос, агрегат будет быстрее набирать обороты за счет сгорания больших объемов топливовоздушной смеси (камера будет попросту наполняться быстрее).

Система холостого хода берет на себя задачу правильного дозирования топлива при, как несложно догадаться, холостых оборотах. Все просто: на холостых главная дозирующая система бездействует, поскольку требуемые объемы топлива невелики, так что работать должна узкоспециализированная система. Эту систему также можно отрегулировать в сторону большего или меньшего обогащения смеси. Главная дозирующая система заслуживает отдельного упоминания. Изучая ее, можно представить, чем могли вдохновляться инженеры, разрабатывавшие инжекторные системы. Если по-простому, то главная дозирующая система отвечает за дозировку горючего в случаях, когда автомобиль едет на средней скорости. Вот из каких элементов она состоит:

  • Жиклеры. Это дозирующий элемент, выполненный в виде резьбовой пробки с одним четко откалиброванным отверстием;
  • Главный распределитель. Понять его назначение легко по одному лишь названию;
  • Диффузор. Место сужения воздушного канала, за счет которого увеличивается скорость потока атмосферного воздуха.

Экономайзер включен как в однокамерный, так и двухкамерный карбюратор. Он обеспечивает еще более сильное обогащение горючего. Незаменим в тех случаях, когда автомобиль нужно разогнать до 110 и более километров в час. Здесь стоит отметить, что существуют экономайзеры принудительного холостого хода (сокращенно ЭПХХ), призванные обеднять топливовоздушную смесь. Обычный экономайзер своему названию не соответствует – он обогащает смесь, открывая дополнительный канал для подачи топлива. Работает в тандеме с дроссельной заслонкой и может иметь механический или же пневматический привод.


Эконостат можно назвать одним из самых простых элементов карбюраторной системы. Он представляет собой трубку, которая поднимает уровень топлива по мере роста числа оборотов коленчатого вала. Эконостат обогащает смесь кислородом. Напоминаем, что правильный состав смеси отвечает не только за мощностные показатели мотора, но и за его экономичность. Эконостат позволяет сделать карбюраторный автомобиль намного более экономичным в плане расхода топлива.

Смесительная камера, одновременно являющаяся нижней частью карбюратора, является той второй «половинкой» агрегата, которую относят к важнейшим компонентам карбюратора. И неудивительно: как и поплавковая, смесительная камера берет на себя основные задачи агрегата. Это главный воздушный тракт, включающий топливодозирующие элементы, дроссельную заслонку и, по сути, диффузор. Как уже было указано выше, карбюраторы бывает одно- и двухкамерными. Речь идет именно о количестве смесительных камер и дроссельных заслонок. Заслонки в карбюраторах с парой смесительных камер могут открываться или одновременно, или последовательно (зависит от устройства конкретного двигателя).

Ускорительный насос обязательно входит в состав карбюраторов. Без него автомобиль мог бы заглохнуть и не отвечал бы требованию повышенной динамики. Данный элемент карбюраторной системы включается в момент открытия дроссельной заслонки – в систему резко попадает дополнительное топливо, столь необходимое, например, при резком увеличении нагрузки на мотор. Кстати, в переходных системах ускорительный насос также обеспечивает переход из одного режима работы карбюратора в другой.

Основные неисправности

Как уже стало ясно, карбюратор отвечает и за смешивание топлива с воздухом, и за его подачу. Несмотря на достаточное простое устройство, карбюраторы не так уж редко выходят из строя, а также нуждаются в довольно частом обслуживании. К счастью, в силу той же простоты агрегат довольно легко чистить, хотя в некоторых случаях его приходится разбирать. Основные неисправности карбюратора почти аналогичны таковым у инжекторов, разница кроется в причинах. А если говорить о следствиях, то они могут быть такими:

  • Провалы при подгазовке. К примеру, автомобиль не сразу набирает скорость при воздействии на педаль «газа»;
  • Раскачивание. По сути, это провалы, в которых можно проследить периодичность;
  • Рывки и подергивания. Их легко прочувствовать, оказавшись за рулем автомобиля с карбюраторной системой, которая нуждается в ремонте и обслуживании. От провалов они отличаются быстротечностью;
  • Сниженная интенсивность разгона. Здесь все понятно из названия.

Также стоит помнить, что на неисправность агрегата может указывать ряд неприятных вещей, которые и не нуждаются в представлении: затрудненный пуск двигателя и плохая работа «на холодную»; снижение или завышение холостых; серьезно завышенный расход топлива; невозможность запуска двигателя. Заметьте, что такие неисправности могут встречаться и при неравномерной компрессии в цилиндрах, прогорании клапанов, износе распределительного вала, смещении фаз газораспределения. В случае проблем лучше проводить полную диагностику у специалиста. Если проблема крылась в карбюраторе, то его неисправность может быть вызвана чем-то из следующего:

  • Неправильная работа электромагнитного клапана;
  • Неисправность ЭПХХ, блока управления;
  • Деформация уплотнительного кольца;
  • Засорение каналов и жиклеров;
  • Дефекты экономайзера;
  • Неверная регулировка поплавковой системы;
  • Выход ускорительного насоса из строя.

Работы по выявлению источника проблем будет много. В подавляющем большинстве случаев система нуждается в промывке и продувке – каналы и жиклеры придут в норме и двигатель сможет работать нормально. Сложнее решать проблему повышенного расхода топлива, так как она может быть вызвать сразу рядом неисправностей. Крайне важна правильная регулировка механизмов системы – они должны работать в тандеме друг с другом, правильно формировать горючую смесь, дозировать и подавать ее. Также не забывайте, что система должна быть в достаточной мере герметичной.

Обслуживания карбюратора

Хоть карбюраторы и практически вытеснены инжекторными системами, они по-прежнему и в строю и, что очень радует, являются весьма дружелюбными по отношению к автолюбителю элементами двигательной установки. Поработать с карбюратором может даже неопытный автолюбитель, хотя и ему стоит обзавестись руководствами по обслуживанию конкретно его

модели автомобиля (или найти информацию в сети). Перечень материалов и инструментов для работы с различными карбюраторами практически всегда один:

  • Средство для чистки карбюраторов;
  • Резиновые перчатки;
  • Ветошь;
  • Баллончик со сжатым воздухом;
  • Щетка с не слишком жесткой щетиной;
  • Защитные очки;
  • Объемная емкость для деталей;
  • Инструменты для снятия карбюратора (зависит от модели).

Проведите демонтаж карбюратора в соответствие с руководством. В большинстве случаев достаточно оттянуть возвратную пружину, отвести тяги, шланги, патрубки, ослабить хомуты, после чего открутить гайки. Мы все же советуем обратиться к руководствам, найти соответствующую информацию на форумах или даже видео-руководства – доступ к Всемирной паутине здесь будет очень кстати. После того как карбюратор снят, разберите его, поместите все детали в емкость, залейте в нее чистящее средство и оставьте так на несколько минут. После, продолжайте чистку уже с помощью щетки и баллончика с воздухом. Щетки с металлической щетиной для этой работы

не подойдут – нужно взять обычную зубную щетку. Будьте особенно осторожны с жиклерами! Их лучше хорошенько продуть, а если проблему загрязнения это не решило, то крайне деликатно прочистить зубочисткой. При необходимости замените прокладки. В магазинах можно найти относительно недорогие ремкомплекты карбюраторов, куда входит все необходимое для ремонта. Если подвижные детали агрегата не повреждены, его можно будет быстро вернуть в строй. Не забывайте также о том, что после разборки, чистка, сборки и установки карбюратора его наверняка придется перенастроить.

Отдельно стоит рассказать об очистителях карбюратора. Волшебное средство, если так подумать – достаточно побрызгать спреем внутрь агрегата, и он очистятся от загрязнений. На самом деле очистители рекомендовано применять каждые 5-7 тысяч километров пробега. Если карбюратор не чистили долгое время, одного лишь спрея будет мало. Агрегат придется разбирать, а детали отмачивать в очистителе, после чего тереть щеткой. Категорически запрещено применение столь популярного

WD-40, а также других очистных средств, в составе которых есть масло.

Подбор нового карбюратора

Несмотря на то, что карбюраторные системы являются крайне живучими, иногда они нуждаются не столько в капитальном ремонте, сколько в практически полной замене. К примеру, при полном закоксовывании воздушных и топливных каналов, при искривлении соединений и появлении серьезных механических повреждений карбюратора он нуждается в полной замене. Что здорово, не обязательно менять карбюратор на точно такой же – сегодня некоторые фирмы производят более экономичные, мощные и тихие аналоги. Однако при выборе нового агрегата нужно обращать внимание на:

  • Диффузор. При правильном подборе отдавать предпочтение стоит диффузорам, диаметр которых составляет не более чем 0,8 от диаметра смесительной камеры;
  • Главный топливный жиклер. Жиклер подходящей пропускной способности можно определить экспериментально, однако мы советуем для начала проконсультироваться со специалистом;
  • Воздушный жиклер. Аналогично;
  • Диаметр дросселя. Диапазон диаметров зависит от мощности отдельных цилиндров двигателя.

Также стоит уделить особое внимание подбору подходящего ускорительного насоса. Не забывайте и о том, что при выборе карбюратора стоит узнать как можно больше о фирме-производителе. Вот наиболее известные и надежные производители и поставщики:

Автолюбители также могут найти в продаже карбюраторы от различных малоизвестных фирм, заводы которых расположены в Китае, Турции, Таиланде и Индонезии. По качеству своей продукции они уступают вышеперечисленным фирмам, однако с учетом простоты и надежности карбюраторов, даже их товары могут приятно удивить. Одной из ключевых особенностей этих производителей также демократичная ценовая политика. Приятно радуют как ценой, так и ассортиментом чешские и польские фирмы. Как правило, в их каталогах можно найти не только сами агрегаты, но и все необходимое для их ремонта и обслуживания.

Вывод

Карбюратор – это тот агрегат, который встречается в автомобилях все реже. Многие считают его пережитком прошлого, но карбюраторы по-прежнему используются, к примеру, в газонокосилках и устанавливаются на мотоциклы. Пусть их золотая эпоха уже прошла, для многих автолюбителей они так и остаются символом надежности, простоты и неприхотливости. На самых современных автомобилях карбюраторы уже не найти, что во многом связано с низкой экологичностью, сложностью в эксплуатации при определенных погодных условиях, а также не слишком впечатляющим коэффициентом полезном действия данных агрегатов. К счастью, еще находящиеся в эксплуатации карбюраторные автомобили довольно легко обслуживать, ремонтировать, а в случае нужды и менять – богатство запчастей и новых агрегатов на рынке позволяет работать с карбюраторами и сейчас.

Дозирующие системы карбюратора

Мы продолжаем цикл статей о карбюраторном впрыске. Двигатель автомобиля в процессе езды функционирует в различных режимах. Для отдельных рабочих режимов требуется топливовоздушная смесь с разным составом. Зачастую на таких режимах происходят постоянные и резкие изменения, связанные с количеством паров горючего.

Главной задачей карбюратора становится приготовление такой смеси, которая будет оптимальной для любого режима работы мотора. Устройство карбюратора, который имеет распылитель с постоянным сечением, включает в себя различные дозирующие устройства. Каждый из этих элементов ступенчато включается в работу карбюратора или происходит поэтапное отключение, а также возможна одновременная работа. Это будет зависеть от режимов нагрузки, оборотов силового агрегата, угла открытия заслонки дросселя и т.д. Дозирующие системы карбюраторного впрыска отвечают  за оптимальный состав рабочей топливовоздушной смеси во всех режимах и одновременно призваны обеспечить максимум мощности и наилучший показатель экономичности.

Рекомендуем дополнительно прочесть статью об устройстве карбюратора. Из этой статьи Вы сможете узнать об основных элементах конструкции и принципах работы данного устройства.

Содержание статьи

Главная система дозирования топлива

Указанная главная дозирующая система является таким элементом, который встречается в конструкции практически любого карбюратора. Актуальные версии получили пневматическую систему для компенсации состава топливовоздушной рабочей смеси. В основе системы лежит 1 главный топливный жиклер и 1 главный воздушный жиклер. Данные жиклеры выходят в колодец, который называют эмульсионным.

Эмульсионный колодец расположен вертикально или под наклоном зависимо от модели и модификации карбюратора. Поток воздуха проходит по жиклеру для подачи воздуха и попадает в эмульсионную трубку. Трубка имеет ряды отверстий, расположенных вертикально. Между эмульсионной трубкой и стенками эмульсионного колодца создается топливовоздушная эмульсия первичного типа. Дальнейшим маршрутом эмульсии становится смесительная камера, куда она движется по каналу и попадает в распылитель. Главный топливный жиклер находится в нижней части. По этой причине уровень горючего по мере расходования эмульсии из распылителя склонен к подъему. Так происходит благодаря поступлению горючего из поплавковой камеры. Количество поступающего топлива ограничивает топливный жиклер.

Снижение уровня горючего в эмульсионном колодце означает, что в эмульсию попадает большее количество воздуха, который  проходит через отверстия в эмульсионной трубке. Итогом становится возрастание доли воздуха в рабочей смеси, что и определяет большую степень компенсации. Встречаются также системы, когда бензин и воздух сразу попадают внутрь трубки. Ранние конструкции имели систему дозирования с параллельными жиклерами и диффузорами, расположенными последовательно. В таких устройствах за компенсацию практически полностью отвечала система холостого хода. Также делался упор на упругость пластин, которые открывали доступ для потока воздуха в более крупном диффузоре. Компенсационный параллельный жиклер обеспечивал подачу топлива.

Конструктивно простые карбюраторы авто с небольшим рабочим объемом мотора имели главную систему дозирования, которая состояла из компенсационного колодца и  компенсационного ограничительного жиклера. Такое решение было неспособно осуществить значительную компенсацию и обеспечить подачу должного количества топлива во всех случаях. Для гибкой эксплуатации во всех режимах работы ДВС такие карбюраторы не подходили.

Более совершенные разработки дозирующей системы карбюраторного впрыска способны обеспечивать такую гибкость рабочей топливовоздушной смеси, которая находится на отметке от 1/14 до 1/17, где первая цифра указывает на весовую часть бензина, а вторая воздуха. Главные режимы работы мотора становятся экономичными  благодаря системе дозирования. Система реализует приготовление обедненных составов около 1/16 или 1/16,5.

Горизонтальный карбюратор

Отдельное место занимает конструкция, которая применена в  устройстве главной дозирующей системы горизонтального карбюратора с регулировкой игольного типа. Такая система обеспечивает одновременное механическое изменение количества воздуха, который миновал диффузор благодаря подъему шибера, и регулировку количества попадающего в диффузор горючего, которое дозируется посредством  иглы с переменным профилем.

Игла проходит через жиклер и механическим способом изменяет проходное сечение. В таких карбюраторах четко задано соотношение как сечения диффузора, так и жиклера. Эти сечения напрямую зависят от той высоты, на которую поднимается шибер. Карбюраторы, которые имеют постоянное разрежения,  в момент времени демонстрируют изменение данной характеристики по автоматическому принципу. Задача реализована посредством демпфирующей системы, которая в основе имеет золотник, а также опирается на разрежение в области заслонки дросселя. Система функционирует благодаря определяемой  нагрузке на силовой агрегат и учету угла поворота дроссельной заслонки.

Переходная система во вторичной камере

Если говорить о переходной системе с дросселями, открывающимися последовательно во 2-й камере, то данное решение напоминает систему холостого хода, но с рядом особенностей.

Главная дозирующая система, расположенная во 2-й камере карбюратора, изначально рассчитана на то, чтобы обеспечивать «богатую» смесь для мощности. Благодаря этому камера не нуждается в возможности серьезной компенсации смеси сравнительно с первичной камерой. Результатом становится то, что переходная система подключается параллельно, а ее топливный жиклер соединен не с колодцем для эмульсии главной системы дозирования, а с поплавковой камерой.

Получается, что в работу вступает как переходная, так и главная система во вторичной камере. Включение обеих систем происходит одновременно, что и позволяет обогатить рабочую смесь до нужной степени.

Работа карбюратора при низком разрежении

Система, отвечающая за холостой ход, а также переходная система и система вентиляции картера отвечают за  обеспечение стабильной работы мотора в таких режимах, когда разрежение минимально. Этого вакуума оказывается мало для того, чтобы задействовать главную систему дозирования, так что в таких режимах работы эти системы реализуют коррекцию состава топливовоздушной смеси.

Когда мотор находится в режиме холостых оборотов, над дросселем нет того вакуума, который необходим для активации главной системы дозирования. Очевидно, что для режима работы с низким разрежением и при слабо открытой заслонке дросселя понадобилась еще одна система. Эта система отвечает за процесс образования рабочей смеси при незначительном расходе воздуха, который протекает при таких режимах в смесительной камере.

Система холостого хода

Крайне редко встречается параллельная система, чаще представлена последовательная или автономная. По типу распыла выделяют дроссельный распыл и распыл в пространстве за дросселем. Система устроена так, что в основе имеются каналы  для воздуха, горючего и эмульсии. Также присутствуют дозирующие элементы, под которыми понимаются жиклеры для работы на холостом ходу. Жиклер холостого хода, отвечающий за подачу топлива, берет эмульсию в нижней части соответствующего колодца главной дозирующей системы.

Получается, что данный жиклер представляет собой элемент в топливном канале дозирующей системы. Жиклер, отвечающий за подачу воздуха на холостом ходу, соединяется с пространством в смесительной камере. Речь идет о верхней части камеры, а такое устройство способно реализовать изменение количества подаваемого воздуха, который поступает в систему холостого хода при различных нагрузках и рабочих режимах силового агрегата.

Благодаря указанным характеристикам система холостого хода является важным участником в цепочке элементов, которые участвуют в процессе коррекции состава рабочей смеси для главной системы дозирования.

Чаще всего бывает так, что воздух попадает в устройство холостого хода по нескольким каналам (каналов бывает два или три). Такая реализация обеспечивает процесс образования эмульсии по двум или трем ступеням, что способствует получению более гомогенной рабочей смеси и одновременно улучшает равномерность ее состава по каждому отдельно взятому цилиндру ДВС.

Система холостого хода имеет выход применительно к пространству смесительной камеры. В пространстве за дроссельной заслонкой имеется достаточный вакуум при режиме холостых оборотов, которого хватает для работы системы холостого хода. В канал системы открыты переходные отверстия. Эти отверстия находятся в области кромки  слегка открытой заслонки дросселя.

Модели К 88, ДААЗ 2108 и некоторые другие получили единственное вертикальное отверстие, похожее на щель. Одна часть находится ниже кромки заслонки дросселя и отвечает за работу на холостых оборотах. Если начать открывать дроссельную заслонку, тогда щель увеличивается, способствуя работе мотора при переходных режимах.

На холостых оборотах заслонка дросселя практически полностью перекрыта. Необходимый вакуум в карбюраторе имеется сразу за заслонкой. Такое разрежение позволяет через отверстие холостого хода получить топливо из главной дозирующей системы. Это топливо идет через топливный жиклер холостого хода и смешивается с воздухом, который попадает через воздушный жиклер холостого хода и другие каналы для его подачи. Полученная топливовоздушная рабочая смесь становится обогащенной, что и нужно мотору для работы в режиме холостых оборотов.  Доля бензина и воздуха в этой смеси представлена в рамках от 1/12 до 1/14,5.

Под переходным режимом следует понимать работу ДВС с небольшим углом открытия заслонки дросселя. При указанном режиме богатая смесь из каналов системы холостого хода оказывается в зоне кромки заслонки, проходит через единое отверстие или конструктивную группу переходных отверстий, смешивается с поступающим воздухом и обедняется в определенных пределах (1/15 или 1/16,5).

Как уже говорилось, определенные модели карбюраторов в области кромки заслонки дросселя могут иметь только одно отверстие, похожее на щель. Это отверстие расположено вертикально. Конструктивно данное решение способно обеспечить эффективную компенсацию и достаточно плавно изменять состав топливовоздушной рабочей смеси во время режима перехода. Если  учесть, что форму щели можно задать, тогда уместно говорить об отличной переходной характеристике. Когда мотор работает в других  режимах система холостого хода  производит компенсацию состава рабочей смеси, которую образует главная дозирующая система. Получается, что система холостого хода играет важную роль  в общем устройстве всего карбюраторного впрыска и обеспечивает правильную его работу.

Не редки такие случаи, когда после непрофессиональной настройки холостого хода и при этом нормально выставленных для этого режима оборотах карбюратор все равно демонстрировал низкую эффективность или даже неработоспособность.

Автономный холостой ход

В ряде конструкций систему делают автономной, оснащая дополнительными устройствами для образования топливовоздушной рабочей смеси. Другими словами, получается своеобразный дополнительный карбюратор, работающий внутри основного карбюратора и приспособленный для эффективного функционирования в условиях низкого расхода воздуха. Примером может послужить автономная система холостого хода типа «Каскад». Такая система нужна для того, чтобы состав рабочей смеси оставался равномерным при распределении по цилиндрам силовой установки, а также для стабилизации ряда характеристик и самого процесса смесеобразования, согласованности с моментом зажигания и т.п.

Данная система конструктивно получила главный канал. Входное отверстие канала находится в области той кромки заслонки дросселя, которая опускается. Сама ложбинка канала имеет выход в область под дросселем. Такое расположение способно обеспечить возможность немедленно прекратить движение воздуха и горючего в канале в тот момент, когда осуществляется открытие заслонки дросселя. Данный канал становится основным путем для эмульсии, которая образовалась в системе режима работы на холостых оборотах.

Наилучшее качество распыла достигается благодаря смешиванию этой эмульсии с воздухом при помощи особых распылителей. Распылители способны в режиме малого расхода воздуха и эмульсии придать рабочей топливовоздушной  смеси высочайшую скорость движения, граничащую со звуковой скоростью.

Такая особенность автономных решений холостого хода позволяет обеспечить наиболее качественный распыл смеси, который невозможен при использовании в карбюраторном впрыске других систем. Продвинутые карбюраторы могут иметь систему автономного холостого хода, которая характеризуется эмульгированием от двукратного до четырехкратного.

Подобные  автономные системы могут быть устроены отлично друг от друга. Наиболее простую схему устройства демонстрирует карбюратор модели ДААЗ 2140. Данный карбюратор имеет конструкцию, при которой воздушный поток проходит через щель небольшого размера. В эту щель в верхней части дополнительно открыта еще одна щель из канала, по которому поступает эмульсия. Благодаря соотношению сечений этих щелей эмульсия и воздух получают скорости, приближенные к скорости звука.

Автономный холостой ход типа «Каскад» получил тип распылителя, который напоминает по своей форме кольцо и имеет отверстия, расположенные по кругу. Идущая из этих отверстий эмульсия встречается с воздушным потоком. Вся система автономного холостого хода данной конструкции сильно напоминает принципы работы смесительной камеры карбюратора. Распылитель в центре оснащен специальным регулировочным винтом с особым профилем. Этим винтом производится регулировка количества смеси в автономной системе.

Встречаются системы холостого хода, которые имеют в канале движения эмульсии распылители-сопла, направленные в центральную зону общего канала. Поток воздуха в такой конструкции подаётся через регулировочный винт, также оборудованный воздушным каналом.

Принудительный холостой ход

В таком режиме система подключает экономайзер. Указанное устройство является клапаном,  который способен отключать подачу горючего. Дополнительным элементом становится система управления экономайзером, которая может быть электронно-пневматической или только электронной.

Когда ДВС переходит в режим принудительного холостого хода, на  исполняющий клапан подается сигнал управления. В моторах, которые получили управление посредством микропроцессора, сигнал создает данная контролирующая система. Исполняющий клапан может находиться в выходном отверстии автоматической системы холостого хода и осуществлять перекрытие канала для подачи топливовоздушной рабочей смеси.

Вторым вариантом становится конструкция клапана с иглой, которая прерывает топливоподачу через жиклер. Такая конструкция приводит к росту инерционности всей системы. Особенность заключается в небольшом отрезке времени, когда в момент выхода из принудительного режима холостых оборотов в работу включается общая система холостого хода, но горючее еще не поступает по главному каналу через жиклер. Среди главных плюсов отмечается дешевизна и простота конструкции, а также меньшая склонность к потенциальным неисправностям в процессе активной эксплуатации.

Система с клапаном в канале является конструктивным решением в моделях ДААЗ 2104, 2105, 2107. Смена режимов происходит моментально, но ряд сложностей в процессе обслуживания и эксплуатации зачастую приводил к тому, что владельцы авто с подобным устройством системы вынуждены были деактивировать принудительный холостой ход.

Своеобразно система принудительного холостого хода реализована в модели К90. Устройство имеет такие каналы холостого хода в двух камерах, которые в конце получили солидные полости. В указанных полостях находятся тарелки электромагнитных клапанов. Когда на них происходит подача напряжения, тогда подача рабочей топливовоздушной смеси прекращается. Эти особенности позволяют карбюратору работать в штатном режиме тогда, когда экономайзер сломался.

Если  карбюраторный автомобиль имеет дополнительное оборудование, отнимающее мощность мотора (АКПП, климатическую установку, генератор повышенной мощности и т.п.) тогда в конструкции можно встретить управляемый упор заслонки дросселя. Задачей такого решения становится стабилизация  холостых оборотов во время включения дополнительных устройств и роста нагрузки на мотор. Дроссельная заслонка в таких режимах немного приподнимается.

Эконостат и экономайзер

Указанные устройства используются для того, чтобы обеспечить приток горючего в смесительную камеру и подать «богатую» топливовоздушную рабочую  смесь при высоком разрежении. Под этим понимаются пиковые нагрузки на мотор, при которых обедненная и экономичная смесь не способна обеспечить должной отдачи от силового агрегата.

Экономайзер может управляться принудительно, как пневматическим способом, так и механически. Эконостат является   устройством в виде трубки с различным сечением, в которой дополнительно могут быть эмульсионные каналы. Эти каналы выходят в верхнее пространство смесительной камеры над диффузором. Именно в этой области возникает разрежение во время пиковых нагрузок на ДВС.

Ранние модели карбюраторов, которые не имели эмульгирования,  получили экономайзер с жиклером, который открывался принудительно и работал в параллели с топливным жиклером главной системы дозирования. Карбюраторы с эмульгацией данную конструкцию не получили. Дешевые модели карбюраторов, которые всегда готовят относительно «богатую» смесь почти во всех режимах, лишены экономайзера и эконостата.

Система вентиляции картера и рециркуляции отработавших газов

Вентиляция картера позволяет двигателю переработать вредные картерные газы. Вентиляция картера имеет в основе два канала.  Один канал большего размера, другой меньшего. Первый канал является трубкой. В данной трубке находятся такие элементы, как пламегаситель и маслоотделитель. Картерные газы проходят через эти элементы и попадают в фильтр. Фильтр может быть инерционно-масляным перед масляной ванной или картонным воздушным фильтром, расположенным рядом с входом в первичную камеру карбюратора. Далее газы проходят процесс смешивания с воздухом и отправляются в цилиндры двигателя.

Холостой ход и переходной режим отличаются слабым разрежением над камерой. Для решения этой проблемы существует вторая трубка-канал для вентиляции. Данная трубка имеет меньший диаметр и соединяет большую трубку с пространством за заслонкой дросселя, где имеется подходящий для системы вакуум. Разные модели карбюраторов имеют золотник в малой трубке для того, чтобы перекрыть сообщение с большой трубкой в тот момент, когда открывается заслонка дросселя. Решение позволяет предотвратить проникновение воздуха под дроссель одновременно с его забором в смесительную камеру карбюратора.

Рециркуляция отработавших газов делает возможным заменить часть воздуха выхлопом. Это происходит на тех режимах, когда осуществляется торможение двигателем. Система позволяет понизить степень содержания токсичных веществ в выхлопе автомобиля. Встречается данная система не на всех типах моторов.

Устройство холодного пуска

Указанное пусковое устройство является заслонкой, которая имеет систему управления и располагается над смесительной камерой. Если эту заслонку закрыть, тогда разрежение в смесительной камере заметно возрастает. Результатом становится немедленное обогащение топливовоздушной смеси, что идеально для запуска холодного ДВС. Заслонка до конца не перекрывает подачу воздуха. Это обусловлено как расположением, так и тем, что конструктивно для нее сделан упор на пружину.

Еще одним вариантом становится установка клапана, который пропускает воздух в небольших количествах. Чтобы запустить  мотор и вывести его на рабочую температуру, нужно закрыть заслонку воздуха и немного открыть заслонку дросселя. Воздушная заслонка может быть оборудована полностью механическим, полуавтоматическим или автоматическим приводом.

Механический привод приводит в действие водитель из салона. Это делается  ручкой, которую называют манетка. В народе устройство получило более привычное название «подсос». Привод полуавтоматического типа получил большее распространение благодаря простоте и надежности. Водитель прикрывает заслонку самостоятельно, а открытие происходит автоматически. За открытие отвечает диафрагма, которая реагирует  на появившийся вакуум во впуске. Такая реализация не позволяет смеси стать сильно обогащенной и препятствует тому, чтобы двигатель немедленно заглох после холодного запуска.

Хотя автоматический холодный пуск на отечественных машинах не сильно распространен, этого нельзя сказать о европейских и японских авто. К недостаткам автоматического решения относят его ломучесть, малый ресурс и проблематичное использование в условиях температурных перепадов.

Такой тип привода оказался самым сложным по конструкции и больше годится для стран с умеренным климатом. Автомат устроен так, что заслонка прикрыта специальным термоэлементом. Элемент прогревался жидкостью из охлаждающей системы, а также мог греться отдельным электронагревателем. Чем сильнее грелся мотор, тем больше термоэлемент открывал заслонку и давал проход воздуху. Автоматические системы с электронагревателями термоэлемента имели привод, который оснащался температурным датчиком.

Ускорительный насос

Такое устройство обеспечивает подачу дополнительного топлива в моменты резкого дросселирования. В условиях моментального открытия заслонки возникает нарушение в процессе смесеобразования во впуске, а результатом становится подача карбюраторным впрыском в цилиндры мотора недостаточного количества горючего на начальной стадии интенсивного разгона.

Насос нейтрализует «провал» и отвечает за правильный состав рабочей смеси в подобном режиме. Ускорительный насос бывает двух видов: поршневой насос и диафрагменный. Первый тип ускорителя уступает второму по стабильности ряда параметров. Главным минусом является его неспособность влиять на впрыск и интенсивность подачи зависимо от  того угла, на который повернута дроссельная заслонка. Модели карбюраторов с регулировкой игольного типа или с постоянным разрежением способны готовить оптимальную по составу рабочую смесь для всех режимов работы силовой установки. Данные карбюраторы не требуют установки насоса-ускорителя.

Читайте также

  • Тюнинг и настройка карбюратора

    Доработка и модернизация карбюратора. Основные недостатки системы карбюраторного впрыска и способы их устранения, настройка. Тюнинг впускного коллектора.

Воздух и топливо для двигателя: карбюратор · Motorservice

С момента изобретения карбюратора Solex Марселем Меннессоном в 1910 году технический принцип его действия в основном не изменился. При этом понятие «карбюратор», возникшее на раннем этапе развития этой техники, собственно говоря, вводит в заблуждение. Верным было бы понятие «смесеобразователь»: воздух и топливо дозируются для каждого рабочего состояния, к тонко распыленному топливу подмешивается воздух, и полученная смесь в соответствии с требуемой мощностью двигателя подается по впускной трубе в цилиндры. Но этот простой на первый взгляд принцип требовал постоянного усовершенствования для расширения набора функций и повышения производительности за счет изменения технологии производства.

Первые карбюраторы Pierburg для компании Hanomag изготавливались еще из латуни литьем в песчаные формы. Лишь переход на литье под давлением и материал цинк позволил начать с 1930 года массовое производство. На это время пришлось также значительное улучшение технологии облегчения запуска: первые карбюраторы с восходящим и горизонтальным потоком впервые стали подавать в двигатель дозируемую топливо-воздушную смесь через поворотную заслонку стартера.

После второй мировой войны развитие карбюраторов по-прежнему оставалось стремительным. При этом разработчики добивались как повышения комфортабельности езды и мощности двигателя, так и уменьшения расхода топлива и количества отработавших газов. Так, внедрение сдвоенных карбюраторов позволило увеличить мощность двигателя, а в 1959 году впервые карбюратор с автоматическим пусковым устройством заменил в автомобилях Käfer («Жук») воздушную заслонку.

Важный вехой стал в 1968 году прямоточный карбюраторCD на основе американского патента Bendix-Stromberg. Этот инновационный продукт, алюминиевый корпус которого отливался компанией Kolbenschmidt в Неккарзульме и Гамбурге, положил конец прежнему принципу фиксированных жиклеров. Теперь только за счет регулируемой системы жиклеров обеспечивалась подача большого количества воздуха для максимальных частот вращения без необходимости отказа от плавных переходов на низких оборотах. Остальные разработки касались применения насосов-ускорителей и обогащения смеси бензина и воздуха в зависимости от точки приложения нагрузки.

Однако постепенно на карбюраторы стала оказывать влияние растущая конкуренция со стороны систем впрыска: новое поколение карбюраторов типов Zenith 1B, 2B и 2E уже было рассчитано на электронные контуры регулирования.

Карбюратор или инжектор: кто кого?

В последнее десятилетие среди автолюбителей не утихает спор: какая система лучше — карбюраторная или инжекторная. Каждая из сторон приводит свои доводы, указывает на недостатки у конкурентов и т.д. Прийти к однозначному ответу так и не удалось. Мы постараемся рассказать Вам об этих двух устройствах, дать все необходимые определения, а также сделать сравнительную характеристику систем.

Карбюратор: определение, принцип действия, типы

Карбюратор — это механическое устройство в двигателях внутреннего сгорания (ДВС), которое изготавливает и подает горючую смесь. В камерах карбюратора происходит смешивание топлива и воздуха, которые затем впрыскиваются в камеру сгорания. Классический карбюратор состоит из таких основных элементов: жиклера, дроссельной заслонки, диффузора и поплавковой камеры.

Дроссельная заслонка служит для регулировки количества поданного топлива в ДВС. Диффузор — это специальное трубчатое устройство, через которое в двигатель подается воздух. Жиклером называют специальный цилиндрический механизм, в котором сделаны отверстия, через которые в камеру сгорания поступает топливо. Количество топлива зависит от диаметра отверстий в жиклере. В поплавковую камеру, по специальной трубке, из бензобака подается топливо: если бензина много — то поплавок поднимается и иголкой перекрывает подачу бензина; мало топлива — поплавок опускается, иголка открывает отверстие и подача бензина возобновляется.

Не вдаваясь в подробности, рассмотрим принцип действии карбюратора. Попав в поплавковую камеру, топливо опускается по жиклерам в распылитель, который находится в нижней части диффузора. Вместе с ним туда же поступает и воздух. При запущенном двигателе поршень в первом такте опускается вниз, создавая пониженное давление в камере сгорания, при этом в распылителе поддерживается постоянное атмосферное давление. Из-за этой разницы топливо и воздух смешиваются и распыляются. В этот самый момент осуществляется подача искры и происходит воспламенение получившейся смеси. Это самое простое объяснение принципа работы карбюратора — если Вам нужна более подробная информация, то без труда найдёте её в Интернете.


  • Карбюратор ГАЗ СОЛЕКС (аналог.К151) ДААЗ

    7 880 ₽
  • Карбюратор УАЗ Солекс ДААЗ

    4 950 ₽
  • Карбюратор ГАЗ-53,66,71,3402,4905,ПАЗ-672,3205 дв.53,66,672,4905 ПЕКАР

    9 650 ₽
  • Карбюратор ВАЗ-21053-20 V=1500 ДААЗ

    6 445 ₽
  • Карбюратор ГАЗ-2410 ПЕКАР

    6 630 ₽
  • Карбюратор ГАЗ-53,66,71,3402,4905,ПАЗ-672,3205 дв.53,66,672,4905

    5 960 ₽
  • Карбюратор ЗИЛ-130,433360,442160,494560 дв.ЗИЛ-130 ПЕКАР

    9 180 ₽
  • Карбюратор М-2140-70 V=1700 ДААЗ

    5 120 ₽
  • Карбюратор УАЗ-3151 дв.УМЗ-4178,4179 ПЕКАР

    6 120 ₽
  • Карбюратор ГАЗ-3307,53,66,3308,3307,ПАЗ-3205,3206 дв.ЗМЗ-511,513,5233,5234 ПЕКАР

    10 620 ₽

Карбюраторы, в зависимости от характеристик, делятся на различные виды.

По направлению движения рабочей смеси различают модели:

- с нисходящим потоком — смесь движется сверху вниз;
- с восходящим потоком — поток движется вверх;
- с горизонтальным потоком.

По количеству камер карбюраторы бывают:

- однокамерные;
- двухкамерные;
- трехкамерные;
- четырехкамерные.

Есть еще ряд других характеристик, по которым классифицируют карбюраторы, но подобные классификации редко используют в автомобилестроении.

В магазине AvtoALL Вы найдете продукцию таких известных производителей, как ДААЗ, ПЕКАР, ИЖОРА и другие. Продукция данных компаний подходит для отечественных автомобилей. В нашем ассортименте есть карбюратор для ВАЗ-2107, -2108 и т.д.


Инжектор: определение, принцип работы, типы

Инжектор — это механизм, осуществляющий подачу топлива в камеру сгорания. Главное отличие от карбюраторной системы заключается в способе подачи топлива. В карбюраторных двигателях топливо буквально всасывается в цилиндр из-за разницы в давлении, при этом расходуется около 10% мощности двигателя. А вот инжектор впрыскивает топливо из форсунок в камеру сгорания.

Принцип работы инжектора следующий: у каждого цилиндра есть своя форсунка, они соединены топливной рампой. Электрический топливный насос нагнетает внутри форсунок избыточное давление. Электронная система (контроллер), получая информацию от множества датчиков, определяет момент, когда следует открыть форсунки и осуществить подачу топлива в камеру сгорания.

На любом инжекторном двигателе установлены датчики, который принимают информацию о:

  • температуре охлаждающей жидкости;
  • скорости автомобиля;
  • детонационных процессах в двигателе;
  • положении коленвала и частоте его вращения;
  • электрическом напряжении в бортовой сети;
  • расходе воздуха;
  • положении заслонки.

Информацию с этих датчиков анализирует контроллер, который открывает и закрывает форсунки в нужный момент, регулирует подачу топлива, подает искру, определяет пропорцию смеси и т.д. Контроллер часто называют «мозгами». Именно наличие столь сложных электронных систем — главный недостаток инжектора.

В зависимости от количества форсунок и точки установки различают два вида инжекторов:

  • система с центральным, или моно впрыском — на все цилиндры установлена одна форсунка. Как правило, она располагается на месте карбюратора. Инжекторы с такой конструкцией мало популярны;
  • системы с распределенным впрыском — у каждого цилиндра своя форсунка.

Преимущества и недостатки различных систем подачи топлива

У инжектора и карбюратора есть как плюсы, так и минусы. Расскажем о них подробнее.

Карбюраторы имеют следующие преимущества:

  • такая система проще в обслуживании и ремонте — специалисты, разбирающиеся в карбюраторах, есть практически в каждом городке;
  • карбюраторы стоят дешевле, чем инжекторы, да и найти нужную модель, например, карбюратор для ВАЗ-2109, намного проще;
  • такие системы подачи топлива намного менее чувствительны к качеству топлива и относительно безболезненно воспринимают заправку бензином с более низким октановым числом;
  • даже на неисправном карбюраторе в большинстве случаях можно доехать до ближайшей СТО.

К недостаткам карбюраторов можно отнести повышенный расход топлива, невысокую надежность, чувствительность к внешней температуре (зимой двигатель замерзает, а летом — сильно нагревается).

Инжектор имеет следующие недостатки:

  • цена — он существенно дороже, чем карбюратор;
  • обслуживание — без специального оборудования невозможно провести диагностику и настройку инжектора;
  • запчасти — электронное оборудование (датчики, контроллер) выходят из строя редко, однако если это произошло — готовьтесь к солидным денежным расходам;
  • качество бензина — в бак машины с инжекторным двигателем нельзя заливать низкооктановое топливо.

У инжектора есть и целый ряд преимуществ:

  • мощность — автомобиль с такой системой впрыска топлива на 5-10% процентов мощнее карбюраторного;
  • экономичность — благодаря электронной системе расчета состава рабочей смеси инжектор экономнее карбюратора на 10-30%;
  • экологичность — при работе инжекторного двигателя в атмосферу попадает на 50-75% меньше вредных веществ;
  • надежность — такие системы редко выходят из строя;
  • удобство — в холодное время инжекторный двигатель легко заводится и не требует длительного прогрева.

Так что же лучше? Ответ на этот вопрос дали за нас производители — сегодня уже практически все автомобили выпускают с инжекторными двигателями, хотя по нашим дорогам карбюраторные машины будут ездить еще долго. Поэтому, если Вам нужно купить карбюратор от проверенных временем отечественных производителей (ДААЗ, ПЕКАР, ИЖОРА), — обращайтесь в магазин AvtoALL.


Так что же выбрать?

Карбюраторный двигатель идеально подойдет для отдаленных районов или маленьких городов. Карбюратор довольно просто устроен, поэтому ремонт или замену можно сделать даже своими руками, если, конечно, Вы можете отличить отвертку от молотка. Да и к качеству топлива он менее прихотлив (например, карбюратор для ВАЗ-2107 отлично работает и на 92-м, и на 95-м бензине), что нередко имеет большое значение.

Инжектор же лучше подойдет жителям крупных городов, где есть множество высококлассных СТО и выбор качественного бензина. К тому же, в режиме городской езды инжекторный двигатель имеет пониженный (по сравнению с карбюраторным) расход топлива, что позволит существенно сэкономить.


Полезные советы по уходу за карбюратором и инжектором

Для того чтобы система впрыска топлива (неважно, инжекторная или карбюраторная) Вашего автомобиля прослужила долго, следует соблюдать несколько простых правил:

  1. регулярно меняйте топливные и воздушные фильтры. Многие автомобилисты делают это вместе с заменой масла — так просто запомнить: меняешь масло и масляный фильтр, значит, меняешь и все остальные фильтра;
  2. заправляйтесь только на проверенных АЗС и старайтесь не заливать бензин с низким октановым числом. Все это влияет на работу двигателя и его систем;
  3. периодически чистите бензобак. В нём собирается ржавчина, грязь, вода — всё это забивает жиклеры или форсунки;
  4. если возникла какая-то неисправность в инжекторе — лучше всего обратиться на СТО или к мастеру. Самостоятельный ремонт, если Вы не владеете специальными знаниями, может нанести серьезный вред.

Очиститель карбюратора, 310 мл LAVR Ln2108 от производителя

Описание очистителя карбюратора

Регулировка карбюратора не спасает от большого расхода?

Все потому, что дело в загрязненных жиклерах, топливных каналах и форсунках ускорительного насоса. Проблему повышенного расхода топлива решит Очиститель карбюратора LAVR. Профессиональная присадка повысит динамику и оптимизирует потребление топлива

Очиститель карбюратора LAVR комплексно оздоравливает топливную систему автомобиля, увеличивая ресурс ее составляющих. Применение присадки способствует выведению воды из топлива, за счет чего предупреждает коррозию, и повышает смазывающие свойства бензина. Сбалансированный состав очистителя карбюратора LAVR активируется в зонах высоких температур прогретого двигателя и гарантированно не засоряет карбюратор загрязнениями из топливного бака, топливопроводов и фильтров. Присадку рекомендуется применять каждые 3 000 км пробега.


Когда использовать

Просто залейте состав в бак и забудьте, что такое

  • трудный запуск
  • неровная работу двигателя
  • повышенный расход топлива
  • провалы на холостых и малых оборотах
  • ухудшение динамики и рывки
  • дымность

Применение


Как использовать

Рекомендуется использовать препарат каждые 3 тыс. км пробега.

Высококонцентрированный состав. Перед применением прогреть до комнатной температуры и встряхнуть.

  1. Залить в топливный бак непосредственно перед заправкой.
  2. Израсходовать топливо без дозаправки.
УПАКОВКА ПРЕПАРАТА РАССЧИТАНА НА 40-60 ЛИТРОВ БЕНЗИНА

Состав

Базовый алифатический сольвент, пакет моющих присадок LAVR СSP/DET™, спирт алифатический, функциональные ПАВ.

Ремонт карбюратора автомобиля - цена в сервисах Москвы и Санкт-Петербурга

Старые модели бензиновых двигателей оснащаются карбюраторной системой подачи топлива, работа которой имеет ряд особенностей. Учитывая сложность настройки узла, ремонт карбюратора должен проводиться исключительно мастерами, специализирующимися на топливных системах старого типа.

Как мы ремонтируем карбюраторы

В условия сервисного центра РОЛЬФ выполняется ремонт карбюраторов в Москве вне зависимости от марки и модели автомобиля, года выпуска. На необходимость срочного ремонта узла указывают следующие признаки:

  • затруднённый запуск двигателя как на холодную, так и на горячую;
  • нестабильная работа мотора на холостых оборотах;
  • ощутимые «провалы» при нажатии на педаль газа;
  • заметное снижение динамики авто;
  • появление чёрного дыма из выхлопной трубы;
  • резкое увеличение расхода топлива;
  • «выстрелы» и хлопки при перегазовке;
  • детонация ДВС после выключения зажигания;
  • ощутимый запах бензина в моторном отсеке или салоне авто.

Как показала практика, довольно часто причиной обращения автовладельцев в наш сервис в Москве становятся следующие неисправности:

  • засорение топливных или воздушных жиклёров;
  • выход из строя приводов заслонок: повреждение пружин или механическая деформация привода;
  • выход из строя электромагнитного клапана холостого хода;
  • нарушение герметичности ввиду повреждения прокладок;
  • нарушение регулировки поплавков в топливной камере;
  • износ шлангов топливопровода или подвода охлаждающей жидкости.

Комплексный ремонт карбюратора в сервисе РОЛЬФ выполняется мастерами поэтапно и включает в себя следующие основные шаги:

  1. Тщательный визуальный осмотр, проверка работы мотора на холостом ходу.
  2. Диагностика системы подачи топлива: проверка исправности бензонасоса, выявление следов потёков бензина и повреждений топливных шлангов.
  3. Полная разборка узла с составлением дефектовки.
  4. Настройка поплавков в камере топливоподачи.
  5. Промывка топливных и воздушных жиклёров, калибровка отверстий.
  6. Замена прокладок, регулировка зазоров заслонок камер.
  7. Проверка работоспособности клапана холостого хода, при необходимости — его замена.
  8. Сборка и установка узла, проверка работы ДВС.

Профессиональный ремонт карбюратора и его тонкая настройка позволят вам снизить расход топлива, добиться максимальной отдачи от двигателя и обеспечить его стабильный запуск, вне зависимости от погодных и температурных факторов.

Записаться на ремонт карбюратора в Москве или получить консультацию мастера можно, обратившись к представителям сервиса. Просто позвоните нам по телефону +7 (495) 785-19-93 или отправьте заявку на обратный звонок.

В чём особенность моторов с карбюратором?

В двигателях такого типа формирование топливовоздушной смеси происходит непосредственно в карбюраторных камерах. Поэтому они очень чувствительны к составу и качеству топлива, уровню очистки воздуха. Настройка и ремонт карбюраторов — это технически сложный процесс, качественно выполнить который в Москве могут далеко не все специалисты.

Устройства системы карбюратора димитровградского завода

Схема и устройства карбюратора

Водителям автомобилей полезно знать, как организована система карбюратора ДААЗ, Озон или Солекс. Они состоят из нескольких составляющих, объединённых единой схемой. Каждое из устройств имеет свои отдельные характеристики.

Пускатель

Пускатель — одна из главных частей карбюратора, служащая для обогащения ТВС при заводе холодного мотора. Когда уровень испарений горючего становится крайне неблагоприятным из-за отсутствия подогрева, включается в работу этот узел. Благодаря этому стремительность поступления воздуха в районе распылителя снижается, ведь вращение ДВС осуществляется пускателем.

Пусковое устройство карбюратора

Качественный состав ТВС возможен только путём испарения легкокипящих фракций горючего. Это же удаётся осуществить при введении во впускную трубку немалого количества бензина, что и достигается при использовании особого типа пускателей.

На большей части карбюраторных моделей, в том числе и димитровградского выпуска, пускателем служит заслонка, устанавливаемая на верхней части патрубка. Перед запуском мотора водитель закрывает заслонку, но не до конца. Если подача воздуха целиком останавливается, в диффузоре создаётся высокое разрежение. Горючее бесперебойно вытекает через канал ГДЗ, тем самым, обогащая ТВС.

Заслонки априори оснащаются автоклапаном, открывающимся при внезапном увеличении разрежения после запуска мотора и всасывающим воздух, тем самым, гарантируя требуемый уровень ТВС.

Примерно с таким же намерением немного сдвигают стержень заслонки эквивалентно специальному патрубку карба, что помогает открывать воздушную подачу, когда при повышении частоты вращения коленвала расход воздуха увеличивается.

УстройстваНазначение
ПускательЭто устройство, предназначенное для обеспечения пуска холодного мотора. Корпус, мембрана со стержнем, рычаги приводов заслонок — основные его части.
СХХСистема ХХ обеспечивает работу двигателя в холостом режиме. Оснащаетя жиклёрами, каналами, винтами для регулировок качества ТВС, поступающего непосредственно в двигатель.
ЭПХХЭкономайзер устанавливается в современные карбюраторы для определённой цели. Именно это устройство отключает СХХ после остановки мотора, а также в ходе переходных режимов. ЭПХХ компенсирует отливно-приливные явления карбюратора. Составные части его: ЭБУ, концевой выключатель, электромагнитный клапан.
ЭПМРЭкономайзер бывает также и для мощностных режимов работы. Он служит для дополнительного обогащения горючего, пподдерживает устойчивую работу ДВС. Состоит из корпуса, жиклёра, шарикового клапана и мембраны с пружиной.
ЭконостатЭто устройство призвано обогащать горючую смесь, поступающую в цилиндры ДВС, при полностью открытых заслонках. Жиклёр, трубки и топливный канал – его составные части.
ПМПоплавковый механизм регулирует подачу топлива в карб. Он состоит из игольчатого запорного клапана и поплавков.
Блокиратор заслонки второй камерыУстройство обеспечивает стабильную работу ДВС при движении автомашины с холодным двигателем. Заслонка открывается только при определённой величине открытия воздушной заслонки карбюратора. Её может блокировать также рычаг, установленный на стержне заслонки второй камеры.
Дозирующие системыЭти устройства обеспечивают функционирование карба при заводе мотора и работе, независимо от степени нагрузки. Устройства состоят из жиклёров, каналов. Отдельные части представляют диффузоры с распылителями.
Переходные системы камерПСК нужны для обеспечения плавного перехода с режима ХХ на нагрузочный регламент. При этом ПСК первой камеры требуется для малых и средних оборотов, а ПСК второй камеры — для высоких нагрузок.
Ускорительный насосУН нужен для обогащения ТВС на краткий момент времени при открытии заслонки. Это происходит на различных режимах работы ДВС. Состоит УН из корпуса, клапана, каналов для горючего, распылителя, механического привода.

СХХ

При работе силовой установки на низких оборотах заслонка закрывается практически целиком. Диффузорное разряжение при этом опускается в такой мере, что поступление горючего из ГДЗ прекращается.

На ХХ для приготовления ТВС пускается в ход зона воздушного шланга под ДЗ, а горючее подаётся отдельной частью карбюратора.

Система холостого хода

Топливная жидкость поступает через жиклёры из поплавковой камеры. К нему примешивается воздух, подсасываемый через отдельный жиклёр. В итоге подаётся нормальная топливная смесь, способная питать двигатель внутреннего сгорания.

Нередко СХХ называют автономной системой, и это правильно. Её влияние на основные характеристики ДВС общеизвестно. Многие думают, что СХХ является самой упрощенной системой карбюратора, однако, на самом деле это не так. Именно с холостым ходом часто возникают проблемы и ненормальности, требующие от автомобилиста вмешаться и отрегулировать винты.

СХХ функционирует при до конца запертой заслонке первой камеры, когда ГДС выключена. Получается, что система холостого хода некий отдельный мини-карбюратор, дополняющий основной. К нему поступает топливная жидкость и воздух, создаётся необходимая ТВС, всасывающаяся во впуск. Таким образом, в режиме ХХ устройство целиком зависит от мини-карбюратора.

Регулировочные винты — обязательные элементы СХХ. Они взаимодействуют с иглой-дозатором. Например, с помощью винта качества можно настроить подачу бензина, а с помощью винта оборотов — количество вращений вала в минуту.

Среди остальных важных деталей СХХ можно выделить также байпасный канал. Без него крайне сложно регулировать ТВС, так как элемент очень чувствителен и отзывается на любую ошибку в расположении игольного клапана.

Экономайзер и ЭПХХ

Экономайзер

Рассматривая устройства системы карбюратора нельзя пропустить такой элемент, как экономайзер. Мотор автомобиля испытывает оптимальные нагрузки в момент полного открытия заслонки. Другими словами, ему нужно больше топлива, чем в процессе обычного вращения коленвала. Ему как бы нужна подмога, эффективно реализуемая экономайзером.

Заслонка (ДЗ) карбюратора соединена через специальные тяги и рычаги с клапаном. При открытии ДЗ клапан срабатывает, дополнительное количество горючего поступает через жиклёр экономайзера. Благодаря этому ТВС обогащается, обеспечивая более эффективную работу ДВС при увеличении оборотов силовой установки. Таким образом, при опускании педали акселератора, заслонка открывается, и работа экономайзера останавливается.

Помимо стандартного экономайзера, принято различать также ЭПХХ — устройство с обязательным сбережением горючей смеси. То есть, если обычный экономайзер обогащает ТВС, ЭПХХ — обеспечивает экономию.

Вообще, режим принудительного ХХ считается отдельным видом передвижения, связанным с замедлением автомобиля при спуске или езде накатом, когда педаль акселератора отпущена, а скорость включена. ЭПХХ как раз включается в это время, выполняя подачу горючего при запертой заслонке.

ЭПХХ

Его полезные свойства объясняются следующим:

  • при движении автомобиля с горки, коленвал может начать вращаться на максимальных оборотах, не свойственных режиму холостого хода;
  • это вызывает повышенный расход топлива, снижает эффективность торможения ДВС.

ЭПХХ призван исключать этот момент. Он включается и перекрывает подачу бензина. Получается, что этот вид клапана — а ЭПХХ и есть электромагнитный клапан — реагирует на сигнал датчика о закрытой заслонке и на повышенное количество оборотов КВШ вала.

ГДС

Главная дозирующая система карба или ГДС обеспечивает приготовление ТВС в широком диапазоне оборотов. Схема в чём-то копирует стандартный карб, но имеет регулировки состава ТВС. В основной системе дозирования по мере отворения заслонки предупреждается большое поступление бензина, и сам процесс называется компенсационным.

Переходные системы (ПС)

Переходная система получила своё название, согласно назначению. ПС используются в ряде карбюраторных устройств. Подразумевают чередование камер с целью обеспечения плавной и беспроблемной работы ДВС во время открытия заслонки.

Переходные системы карбюратора

По своей конструкции ПС полностью аналогична СХХ. Однако есть и разница, заключающаяся в расположении выходного отверстия. Он находится над ДЗ второй камеры.

ПС задействуется сразу, лишь стоит выходящему отверстию перейти в зону ДЗ. По мере увеличения заслонки и вступления в работу ГДС, интенсивность подачи горючей жидкости через ПС убавляется, а на высоких оборотах может и вообще прекратиться.

УН

Ускорительный насос или УН представляет собой механическую топливоподающую карбюраторную систему, которая обеспечивает поступление бензина при закрытых ДЗ. Работа устройства не зависит от количества выходящего воздуха.

Ускорительный насос карбюратора

Другими словами, если при резком ускорении до цилиндров силового агрегата доходит не всё топливо, и ТВС обедняется, УН включается, обеспечивая нужный состав горючей смеси, с момента начала активного движения. Это помогает улучшить динамические характеристики автомобиля, сделать эффективнее разгон.

Карбюраторная система (автомобиль)

9.13.

Карбюраторная система

Для смешивания топлива и регулирования скорости карбюратор имеет ряд фиксированных и регулируемых каналов, жиклеров, каналов и насосов, которые составляют системы или контуры дозирования топлива. Есть шесть основных систем, общих для всех карбюраторов:
(i) Поплавковая система
(ii) Система холостого хода и низкой скорости
(Hi) Высокая скорость или основная система дозирования
(iv) Система питания
(v) Система ускорительного насоса
(vi) Дроссельная система
9.13.1.

Поплавковая система

Бензин из топливного бака топливным насосом подается в топливный бак карбюратора (основной колодец), где он хранится. Бензин должен поддерживаться в топливном баке на точном, почти постоянном уровне. Этот уровень имеет решающее значение, поскольку он устанавливает уровень топлива во всех каналах и контурах карбюратора. Высокий уровень топлива приводит к получению богатой топливной смеси, что приводит к высокому расходу топлива и высокому уровню выбросов. Низкий уровень топлива приводит к обеднению смеси, что приводит к помпажу двигателя и пропускам зажигания.Из-за этих проблем уровень топлива - одна из наиболее важных регулировок, необходимых для карбюратора.
Основная форсунка для выпуска топлива высокоскоростной системы подсоединяется непосредственно к дну топливного бака. Уровень топлива в чаше и форсунке одинаковый. Поплавок в сборе (рис. 9.42) имеет легкий полый латунный или пенопластовый понтон с петлей и хвостовиком. По мере повышения уровня топлива в чаше понтон поднимается выше. Он поворачивается на шарнире, чтобы переместить язычок к игольчатому клапану.Игольчатый клапан прижимается к седлу выступом узла поплавка, чтобы остановить поступающее топливо в бачок, когда поплавок достигает установленного уровня топлива. Поплавок опускается по мере того, как уровень топлива падает из-за использования, позволяя игольчатому клапану покинуть седло, чтобы заполнить резервуар топливом, подаваемым топливным насосом. Во время работы с соблюдением многих рабочих условий
расход топлива в топливный бак и из него практически одинаков. Игольчатый клапан остается в частично открытом положении для поддержания требуемого расхода.Уровень топлива контролируется и поддерживается почти постоянным с помощью поплавка и впускного игольчатого клапана. Над топливом в бачке предусмотрено воздушное пространство. Давление в бачке атмосферное из-за отвода воздуха из рожка карбюратора. Атмосферное давление топлива в резервуаре обеспечивает перепад давления, необходимый для точной дозировки топлива в зону вакуума Вентури цилиндра карбюратора.

Рис. 9.46. Конструкция с поплавковым и игольчатым клапаном.
Конструкция и расположение поплавкового и игольчатого клапана в топливном баке различаются в зависимости от конструкции карбюратора (рис.9,46). К некоторым поплавкам прикреплены небольшие пружины, чтобы они не подпрыгивали вверх и вниз при движении автомобиля по неровной дороге. Многие топливные баки имеют перегородки, предотвращающие расплескивание топлива на неровных дорогах и крутых поворотах. Иглы и седла в большинстве карбюраторов изготовлены из латуни, и иглы часто имеют пластиковые наконечники, которые соответствуют любым неровностям на седле и по-прежнему обеспечивают хорошее уплотнение, когда клапан закрыт.
Когда двигатель выключен, тепло двигателя испаряет топливо в резервуаре.Количество испарения из системы с большим резервуаром может легко перегрузить канистру, используемую для контроля выбросов. Поэтому современные карбюраторы включают в себя небольшую поплавковую чашу из формованного пластика. Другие устанавливают изолятор между карбюратором и впускным коллектором для уменьшения нагрева.
9.13.2.


Система холостого хода и низкой скорости

Эта система полностью контролирует подачу бензина на холостом ходу и на скоростях малой нагрузки до 32 км / ч. На низких скоростях очень небольшое количество воздуха проходит через трубку Вентури, вызывая небольшой эффект Вентури, и, следовательно, дроссельная заслонка почти закрыта.Этого недостаточно для создания потока топлива в основной дозирующей струйной системе. Поэтому карбюраторы оснащены системой холостого хода, показанной на рис. 9.47, которая забирает топливо из основного колодца и переносит его через ограничения на высоту выше уровня топлива, где воздух попадает в топливную систему через воздуховыпускные отверстия холостого хода, образуя смесь топливо и воздух. Эта смесь следует по другому каналу к отверстию чуть ниже дроссельной заслонки, где смесь проходит через регулируемый вручную канал холостого хода и выпускается в воздушный поток.Смесь холостого хода, обеспечивающая плавность холостого хода, регулируется поворотом регулируемого вручную игольчатого винта, называемого винтом регулятора смеси холостого хода.
Обычно используется один регулировочный винт для каждого первичного цилиндра. Наконечники винта выступают в проходы системы холостого хода и поворачиваются внутрь (по часовой стрелке) для получения обедненной смеси или наружу (против часовой стрелки) для получения более богатой смеси. Некоторые винты смеси карбюратора имеют пластиковые ограничительные колпачки (рис. 9.48). Эти колпачки ограничивают объем регулировки, чтобы предотвратить чрезмерно богатую смесь холостого хода.Скорость холостого хода - это результат количества воздуха, проходящего через карбюратор, который регулируется положением дроссельной заслонки. Положение дроссельной заслонки устанавливается винтом регулировки холостого хода (рис. 9.49).
Дополнительные небольшие отверстия, называемые переходными портами (рис. 9.47), расположены чуть выше закрытой дроссельной заслонки в цилиндре карбюратора. На холостом ходу каналы передачи всасывают воздух из ствола, который находится под атмосферным давлением
, в поток топлива в системе холостого хода. Когда двигатель находится в состоянии небольшого ускорения, ему требуется больше топлива, чем может обеспечить только порт холостого хода, и, следовательно, порт передачи вступает в действие как низкоскоростная система (рис.9,50). Когда горловина открывается, передаточный порт подвергается воздействию всасываемого вакуума, и поток в передаточном отверстии меняется на противоположный. Дополнительное топливо вытекает из передаточного отверстия для удовлетворения потребностей двигателя во время переключения с холостого хода на работу на низких оборотах. Топливо продолжает поступать из порта холостого хода, но с меньшей скоростью. Это позволяет получить почти постоянную топливовоздушную смесь в течение этого переходного периода.

Рис. 9.47. Типовая схема холостого хода.

Рис. 9.48. Крышки ограничителя холостого хода.
Самая распространенная проблема в системе холостого хода - засорение ограничителей холостого хода и стравливания воздуха, требующие очистки.Это замечается, когда изменение регулировки винта смеси не влияет на работу двигателя на холостом ходу.

Рис. 9.49. Винт регулировки холостого хода.

Рис. 9.50. Низкоскоростной режим.

9.13.3.

Основная система дозирования или высокоскоростная система

Когда скорость транспортного средства достигает более 32 км / ч, дроссельная заслонка открывается достаточно широко, чтобы обеспечить достаточный воздушный поток для создания давления немного ниже атмосферного на конце главного нагнетательного сопла.В то же время зона частичного вакуума во впускном коллекторе перемещается вверх в цилиндре карбюратора. Воздушный поток и изменение давления усиливают эффект Вентури, заставляя бензин вытекать из главного нагнетательного сопла (рис. 9.51). При дальнейшем увеличении скорости основная система дозирования продолжает отключаться до тех пор, пока не принимает на себя всю нагрузку, в то время как система холостого хода выключается. Основная система дозирования обеспечивает подачу бензина, достаточного для работы двигателя на холостом ходу с максимальной скоростью, когда дроссельная заслонка почти полностью открыта.

Рис. 9.51. Высокоскоростная или основная система дозирования.

Рис. 9.52. Система с несколькими трубками Вентури.
Для лучшего смешивания топлива и воздуха в большинстве карбюраторов имеется несколько или наддувных вентиляционных отверстий, расположенных друг внутри друга (рис. 9.52). Основное напорное сопло расположено в самой маленькой трубке Вентури для увеличения воздействия частичного вакуума на сопло. Топливо поступает из бачка через главный жиклер и главный канал в выпускное сопло. Высокоскоростной отвод воздуха (рис.9.52) смешивает воздух с топливом перед его выпуском из сопла. Первичная или верхняя трубка Вентури создает разрежение, которое заставляет основное выпускное сопло распылять топливо. Вторичная трубка Вентури создает воздушный поток, который удерживает топливо от стенок ствола, где оно может замедлиться и конденсироваться. Это приводит к турбулентности воздуха, что способствует лучшему перемешиванию и более тонкому распылению топлива.
9.13.4.

Энергетическая система

Высокоскоростная система подает обедненную топливовоздушную смесь на все карбюраторные системы.Когда нагрузка двигателя увеличивается во время работы на высоких оборотах, эта смесь слишком бедная, чтобы обеспечить необходимую мощность, требуемую двигателем. Необходимое дополнительное топливо вместо этого обеспечивается другой системой, называемой системой питания или силовым клапаном. Дополняет подачу топлива основного дозатора. Система питания или клапан могут управляться вакуумом или механической связью. Тип силового клапана зависит от конструкции карбюратора, но все они обеспечивают более богатую топливно-воздушную смесь.
Один тип силового клапана (рис.9.53) расположен в нижней части топливного бака с отверстием для основной нагнетательной трубки. Пружина удерживает маленький тарельчатый клапан в закрытом состоянии, а вакуумный поршень удерживает поршень над клапаном. Поскольку вакуум в коллекторе уменьшается по мере увеличения нагрузки на двигатель, большая пружина перемещает плунжер вниз. Это открывает клапан и позволяет большему количеству топлива поступать в главный нагнетательный патрубок.
В другом типе силового клапана с вакуумным приводом используется диафрагма (рис. 9.54). Вакуум в коллекторе управляет диафрагмой, которая удерживает клапан в закрытом состоянии.По мере того, как вакуум уменьшается при увеличении нагрузки, пружина открывает клапан, который направляет больше топлива через систему питания к главному нагнетательному соплу. Дозирующие стержни
также могут использоваться в качестве силовой системы (рис. 9.55), которая управляется вакуумными поршнями и пружинами или механической связью, связанной с дроссельной заслонкой. Концы стержней имеют сужающийся или ступенчатый вид для постепенного увеличения дополнительного расхода топлива и устанавливаются в отверстии главного жиклера. Стержни ограничивают площадь основного жиклера и уменьшают количество топлива, которое проходит через них
во время работы основной системы дозирования с небольшой нагрузкой.Дополнительное топливо для полной мощности дроссельной заслонки обеспечивается перемещением штоков из форсунок для увеличения потока через форсунки.


Рис. 9.53. Система питания с вакуумным поршнем

Рис. 9.54. Система питания, управляемая диафрагмой с вакуумным регулированием.
Дозирующие стержни с регулируемым вакуумом, также называемые повышающими стержнями, удерживаются в форсунках за счет разрежения в коллекторе, прикладываемого к поршням, прикрепленным к стержням. Когда вакуум падает под большой нагрузкой, пружины, работая против поршней, выталкивают штоки из жиклеров.Дозирующие стержни с механическим приводом управляются напрямую механической тягой, соединенной с дроссельной тягой.
9.13.5.

Система ускорительного насоса

Система обеспечивает дополнительное топливо для некоторых условий работы двигателя. Если дроссельная заслонка открывается внезапно из закрытого или почти закрытого положения, поток воздуха увеличивается быстрее, чем поток топлива из главного нагнетательного сопла. Этот сброс воздуха во впускной коллектор внезапно снижает вакуум в коллекторе и приводит к обеднению топливной смеси.Эта чрезмерно бедная смесь приводит к спотыканию, иногда называемому ровным пятном. Для получения достаточного богатства смеси топливо подает ускорительный насос.
Ускорительный насос (рис. 9.56) представляет собой плунжер или диафрагму в отдельной камере в корпусе карбюратора. Он приводится в действие тягой, соединенной с тягой дроссельной заслонки карбюратора (рис. 9.57). Когда дроссельная заслонка закрывается; насос

Рис. 9.55. Энергосистема на основе дозирующих стержней, управляемая механической или вакуумной связью.
всасывает топливо в камеру через впускной обратный клапан, показанный на рис. 9.58A, а выпускной обратный клапан закрывается, так что воздух не проходит через сопло насоса. Насос движется вниз или внутрь, когда дроссельная заслонка быстро открывается, чтобы подавать топливо к форсунке в цилиндре (рис. 9.58B) через выпускной обратный клапан. Во время подачи топлива обратный клапан закрывается. Выходной обратный клапан насоса может быть стальным шаром или плунжером, а входной обратный клапан - стальным шаром, резиновой диафрагмой или частью плунжера насоса.

Рис. 9.56. Типовой ускорительный насос плунжерного типа.

Рис. 9.57. Тяга ускорительного насоса.
Большинство плунжеров или диафрагм насосов приводится в действие пружиной регулирования. Дроссельная заслонка удерживает насос в возвращенном положении. Когда дроссельная заслонка открывается, рычаг освобождает насос, а пружина перемещает плунжер для стабильной и равномерной подачи топлива. Ускорительный насос работает в течение первой половины хода дроссельной заслонки из закрытого в полностью открытое положение.
Во время работы на высоких оборотах разрежение на сопле насоса в цилиндре карбюратора может быть достаточно сильным, чтобы смещать выходную заслонку и откачивать топливо из насоса. Это называется пуловером с помпой или сифоном. В большинстве карбюраторов воздуховыпускные отверстия расположены в выпускных каналах насоса, чтобы предотвратить сифонирование. В некоторых карбюраторах к выходному отверстию добавляется дополнительный вес, чтобы противодействовать сифонированию. Плунжеры насосов некоторых карбюраторов имеют антисифонные обратные клапаны.
Проблемы с системой ускорения вызывают спотыкание или колебания двигателя, вызванные повреждением поршня из синтетического каучука или

Рис.9,58. Работа ускорительного насоса. A. Ход всасывания насоса B. Ход нагнетания насоса
Требуется замена диафрагмы. Иногда грязь попадает на седло обратного клапана или погружает напорный патрубок, требуя очистки или замены.
9.13.6.

Дроссель или пусковая система

При холодном пуске испаряется только легкая летучая часть топлива при низкой температуре. Холодные стенки коллектора вызывают конденсацию бензина из топливовоздушной смеси, и менее испаренное топливо достигает камер сгорания.При холодном пуске используется система дросселирования для подачи большого количества топлива в цилиндр карбюратора. Дроссельная заслонка (клапан) расположена в воздушном рупоре над основным напорным патрубком и трубкой Вентури, как показано на рис. 9.59. Дроссельную заслонку можно наклонять под разными углами, чтобы ограничить поток воздуха. Проворачивание двигателя при закрытой заслонке воздушной заслонки создает частичный вакуум во всем цилиндре карбюратора под пластиной. Это уменьшение воздушного потока и область частичного вакуума работают вместе, позволяя втягивать больше топлива в смесь.

Рис. 9.59. Дроссельная система.

Рис. 9.60. Автоматическая система дросселирования. A. Встроенный дроссель. Б. Дистанционный дроссель.
Дроссельная заслонка может приводиться в действие вручную с помощью кабеля, идущего к кабине водителя, или автоматически с помощью термостатической пружины. Вал дроссельной заслонки соединен с пружиной рычажным механизмом. Биметаллическая термостатическая пружина обычно располагается в одном из двух мест. В одном варианте он размещается в круглом корпусе на воздушном рупоре карбюратора (рис.9.60A). Это называется цельным или поршневым дросселем. У другого типа он расположен вне карбюратора в углублении на впускном коллекторе (рис. 9.60B). Это называется дистанционным, колодезным или вакуумным тормозным дросселем.
Независимо от типа и расположения, термостатическая пружина закрывает воздушную заслонку при холодном двигателе. При запуске холодного двигателя воздушная заслонка полностью закрывается. Как только двигатель запускается, воздушная заслонка приоткрывается для достаточного притока воздуха. Вакуум в коллекторе тянет за собой диафрагму или поршень, что немного открывает воздушную заслонку.Когда двигатель нагревается, термостатическая пружина воздушной заслонки постепенно ослабляет свое натяжение, позволяя вакууму медленно открывать воздушную заслонку, а также медленно отпускать кулачок быстрого холостого хода. Когда двигатель прогрет, воздушная заслонка полностью отпускается. Вал дроссельной заслонки смещен, чтобы обеспечить другое открывающее усилие. Если дроссельная заслонка внезапно открывается на холодном двигателе, кончик дроссельной заслонки открывается, позволяя большему количеству воздуха попасть в карбюратор. Термостатическая пружина для удаленной воздушной заслонки расположена либо на выпускном переходнике впускного коллектора, либо на выпускном коллекторе, где она быстро улавливает тепло.В случае встроенного дросселя тепло передается от коллекторной печи через изолированную трубку для нагрева термостатической пружины.
Липкий вал дроссельной заслонки, застрявший вакуумный поршень, изогнутые рычаги, неправильная регулировка, а также засоренная или сгоревшая тепловая трубка дроссельной заслонки обычно вызывают проблемы в системе дроссельной заслонки, требующие замены поврежденных деталей, очистки вала и втулок и правильной регулировки.

Как работает карбюратор?

Как работает карбюратор? - Объясни это Реклама

Криса Вудфорда.Последнее изменение: 2 февраля 2021 г.

Топливо плюс воздух равны движению - это фундаментальная наука, лежащая в основе большинства транспортных средств. которые путешествуют по суше, морю или небу. Легковые, грузовые и автобусы превращают топливо в энергию, смешивая его с воздухом и сжигая металлические цилиндры внутри их двигателей. Сколько именно топлива и воздуха потребность двигателя меняется от момента к моменту, в зависимости от того, как долго он работал, как быстро вы идете, и множество других факторы. В современных двигателях используется система электронного управления. называется впрыск топлива , чтобы регулировать топливно-воздушную смесь, чтобы ровно с минуты поворота ключа до момента переключения двигатель снова выключится, когда вы достигнете пункта назначения.Но пока эти были изобретены умные устройства, практически все двигатели полагались на гениальные устройства для смешивания воздуха и топлива, называемые карбюраторами (пишется «карбюратор» в некоторых странах часто сокращается до просто «карбюратор»). Какие они и как работают? Давайте посмотрим внимательнее!

Иллюстрация: Карбюраторы в двух словах: они добавляют топливо (красный) к воздуху (синий), чтобы получилась смесь, подходящая для горения в цилиндрах. Цилиндры современных автомобилей более эффективно питаются от систем впрыска топлива, которые потребляют меньше топлива и меньше загрязняют окружающую среду.Но вы по-прежнему найдете карбюраторы в двигателях старых автомобилей и мотоциклов, а также в компактных двигателях газонокосилок и бензопил.

Как двигатели сжигают топливо

Двигатели - вещи механические, но они тоже химические вещи: они разработан на основе химической реакции под названием сгорание : когда вы сжигаете топливо в воздухе, вы выделяете тепловую энергию и производите углерод диоксид и вода как отходы. Чтобы эффективно сжигать топливо, вы нужно использовать много воздуха. Это относится и к автомобильному двигателю. что касается свечи, костра на открытом воздухе, угля или дрова в чьем-то доме.

С костром вам никогда не придется беспокоиться о том, что у вас слишком много или слишком мало воздуха. При пожарах в помещении запасы воздуха сокращаются, и гораздо важнее. Недостаток кислорода вызовет пожар в помещении (или даже устройство для сжигания топлива, такое как газовая печь центрального отопления (котел), чтобы производить опасные загрязнения воздуха, в том числе токсичные угарный газ.

Рекламные ссылки

Иллюстрация: Теоретически двигателю автомобиля требуется в 14,7 раз больше воздуха, чем топлива, если воздушно-топливная смесь должна гореть должным образом.Это называется стехиометрической смесью, и она состоит из 94 процентов воздуха и 6 процентов топлива. На практике соотношение может быть другим.

С автомобильным двигателем все немного сложнее. Если у тебя есть достаточно атомов кислорода, чтобы сжечь все ваши атомы топлива, это называется стехиометрическая смесь . (Стехиометрия - это часть химии, эквивалент в аптеке, чтобы убедиться, что у вас ровно достаточно каждого ингредиента прежде чем приступить к приготовлению пищи по рецепту.) В случае автомобильного двигателя, соотношение обычно составляет около 14.7 частей воздуха на 1 часть топлива (хотя это действительно зависит от того, из чего состоит топливо). Слишком много воздуха и недостаточно топлива означает, что двигатель горит "обедненная смесь" при слишком большом количестве топлива и недостатке воздуха называется горящий «богатый». Слишком много воздуха (слегка бедная смесь) дает лучшую экономию топлива, а немного меньше (слегка богатая смесь) дает лучшие характеристики. Слишком много воздуха так же плохо, как и слишком много воздуха. маленький; оба по-разному вредны для двигателя.

«Карбюратор называют« сердцем »автомобиля, и нельзя ожидать, что двигатель будет работать правильно, выдавать надлежащую мощность или работать плавно, если его« сердце »не выполняет свои функции должным образом».

Эдвард Кэмерон, The New York Times, 1910

Что такое карбюратор?

Бензиновые двигатели

рассчитаны на то, чтобы всасывать точно необходимое количество воздуха, поэтому топливо горит должным образом, независимо от того, запускается ли двигатель с холодного или нагревается на максимальной скорости.Получение правильной топливно-воздушной смеси - это работа умного механического устройства под названием карбюратор : трубка, которая пропускает воздух и топливо в двигатель через клапаны, смешивая их вместе в разных количествах, чтобы удовлетворить широкий спектр различных условия вождения.

Вы можете подумать, что «карбюратор» - довольно странное слово, но оно происходит от глагола «карбюратор». Это химический термин, означающий обогащение газа путем соединения его с углеродом. или углеводороды. Итак, технически карбюратор - это устройство, насыщающее воздух (газ) топливом. (углеводород).

Кто изобрел карбюратор?

Карбюраторы используются с конца 19 века. века, когда они были впервые разработаны пионером автомобилестроения (и Основатель Mercedes) Карл Бенц (1844–1929). Были раньше попытки «карбюрирования» другими способами. Например, французский пионер двигателей Жозеф Этьен Ленуар (1822–1900) первоначально использовал вращающийся цилиндр. с прикрепленными губками, которые погружались в топливо, когда они поворачивались, вытащив его из контейнера и подмешав в воздух, они это сделали.[1]

На приведенной ниже диаграмме, которую я раскрасил, чтобы облегчить восприятие, показан исходный Конструкция карбюратора Benz с 1888 года; основной принцип работы (объясненный во вставке ниже) остается неизменным и по сей день.

Изображение: очень упрощенная схема оригинального карбюратора Карла Бенца из его патент 1888 года. Топливо из бака (синий, D) поступает в так называемый генератор (зеленый, A). внизу, где он испаряется. Пары топлива проходят через серую трубу и встречаются с воздухом. вниз по той же трубе, которая выходит из атмосферы через перфорацию вверху.Воздух и топливо смешиваются в красной камере (F), затем проходят через клапан (бирюзовый, G) в цилиндр H, где они сжечь, чтобы получить силу. Иллюстрация из патента США 382,585: Карбюратор Карла Бенца. 8 мая 1888 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Как работает карбюратор?

Фото: На типичный карбюратор особо не на что смотреть! Фото Дэвида Хоффмана любезно предоставлено ВМС США.

Карбюраторы довольно сильно различаются по конструкции и сложности. Самый простой из возможных - по существу большой вертикальный воздуховод над цилиндрами двигателя с горизонтальный топливопровод, присоединенный с одной стороны.Когда воздух течет вниз трубу, она должна проходить через узкий перегиб посередине, который заставляет его ускоряться и заставляет его давление падать. Это изломано секция называется трубкой Вентури . Падающее давление воздуха создает эффект всасывания, который втягивает воздух через топливопровод на сторона.

Иллюстрация: Эффект Вентури: когда жидкость течет в более узкое пространство, ее скорость увеличивается, но давление падает. Это объясняет, почему ветер свистит между зданиями и почему лодки, плывущие параллельно друг другу, часто сталкиваются друг с другом.Это пример закона сохранения энергии: если бы давление не упало, жидкость, втекая в узкое сечение, набирала бы дополнительную энергию, что нарушило бы один из самых основных законов физики.

Воздушный поток втягивает топливо, чтобы присоединиться к нему, что нам как раз и нужно, но как мы можем регулировать топливовоздушную смесь? Карбюратор имеет два поворотных клапаны над и под трубкой Вентури. Вверху есть клапан под названием дроссель , который регулирует, сколько воздуха может проходить в.Если заслонка закрыта, через трубу проходит меньше воздуха, и Вентури всасывает больше топлива, поэтому двигатель становится более богатым топливом. смесь. Это удобно, когда двигатель холодный, при первом запуске и работает довольно медленно. Под трубкой Вентури есть второй клапан назвал дроссель . Чем больше открыта дроссельная заслонка, тем больше воздух проходит через карбюратор и чем больше топлива он затягивает из трубу в сторону. При поступлении большего количества топлива и воздуха двигатель высвобождает больше энергии и дает больше мощности, и машина едет быстрее.Вот почему открытие дроссельной заслонки заставляет машину ускоряться: это эквивалентно подуванию костра, чтобы подать больше кислорода и сделать его горят быстрее. Дроссель соединен с педалью акселератора в машине или дроссельной заслонке на руле мотоцикла.

Впуск топлива в карбюратор немного сложнее, чем мы описывали до сих пор. К топливной трубе прикреплен своего рода мини-топливный бак, называемый поплавковая камера подачи (небольшая емкость с поплавком и клапаном внутри).По мере того, как камера подает топливо в карбюратор, уровень топлива опускается, и поплавок падает вместе с ним. Когда поплавок опускается ниже определенного уровня, он открывает клапан, позволяющий подавать топливо. в камеру, чтобы заправить ее из основного бензобака. Когда камера заполняется, поплавок поднимается, закрывает клапан, и подача топлива снова отключается. (В поплавковая подающая камера работает как унитаз, с поплавком эффективно выполняет ту же работу, что и шаровой кран - клапан, который помогает наполнять унитаз после промывки используйте необходимое количество воды.Что общего у автомобильных двигателей и туалетов? Больше, чем вы могли подумать!)

Итак, вот как это все работает:

  1. Воздух поступает в верхнюю часть карбюратора из воздухозаборника автомобиля, проходя через фильтр, очищающий его от мусора.
  2. При первом запуске двигателя дроссель (синий) можно настроить так, чтобы он почти блокировал верхнюю часть трубы, чтобы уменьшить количество поступающего воздуха (увеличивая содержание топлива в смеси, поступающей в цилиндры).
  3. В центре трубки воздух проходит через узкий изгиб, называемый трубкой Вентури. Это заставляет его ускориться и заставляет его давление падать.
  4. Падение давления воздуха вызывает всасывание в топливопроводе (справа), всасывающее топливо (оранжевый).
  5. Дроссель (зеленый) - это клапан, который поворачивается для открытия или закрытия трубы. Когда дроссельная заслонка открыта, в цилиндры поступает больше воздуха и топлива, поэтому двигатель производит больше мощности, а автомобиль едет быстрее.
  6. Смесь воздуха и топлива стекает в цилиндры.
  7. Топливо (оранжевый) подается из мини-топливного бака, называемого камерой поплавковой подачи.
  8. Когда уровень топлива падает, поплавок в камере опускается и открывает клапан наверху.
  9. Когда клапан открывается, в камеру поступает больше топлива из основного бензобака. Это заставит поплавок подняться и снова закрыть клапан.
Рекламные ссылки

Узнать больше

На этом сайте

Книги

Для читателей постарше
Для младших читателей
  • Car Science Ричард Хаммонд.Дорлинг Киндерсли, 2007. От материалов, из которых они сделаны, до того, как они рассекают воздух, эта книга объясняет науку, которая заставляет машины двигаться (возраст от 9 до 12 лет).

Видео

  • Карбюраторы - объяснение: это видео с сайта Engineering Explained охватывает почти то же самое, что и моя статья, но рассказывает нам о том, что происходит. Он также распространяется на карбюраторы со второй трубкой Вентури.
  • Карбюраторы поплавкового типа, объясненные Пимпинпенцем. Хороший четкий обзор поплавкового карбюратора с игольчатым клапаном.

Статьи

Патенты

Для получения более подробной технической информации посетите эти:

  • Патент США 382,585: Карбюратор Карла Бенца. 8 мая 1888 года. Оригинальное устройство для смешивания топлива с воздухом, изобретенное в конце 19 века пионером автомобилестроения Карлом Бенцем.
  • Патент США 1520261: Карбюратор Джорджа Ф. Риттера и др., Tillotson Manufacturing. 23 декабря 1924 года. Типичный карбюратор начала 20 века.
  • Патент США 1938497: Карбюратор Чарльза Н.Пог. 5 декабря 1933 г. Эта конструкция предназначена для испарения большего количества топлива и обеспечения большей мощности двигателя.
  • Патент США 4 501 709: Карбюратор Вентури с регулируемым приводом от Тадахиро Ямамото и Тадаки Оота, Nissan. 26 февраля 1985 г. В этом более современном типе карбюратора размер трубки Вентури автоматически изменяется для поддержания постоянного уровня всасывания.

Список литературы

  1. ↑ Газовые и нефтяные двигатели: Практическое пособие по внутреннему сгоранию Двигатель Уильяма Робинсона.Э. и Ф. Spon, 1890, с.175.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2009, 2021. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2009/2021) Карбюраторы. Получено с https://www.explainthatstuff.com/how-carburetors-work.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте ...

Competition Fuel Systems - Carburetor

Топливные магистрали, фильтры, насосы и регулирующие устройства существуют для конкретной задачи - подавать бензин или спирт из топливного элемента в карбюратор, а в байпасной системе возвращать его в топливный элемент .Давление и объемы меняются в зависимости от типа используемого топлива (бензин или спирт) и типа используемой топливной системы. При регулярном техническом обслуживании хорошая топливная система будет приносить дивиденды. Однако многие автомобили оснащены системами, не отвечающими установленным стандартам.

Компания BG Fuel Systems столкнулась с некоторыми типичными проблемами при решении технических вопросов клиентов. Компания составила список наиболее распространенных ошибок в топливных системах соревнований и руководство по их исправлению: 1. Неправильные топливопроводы. Не используйте трубопроводы с внешним диаметром от 11/44 до 31/48 дюймов в гоночной топливной системе между топливными элементами. и насос.Гонщики часто шутят о своих первых гоночных автомобилях и о том, что топливопровод был таким маленьким, что работал как главный жиклер. Убедитесь, что топливо подается по трубопроводам подходящего размера для области применения. Помните, что размер топливопровода определяется системой, а не автомобилем. Push-Lok, шланги с оплеткой из нержавеющей стали и алюминиевые трубки - наиболее распространенные топливопроводы, используемые на гоночных автомобилях.

Просмотреть все 9 фотографий

2 Угловые фитинги на концах шлангов от насоса к карбюратору По возможности избегайте кованых топливных фитингов с коленом на 90 градусов.Хотя они недорогие и легкодоступные, они имеют ограничительный характер и часто вызывают проблемы с подачей топлива. По возможности также следует избегать концов шлангов с углами 90 и 45 градусов. Если возникнет необходимость в его использовании, используйте закругленные концы шлангов (изгибы под углом 90 градусов), которые имеют гораздо лучшую скорость потока. Они изготовлены из алюминия, оснащены поворотными концами для надежного уплотнения и просты в установке.

3 Топливные насосы непригодны для работы со спиртом Спиртовая топливная система отличается от бензиновой системы по нескольким важным параметрам.Давление топлива в бензиновой системе обычно поддерживается в пределах от 7 до 9 фунтов на квадратный дюйм во всем диапазоне оборотов. Спиртовые карбюраторы требуют низкого давления около 4-6 фунтов на квадратный дюйм на холостом ходу и 9-11 фунтов на квадратный дюйм при полностью открытой дроссельной заслонке. Это необходимо для предотвращения затопления карбюратора на холостом ходу и при небольшой нагрузке двигателя, но при этом поддерживает дополнительный объем, необходимый для максимального ускорения. Двигатели мощностью около 500 л.с. могут работать с механическим насосом на 15 фунтов на квадратный дюйм в сочетании с дроссельным перепускным клапаном. Однако для двигателей мощностью более 500 л.с. следует рассмотреть возможность использования системы с ременным приводом с диафрагменным клапаном или тарельчатым байпасом.Для общей надежности и производительности система с ременным приводом обычно является лучшим выбором. При использовании мембранного байпаса компания BG Fuel Systems рекомендует устанавливать его рядом с карбюратором для более быстрого срабатывания.

Посмотреть все 9 фотографий

4 Несовместимость байпаса и насоса Дроссельные байпасы были разработаны для работы с блочными насосами и аналогично диафрагменными байпасами с насосами с ременным приводом. Никогда не используйте байпас дроссельной заслонки с насосом с ременным приводом. Они должны работать парами и не допускать несовпадения.

5 Неподходящий топливный фильтр Запрещается использовать топливные фильтры с обычными бумажными элементами со спиртом. Спирт впитывает воду, поэтому бумага и склеивающие материалы быстро портятся. Как следствие, частицы могут попадать в поплавковые чаши или застревать в иглах и седлах и основных форсунках. Кроме того, не менее важно избегать использования фильтров с недостаточным расходом, а размеры на входе и выходе слишком ограничены.

6 Пренебрежение текущим обслуживанием спиртовой системы Хотя спиртовые топливные добавки могут помочь предотвратить коррозию и обеспечить смазку насосов и других компонентов, спирт может сильно разъедать металлические предметы, особенно алюминий, если оставаться в контакте слишком долго.Невозможно заменить строгую программу технического обслуживания. Это продлит срок службы карбюратора и топливной системы, а также сохранит ее безотказную работу.

Спирт естественным образом поглощает воду из воздуха. Это не только разбавляет топливо, но и усиливает коррозионное воздействие алкоголя. После каждой гонки спирт следует слить из гоночной машины и хранить в герметичных емкостях. Топливный элемент с вентиляцией не считается подходящим контейнером для хранения.

Топливную систему и карбюратор также следует тщательно слить и промыть от остатков спирта.Некоторые гонщики добавляют бензин в пустой топливный элемент и запускают двигатель до тех пор, пока не будут уверены, что карбюратор заполнен бензином.

Другие методы включают снятие карбюратора и промывку его чистящим растворителем или смазывающими аэрозольными распылителями. Снятие впускной и выпускной арматуры с насосов, байпасов и т. Д. И смазка внутренних деталей также является приемлемой практикой. Независимо от метода, обслуживание алкогольной системы имеет решающее значение. Если вы его проигнорируете, система выйдет из строя.

Просмотреть все 9 фотографий

7 Отказ от использования воздушного фильтра с высокой пропускной способностью Двигатели Race полагаются на получение как воздуха, так и топлива, но часто испытывают недостаток в использовании тонких воздушных фильтров малого диаметра, которые ухудшают их рабочие характеристики.Если возможно, используйте фильтр диаметром 14 дюймов и высотой 4 дюйма. Если зазор слишком велик, купите поддон с утопленным поддоном, который позволяет устанавливать более глубокие фильтрующие элементы. Также приобретите качественный воздушный фильтр. Если вы постоянно очищаете грязь с поверхности гоночного автомобиля, ваш воздухоочиститель изо всех сил пытается отфильтровать грязь и мусор из двигателя.

8 Износ топливных элементов с пенойОднако спирт может привести к порче пены, и ее необходимо обновлять один раз в год. Чтобы проверить состояние поролона, просто снимите колпачок и зажмите его между пальцами. Если отошли куски, пену необходимо заменить.

9 Отсутствие надлежащего хода рычажного механизма и возвратных пружин Убедитесь, что бабочки карбюратора полностью открыты при полностью открытой дроссельной заслонке. Используйте как минимум две возвратные пружины хорошего качества, желательно из нержавеющей стали, и, если возможно, установите их в двух разных местах на рычаге.Убедитесь, что рычажный механизм и возвратные пружины работают без помех во всем диапазоне хода дроссельной заслонки.

Просмотреть все 9 фотографий

10 Отказ от использования регулируемого упора педали Удивительно, учитывая большое количество гоночных автомобилей, не имеющих формы упора педали газа, и непростительно, что такому количеству автомобилей разрешено участвовать в соревнованиях. Чрезмерные нагрузки на рычажный механизм, валы карбюратора и «бабочки» могут привести к деформации и заклиниванию механизмов, что обычно приводит к тяжелым последствиям.Чтобы избежать неизбежного, используйте регулируемый упор педали. В полностью открытом положении дроссельной заслонки синхронизируйте упор карбюратора с упором на педали.

11 Отсутствие подходящего размера карбюратора для данной области применения Наличие надлежащего размера Вентури для данной области применения гарантирует, что карбюратор создает достаточную скорость воздушного потока. Скорость воздуха создает необходимое разрежение (низкое давление) для втягивания топлива через дозирующие системы и усилитель Вентури в воздушный поток для распыления.Race Demon, оснащенный съемными рукавами Вентури и усилителями, преодолевает большинство проблем с размером.

12 Недостаточная вентиляция топливного элемента Если вентиляция топливного элемента слишком мала, топливная система может работать неправильно. В крайних случаях недостаточная вентиляция может привести к необратимому повреждению системы. Поскольку топливный насос всасывает топливо из элемента, его необходимо заменить воздухом. Если вентиляционное отверстие на элементе слишком мало, насос будет пытаться откачивать топливо из элемента быстрее, чем воздух заменяет его.Это может создать вакуум в элементе, исказить его форму и лишить насос и двигатель необходимого топлива.

13 Фильтрация вентиляционных отверстий топливных элементов Точно так же, как вентиляционное отверстие меньшего размера отрицательно скажется на вашей топливной системе, отсутствие фильтра на вентиляционном отверстии приведет к попаданию в него грязи и мусора. По мере того как воздух заменяет топливо, вентиляционный шланг притягивает все, что находится в воздухе, включая грязь, песок или мусор. Эти частицы в конечном итоге разрушат топливную систему, а также двигатель.

14 Расположение топливного фильтра Для защиты топливного насоса и карбюратора используйте хороший фильтр между баком и топливным насосом, а также фильтрующие фитинги на карбюраторе.

15 Осмотры Фитинги со стальной оплеткой и алюминиевые фитинги имеют жизненный цикл. С течением времени резиновое отверстие разрушается, в результате чего трубопровод либо разрушается, что приводит к нехватке топлива в двигателе, либо разрушается и, возможно, блокирует проход. Шланги радиатора и ремни вентилятора регулярно заменяются. То же самое можно сказать и о компонентах топливной системы. С точки зрения безопасности и производительности, регулярно проверяйте линии и фитинги. Постарайтесь обнаружить мягкие или слабые места, ощупывая внешнюю сторону линий, и каждый сезон визуально осматривайте внутренности.Соединения должны быть плотными.

Качество воздуха имеет огромное значение для работы топливной системы. Правильно изготовленный и обслуживаемый воздушный фильтр подходящего размера повысит производительность.

Вы можете решить проблемы с размером с помощью модели со съемной втулкой при выборе карбюратора. У этого демона с двумя стволами в иллюстративных целях установлена ​​одна гильза. Доступны несколько размеров рукавов.

Посмотреть все 9 фотографий

Это схематическое изображение системы, в которой используется байпас дроссельной заслонки.

В этой топливной системе используется топливный насос с ременным приводом и мембранным байпасом.

TVS Motor Company

Мотоциклы с впрыском топлива быстро вытесняют карбюраторные модели , которые до начала нового тысячелетия господствовали на рынке. Только в 1980 году система впрыска топлива использовалась в уличных мотоциклах. На сегодняшний день почти каждый мотоцикл премиум-класса оснащен системой FI . Таким образом, в то время как старые добрые обезьяны-смазщики все еще клянутся надежностью, настраиваемостью и удобством обслуживания карбюраторов, новые гонщики считают, что впрыск топлива лучше во всех отношениях.Итак, как именно работают эти две системы? Чем они отличаются и каковы их достоинства и недостатки? Давайте выясним!

Карбюрация

Карбюратор - самая простая и до недавнего времени наиболее распространенная система заправки двухколесных транспортных средств, особенно в Индии. Чтобы объяснить основную работу карбюратора , представьте его как трубку, которая подает топливно-воздушную смесь в цилиндр с одного конца, с воздушным фильтром, прикрепленным к другому.Теперь где-то посередине этой трубы область прохода воздуха ограничена для увеличения скорости проходящего через нее воздуха. Эта небольшая область или часть карбюраторной системы известна как Вентури . За счет увеличения скорости воздуха через узкую область создается карман низкого давления, который, в свою очередь, облегчает всасывание топлива из сопла, расположенного рядом с трубкой Вентури. Это явление соответствует принципу Бернаулли, который гласит, что скорость жидкости (или воздуха), проходящей через трубку, обратно пропорциональна создаваемому ею давлению.

Количество всасываемого в карбюратор воздуха определяется клапаном на конце трубки, соединенной с цилиндром. Этот клапан называется дроссельной заслонкой и соединен с рукояткой акселератора вашего двухколесного велосипеда и управляет потоком воздух-топливо через дроссельные заслонки, предоставляемые водителем. Когда вы выкручиваете дроссельную заслонку, дроссельная заслонка открывается, обеспечивая обильный поток воздуха через карбюратор. И наоборот, он закрыт, когда дроссельная заслонка на руле полностью откатывается назад.

Топливный жиклер, расположенный рядом с трубкой Вентури, всасывает топливо непосредственно из топливного бака через поплавковую камеру, которая представляет собой небольшой резервуар для топлива с поплавковым клапаном, который перекрывает подачу топлива, когда она заполнена, и возобновляет ее, когда жиклер черпая из него топливо. Образовавшаяся воздушно-топливная смесь затем подается в цилиндр, где происходит сгорание.

Это очень простое объяснение того, как работает карбюратор, хотя современные карбюраторы, включая карбюраторы постоянной скорости или карбюраторы CV, обычно более сложны по конструкции.В этих карбюраторах используются такие компоненты, как диафрагма, игольчатый клапан и пилотный жиклер для управления воздушно-топливной смесью. Однако здесь важно отметить, что вся эта установка довольно проста и полностью механическая, без каких-либо электронных компонентов или датчиков.

Впрыск топлива

В отличие от карбюраторов система впрыска топлива состоит из сложного набора электроники и датчиков. В карбюраторных системах топливо забирается из бака, в то время как в системе с впрыском топлива это зависит от топливного насоса, установленного внутри бака для точного управления потоком топлива.Форсунка для впрыска топлива также входит непосредственно в камеру сгорания. Топливо под давлением очень хорошо распыляется в виде однородного тумана в случае систем FI, что обеспечивает очень эффективное и чистое сгорание.

Подача топлива в случае FI управляется электрическим мозгом, или ЭБУ, который постоянно выполняет сложные вычисления с очень высокой частотой, чтобы обеспечить наилучшую возможную топливно-воздушную смесь. Основываясь на целом ряде параметров, таких как частота вращения двигателя, положение дроссельной заслонки, температура и нагрузка двигателя и т. Д., ЭБУ указывает инжекторам впускать только нужное количество топлива при каждом такте впуска, чтобы способствовать наиболее эффективному сгоранию.

Итак, хотя было доказано, что эффективность системы FI превосходит карбюратор, дело не в том, что две системы не имеют своих явных преимуществ и недостатков. Здесь мы кратко обсудим достоинства и недостатки двух систем.

Преимущества карбюраторов

  • Карбюраторы дешевле, просты в эксплуатации и легко ремонтируются или заменяются
  • Карбюраторы позволяют пользователям настраивать их в соответствии со своими требованиями
  • Поскольку карбюраторы не встроены в двигатели, их можно обслуживать или заменять, не касаясь двигателя
  • Недостатки карбюраторов

  • Не самые эффективные системы, устаревшая конструкция
  • Большинство карбюраторов имеют небольшую задержку, что приводит к относительно медленной реакции дроссельной заслонки
  • Некоторые компоненты, такие как диафрагма, относительно хрупкие и склонны к повреждению
  • Воздушно-топливная смесь колеблется, влияя на плавность хода двигателя
  • Преимущества впрыска топлива

  • Оптимизированная топливовоздушная смесь и распыление обеспечивают более чистое и эффективное сгорание
  • Более резкий отклик дроссельной заслонки
  • Лучшая топливная эффективность и немного больше мощность, чем у карбюраторных систем
  • Обычно они не требуют обслуживания и не ломаются
  • Недостатки впрыска топлива

  • Существенно дороже карбюраторов
  • Невозможно отремонтировать простыми инструментами, необходимо заменить, что дорого.
  • Не может быть настроен, если вы не используете пользовательские карты ECU, что опять же дорого
  • Итак, хотя преимущества системы FI довольно очевидны, несмотря на ее стоимость, вы все равно будете одним из миллионов, которые все еще верят в старый добрый карбюратор. Какие технологии вы предпочитаете и почему? Сообщите нам свое мнение в комментариях ниже.

    НИККИ

    НИККИ

    История компании

    1932
    Основана как Nippon Carburetor Co., Ltd. в феврале с капиталом 40 000 иен, первый завод карбюраторов в Японии.
    1933
    Разработка карбюраторов для автомобильных и авиационных двигателей.
    1946
    Разработка карбюраторов и топливных насосов для автомобильных и сельскохозяйственных двигателей.
    1952
    Увеличил капитал до 20 миллионов иен в марте.
    1956
    Разработка двухступенчатого двухкамерного автомобильного карбюратора.
    1960
    Увеличил капитал до 50 миллионов иен в январе и до 100 миллионов иен в октябре. Открыл филиал в Нагое в январе и в Хиросиме в апреле.
    1961
    Завершен завод в штаб-квартире в июле. В августе увеличил капитал до 150 миллионов иен.
    Началась внебиржевая торговля акциями на второй секции Токийской фондовой биржи.
    1962
    Увеличил капитал до 250 миллионов иен в марте.
    1963
    Разработка системы карбюратора LPG для автомобилей. Куплен участок под завод в Ацуги, Канагава.
    1964
    Увеличил капитал до 500 миллионов иен в декабре. Разработка двухступенчатого четырехкамерного карбюратора.
    1967
    Построил фабрику в Ацуги и начал работу с сентября.
    1969
    Разработка двухступенчатого четырехкамерного карбюратора для роторных двигателей.
    1973
    Разработка карбюратора для соответствия нормам загрязнения воздуха автомобилями.
    1981
    Начат экспорт карбюраторов для двигателей общего назначения в Америку.
    1982
    Разработка карбюратора с электронным управлением для автомобилей и корпуса дроссельной заслонки для автомобилей
    1984
    Разработка электронной системы впрыска топлива для автомобилей.
    1985
    Разработка силового клапана для автомобилей.Разработка подвесного морского карбюратора.
    1986
    Разработка системы обратной связи на сжиженном нефтяном газе для автомобилей.
    Разработка электронного регулятора для вилочных погрузчиков.
    1987
    Разработка электронных блоков управления автомобильными двигателями.
    1988
    В мае произошло слияние фабрики Shinagawa с фабрикой Atsugi.
    1989
    В октябре основана компания Nikki Techno Co., Ltd.
    1991
    Разработка топливной системы на сжатом природном газе
    1994
    В октябре переехал в Ацуги.
    1995
    Основана компания Shenyang Rixin Carburetor Corporation в Китае.
    1998
    Получен сертификат ISO 9001.
    Основание компании Nikki America, Inc. в Иллинойсе, Америка.
    2000
    Получен сертификат QS 9000.
    Основание компании Changzhou Guangri Precision Machinery Co., Ltd. в Китае.
    2001
    Изменено название компании на Nikki Co., Ltd.
    Разработка системы впрыска сжиженного нефтяного газа в декабре
    2002
    Получен сертификат ISO 14001.
    В апреле открылось представительство в Корее.
    2003
    В апреле открылось представительство в Шанхае.
    2004
    Создание Nikki Soltech Co., Ltd. в мае.
    (в настоящее время Nikki Soltech Service Co., Ltd.)
    2005
    В июне создана компания Nikki Korea Co., Ltd.
    Создание компании Nikki America Fuel Systems, LLC. в Алабаме, США в ноябре.
    2006
    Производство систем электрического впрыска топлива для дизельных двигателей.
    2007
    Открыта заправочная станция для сжиженного нефтяного газа на территории головного офиса.
    Получен сертификат ISO / TS 16949: 2002.
    2011
    Создание компании Nikki India Fuel Systems Pvt.Ltd. в Ченнаи, Индия, в августе.
    2013
    В августе основана компания Nikki Thailand Co., Ltd. в провинции Накхонпатхом, Таиланд.
    Стенды для двигателей, работающих на сжатом природном газе для крупногабаритных транспортных средств. Четыре стенда для проверки работоспособности и долговечности.
    2014
    Установлена ​​поставка КПГ для стендовых испытаний двигателей. Установлено
    КПГ для стендового оборудования для контроля калорийности двигателя.
    2016
    Расширенная компания Nikki India Fuel Systems Pvt.ООО
    2017
    Разработка модуля топливного насоса для двигателя FI общего назначения.
    2018
    Получен сертификат процесса ISO 26262: 2011.
    Получен сертификат IATF 16949: 2016.

    Авиационный карбюратор | AeroToolbox

    Карбюратор является частью системы впуска двигателя и отвечает за объединение и смешивание воздуха и топлива. Затем эта смесь направляется в каждый цилиндр, где она воспламеняется как часть цикла четырехтактного двигателя.

    Карбюратор по-прежнему является наиболее часто используемым устройством в легких самолетах для распыления и смешивания топлива и воздуха, необходимых для сгорания. Альтернатива - система впрыска топлива. В двигателях с впрыском топлива используется насос и система распределения топлива для впрыска топлива непосредственно в систему впуска через набор топливных форсунок. Впрыск топлива в значительной степени заменил карбюрацию в автомобильной промышленности, но не в двигателях легких поршневых самолетов.

    Карбюратор

    Карбюратор (или карбюратор) - это механическое устройство, в котором используется принцип трубки Вентури для распыления жидкого топлива и его смешивания с воздухом в правильном соотношении для оптимального сгорания.Затем эта смесь направляется во впускной коллектор двигателя, где она сжигается.

    Физика Вентури

    Вентури - это простое устройство, в котором используются два физических принципа: сохранение массы и уравнение Бернулли для определения взаимосвязи между скоростью , давлением, и площадью через сужающуюся и расширяющуюся трубу, через которую проходит воздух.

    Рисунок 1: Вентури - это устройство управления потоком

    . Сохранение массы гласит, что масса не может быть создана или разрушена, что означает, что масса в замкнутой системе должна оставаться постоянной.Это можно записать между любыми двумя точками трубки Вентури как:

    .

    $$
    \ rho_ {1} A_ {1} V_ {1} = \ rho_ {2} A_ {2} V_ {2}
    $$

    Предполагая, что воздух несжимаем (это допустимое предположение при скоростях ниже 0,3 Маха), плотность воздуха через трубку Вентури остается постоянной, и поэтому член плотности может быть удален из обеих частей уравнения.

    $$
    A_ {1} V_ {1} = A_ {2} V_ {2}
    $$

    Таким образом, скорость в горловине трубки Вентури зависит от соотношения площадей.Поскольку \ (A_ {1}> A_ {2} \), это означает, что скорость в горловине трубки Вентури больше, чем на входе.

    $$
    V_ {2} = \ frac {A_ {1}} {A_ {2}}
    $$

    Уравнение Бернулли справедливо для потока несжимаемой жидкости между любыми двумя точками вдоль трубки Вентури и позволяет связать разницу давлений между входом и горловиной с результирующей разностью скоростей. Уравнение неразрывности показывает нам, что \ (V_ {2}> V_ {1} \), и теперь мы можем изменить уравнение Бернулли и показать, что давление в горловине падает с увеличением скорости на горловине.

    Рисунок 2: Давление уменьшается, а скорость увеличивается в горловине Вентури

    Выводы, которые можно сделать на основании анализа Вентури, следующие:

    • Скорость в горловине увеличивается относительно входа.
    • Давление в горловине уменьшается относительно впускного отверстия.

    Карбюратор использует это увеличение скорости и соответствующее падение давления в горловине Вентури для всасывания топлива в воздушный поток, где оно смешивается с всасываемым воздухом.

    Устройство и работа карбюратора

    Наиболее распространенным типом карбюратора на легких самолетах является поплавковый карбюратор , названный в честь поплавка, используемого в топливной камере для регулирования уровня топлива. Схема типичного поплавкового карбюратора показана ниже.

    Рисунок 3: Схема поплавкового карбюратора
    Поплавковая камера

    Карбюратор разделен на две отдельные области: топливная камера и трубка Вентури . Топливо поступает в топливную камеру через топливную систему, где уровень в камере регулируется поплавком.Этот поплавок работает так же, как поплавок в обычном унитазе. Плавучая часть поплавка всегда будет плавать на поверхности жидкого топлива. Поплавок соединен с системой тяг, которая заканчивается игольчатым клапаном. Когда уровень топлива в поплавковой камере повышается или понижается, поплавок перемещается вместе с уровнем топлива, открывая или закрывая клапан. Это регулирует общее количество топлива, присутствующего в камере, и поддерживает почти постоянный уровень топлива во время работы двигателя. Поплавок предназначен для поддержания уровня топлива в камере ниже уровня форсунки слива топлива.Уровень топлива должен оставаться ниже форсунки, чтобы гарантировать отсутствие утечек топлива из карбюратора, когда двигатель не работает.

    Напорная форсунка

    Проходы между поплавковой камерой и секцией Вентури карбюратора обеспечивают проход для жидкого топлива, которое будет всасываться из камеры в выпускное сопло, поскольку всасываемый воздух ускоряется действием Вентури. Камера вентилируется и поэтому всегда остается при атмосферном давлении окружающей среды. Скорость воздуха, поступающего во входное отверстие трубки Вентури, увеличивается с соответствующим падением давления в горловине трубки Вентури.Напорный патрубок расположен в горловине, где давление минимально. Это устанавливает градиент давления между поплавковой камерой (атмосферное давление) и выпускным соплом (давление ниже атмосферного), в результате чего топливо всасывается из камеры через дозирующую струю в поток Вентури на выпускном сопле.

    Дозирующая форсунка

    Дозирующий жиклер представляет собой отверстие (резьбовой клапан с отверстием в середине), диаметр которого определяет максимальный расход топлива из поплавковой камеры в нагнетательный патрубок.Работа двигателя с полностью открытой дроссельной заслонкой без дозирующего жиклера приведет к слишком большому расходу топлива, который двигатель не сможет эффективно потреблять. Отверстие ограничивает это до максимального желаемого расхода топлива.

    Увеличение скорости в сопле Вентури в сочетании с геометрией диффузора приводит к мгновенному распылению топлива (разбиванию жидкости на капли). Затем распыленное топливо смешивается с поступающим воздухом, направляется через впускной коллектор двигателя и попадает в камеры сгорания, где оно воспламеняется.

    Выпуск воздуха

    Перепад давления между поплавковой камерой и горловиной Вентури называется дозирующим усилием . Дозирующая сила увеличивается при открытии дроссельной заслонки из-за увеличения массового расхода (скорости воздушного потока) через трубку Вентури. При более низких настройках дроссельной заслонки дозирующее усилие уменьшается, и может не хватить топлива в двигатель. Это требует включения воздуховыпускного патрубка в сопло диффузора, чтобы способствовать испарению топлива и обеспечивать более равномерный выпуск топлива во всем диапазоне настроек дроссельной заслонки.

    Рис. 4: Выбранный воздух поступает в диффузор карбюратора для облегчения распыления топлива

    Отводимый воздух втягивает воздух из области карбюратора, где давление воздуха равно или близко к атмосферному, и смешивает его с топливом, всасываемым в диффузор. действием трубки Вентури. Добавление воздуха в сопло диффузора снижает плотность топлива и разрушает поверхностное натяжение молекул жидкого топлива. Это снижает вероятность прилипания топлива к краю сопла и повышает вероятность его смешивания с воздухом и испарения, особенно при более низких настройках дроссельной заслонки.

    Дроссельная заслонка двигателя

    Объем топливовоздушной смеси, поступающей во впускной коллектор, и соотношение воздуха и топлива в этой смеси регулируются дроссельной заслонкой и рычагами управления смесью соответственно.

    Рисунок 5: Рычаг дроссельной заслонки и смеси для легкого самолета

    Рычаги управления дроссельной заслонкой и смесью расположены в кабине и позволяют пилоту напрямую управлять выходной мощностью (дроссельная заслонка) и соотношением воздух-топливо (смесь).

    Рычаг дроссельной заслонки управляет дроссельной заслонкой, расположенной в части Вентури карбюратора.При открытии дроссельной заслонки открывается клапан, что позволяет большему количеству воздушно-топливной смеси попасть в камеры сгорания двигателя. В самолете с воздушным винтом фиксированного шага открытие дроссельной заслонки приводит к увеличению частоты вращения воздушного винта и соответствующему увеличению тяги. Если скорость гребного винта регулируется (гребной винт с постоянной скоростью), то открытие дроссельной заслонки приведет к увеличению давления в коллекторе, в то время как скорость гребного винта останется прежней.

    Закрытие дроссельной заслонки приводит к закрытию дроссельной заслонки, которая ограничивает объем воздушно-топливной смеси, которую получает двигатель.Когда дроссельная заслонка находится в полностью закрытом (холостом) положении, расход через трубку Вентури может быть настолько низким, что двигатель не может работать на холостом ходу без вмешательства. Низкий расход воздуха через трубку Вентури ограничивает падение давления в горловине, что, в свою очередь, ограничивает всасывание топлива из поплавковой камеры в выпускное сопло.

    Холостой ход

    В карбюратор встроен канал холостого хода, позволяющий двигателю работать на холостом ходу. Это канал, который обходит трубку Вентури и обеспечивает путь для потока топлива непосредственно из поплавковой камеры на сторону низкого давления дроссельной заслонки.Закрытие дроссельной заслонки создает область высокого давления на стороне Вентури клапана. Давление на стороне двигателя дроссельной заслонки ниже из-за всасывающего действия поршней. Это низкое давление всасывает топливо через байпас холостого хода в двигатель. Канал для отбираемого воздуха встроен в систему холостого хода, чтобы позволить воздуху и топливу распыляться и смешиваться перед входом во впускной коллектор двигателя.

    Когда дроссельная заслонка открыта, перепад давления в диффузорном сопле снова становится достаточно большим, чтобы всасывать топливо через главный диффузор.Это восстанавливает нормальную работу карбюратора, и топливо не проходит через систему холостого хода.

    Рисунок 6: Канал холостого хода в карбюраторе

    Mixture Control

    Соотношение топлива и воздуха, поступающего в коллектор двигателя, называется смесью и регулируется рычагом в кабине. Рычаги смесителя почти всегда окрашены в красный цвет и обычно располагаются справа от рычага дроссельной заслонки.

    Перемещение рычага подачи смеси вперед позволяет большему количеству топлива поступать в нагнетательную форсунку Вентури карбюратора, увеличивая соотношение топлива и воздуха.Это называется , обогащая смесь . Оттягивание рычага смеси назад позволяет меньшему количеству топлива поступать в трубку Вентури, уменьшая или на обедняя смесь на . Вытягивание рычага подачи смеси назад до упора (или на рычагах смесителя плунжерного типа) приводит к ситуации, когда топливо не выходит в трубку Вентури. Когда топливо не поступает в двигатель, зажигание больше невозможно, двигатель останавливается, и смесь, как говорят, находится на холостом ходу , отсечка .

    Рисунок 7: Рычаг управления смесью регулирует соотношение топливовоздушной смеси

    Системы управления смесью

    Рычаг смеси в кабине соединен с карбюратором и регулирует количество топлива, которое может пройти через дозирующий жиклер.В легких самолетах используются две системы контроля смеси карбюраторов: игольчатый контроль и контроль обратного всасывания.

    Тип иглы

    Регулировка смеси игольчатого типа состоит из игольчатого клапана, расположенного на дозирующем жиклере, который соединен с рычагом подачи смеси в кабине. По мере того как смесь обогащается (рычаг перемещается вперед), игольчатый клапан перемещается от отверстия дозирующего жиклера, позволяя большему количеству топлива проходить через сопло диффузора. И наоборот, обеднение смеси заставляет игольчатый клапан более плотно прилегать к сопловому отверстию, что уменьшает поток топлива в трубку Вентури.Если рычаг подачи смеси закрыт для отключения холостого хода (ICO), клапан полностью входит в отверстие, перекрывая подачу топлива в двигатель.

    Рисунок 8: Регулятор смеси игольчатого типа
    Регулятор обратного всасывания

    Управление обратным всасыванием - еще один широко используемый метод управления скоростью потока топлива в трубку Вентури. Управление потоком достигается путем изменения разности давлений между трубкой Вентури и поплавковой камерой с помощью регулирующего клапана и линии обратного всасывания, которая соединяет поплавковую камеру с трубкой Вентури.

    Когда рычаг смеси находится в положении полного обогащения, клапан соединяет поплавковую камеру с линией, открытой в атмосферу. Это обеспечивает максимальный перепад давления между камерой и трубкой Вентури и приводит к наибольшему потоку топлива в диффузор.

    По мере того, как регулятор смеси постепенно понижается, клапан на атмосферу закрывается, и давление в поплавковой камере падает в результате втягивания воздуха через канал между камерой и трубкой Вентури. Падение давления в камере приводит к меньшему перепаду давления между камерой и трубкой Вентури, что ограничивает расход топлива, тем самым обедняя смесь.

    Когда рычаг подачи смеси полностью переведен в положение отключения холостого хода, регулирующий клапан полностью закрывается от атмосферы и, скорее, открывается в канал отключения холостого хода, который соединяет поплавковую камеру со стороной низкого давления двигателя. . Это вызывает падение давления в камере больше, чем перепад давления в трубке Вентури, эффективно герметизируя топливо в камере и сокращая подачу в двигатель.

    Рисунок 9: Схема системы контроля смеси обратного всасывания
    Accelerating System

    Быстрое открытие дроссельной заслонки от более низкой мощности до высокой приводит к быстрому попаданию большого объема воздуха в трубку Вентури при открытии дроссельной заслонки.Система распределения топлива в карбюраторе реагирует на изменение положения дроссельной заслонки медленнее, чем воздух через впускной патрубок, в результате чего кратковременное снижение соотношения топливо-воздух падает. Это временно уменьшает смесь и может привести к медленной реакции двигателя на изменение положения дроссельной заслонки или даже к «заиканию» из-за нехватки топлива в смеси. Один из способов преодоления этого - использование небольшого поршневого насоса в карбюраторе, который впрыскивает дополнительное топливо в трубку Вентури. Это временно обогащает смесь до тех пор, пока дозирующая система не сможет ее догнать.

    Экономайзер

    Экономайзер представляет собой игольчатый клапан, который открывается при более высоких настройках мощности, позволяя дополнительному топливу обходить основную дозирующую струю и напрямую попадать в нагнетательную форсунку. Это приводит к обогащению смеси, что необходимо при высоких настройках мощности для охлаждения цилиндров и предотвращения детонации.

    Влияние высоты на настройки смеси

    Соотношения смесей указаны в терминах отношения массы топлива к массе воздуха , а не по объему.Энергия, выделяемая при воспламенении оптимальной смеси топлива и воздуха, называется теплотой сгорания топлива и обычно определяется как функция массы топлива.

    Удельная энергия топлива - это количество энергии, выделяемое топливом на единицу массы топлива. Это предполагает, что топливо идеально сгорает на воздухе, и после сгорания топлива не остается. Типичные значения удельной энергии Avgas 100LL, Jet-A и Jet-A1 показаны в таблице ниже.

    Топливо Удельная энергия (МДж / кг)
    Avgas 100LL 43.5
    Джет-А 43,0
    Джет-A1 42,8

    Указанные выше значения удельной энергии будут достигнуты только в том случае, если топливно-воздушная смесь, поступающая в камеру сгорания, такова, что после сгорания не останется несгоревшего топлива. Это произойдет при оптимальном соотношении компонентов смеси.

    Это соотношение было определено тестом и составляет примерно 1:15. То есть 1 часть топлива на 15 частей воздуха (по массе).

    Воздух становится менее плотным при повышении температуры и на больших высотах.Это напрямую влияет на массу воздуха, поступающего во впускное отверстие двигателя. Поэтому, чтобы поддерживать оптимальное соотношение смеси, пилот должен постепенно обеднять смесь по мере набора высоты и обогащать смесь по мере снижения самолета, чтобы компенсировать изменяющуюся массу воздуха, поступающего в двигатель.

    Лучшая сила

    Лучшая комбинация мощности - это просто настройка смеси, которая позволяет двигателю развивать максимальную мощность. Настройки этой смеси находятся где-то между 1:11.5 и 1:15.

    Лучший эконом-класс

    Настройка оптимальной экономичной смеси максимизирует соотношение производимой мощности и сжигаемого топлива.

    $$
    \ frac {Мощность \ Производства} {Топливо \ Потребление} = Максимум
    $$

    Это происходит при настройке смеси от 1: 15,5 до 1:18. Эти настройки смеси более бедны, чем лучшие настройки мощности (меньше топлива на массу воздуха), и поэтому не дают такой большой мощности, как более богатые лучшие настройки мощности; однако это компенсируется улучшенным расходом топлива.

    Обогащение смеси

    Оптимальной настройки смеси можно добиться по датчику температуры выхлопных газов (EGT) в кабине. Температура, при которой выхлопные газы выходят из двигателя, является хорошим показателем эффективности сгорания. Более богатые смеси производят более низкие температуры выхлопных газов, поскольку несгоревшее топливо способствует охлаждению двигателя.

    По мере того, как смесь обедняется, температура выхлопных газов повышается до максимума, прежде чем станет заметным ее падение.Пиковое значение EGT (соответствующее наиболее эффективной точке) всегда наблюдается при одном и том же соотношении топливо-воздух (настройка смеси), но будет происходить в другом положении рычага смешивания, поскольку плотность воздуха изменяется в зависимости от температуры и высоты.

    Метод установки оптимальной смеси включает обеднение смеси до тех пор, пока EGT не достигнет максимального значения, а затем небольшое обогащение для снижения температуры в соответствии с руководством по летной эксплуатации. Обратитесь к руководству по летной эксплуатации вашего самолета для получения конкретных подробностей о том, как именно обеднять смесь для достижения наилучших настроек мощности или лучших экономичных настроек.

    Загрязнение свечей зажигания

    Работа двигателя на слишком богатой смеси может привести к чрезмерному отложению нагара на запальной стороне свечей зажигания. Это нарушает нормальную работу свечи зажигания, перенаправляя высокое напряжение от наконечника, что может привести к прерывистому срабатыванию свечи зажигания или его отсутствию. Это называется засорением свечей зажигания и проявляется в грубой работе двигателя и падении напряжения на магнето, превышающем максимальное значение, указанное изготовителем во время разгона.

    Если есть подозрение на загрязнение свечей зажигания во время разгона двигателя, то одним из возможных решений является обеднение смеси для увеличения EGT и работа двигателя на высоких оборотах в течение короткого периода времени. Это приводит к выжиганию остаточного нагара со свечей, в результате чего двигатель работает более плавно. Затем можно повторить пусковое испытание, чтобы проверить улучшение падения оборотов между магнето. Обратитесь к руководству по летной эксплуатации вашего самолета для получения инструкций по конкретному самолету и продолжайте полет только в том случае, если падение магнето находится в пределах спецификации производителя.

    Обледенение карбюратора

    Одним из самых больших недостатков использования карбюратора является склонность льда к скоплению в части трубки Вентури. Любое скопление льда ограничит поток смеси к двигателю, что может привести к потере мощности двигателя и, в крайних случаях, к отказу двигателя.

    Ледяная формация

    Сужение Вентури вызывает увеличение скорости и соответствующее падение давления в горловине. Это падение давления также приводит к падению температуры в горловине в соответствии с законом идеального газа.

    $$
    PV = nRT
    $$

    Где:
    \ (P: \) Давление
    \ (V: \) Объем
    \ (n: \) Количество вещества
    \ (R: \) Постоянная идеального газа
    \ (T: \) Температура

    Обледенение при испарении топлива

    Сопло диффузора конструктивно расположено на горловине. Здесь распыленное жидкое топливо попадает в воздушный поток и мгновенно испаряется. Энергия требуется для изменения состояния топлива с жидкого на газообразное. Это ничем не отличается от того, как чайнику требуется энергия в виде нагревательного элемента для кипячения воды, и это называется скрытой теплотой испарения .Энергия, необходимая для испарения топлива, отбирается из воздуха, проходящего через горловину, что приводит к понижению температуры в горловине еще больше .

    Комбинация падения температуры в результате геометрии трубки Вентури и падения из-за скрытой теплоты, необходимой для испарения топлива, может довольно легко привести к ситуации, когда температура в горловине упадет ниже точки замерзания . В этом случае любая влага в воздухе, поступающем в трубку Вентури, может замерзнуть и прилипнуть к боковой стороне трубки Вентури.

    Этот тип обледенения называется обледенением от испарения топлива и может иметь место при температуре окружающей среды до 100 ° F (38 ° C) при правильных условиях влажности. Обледенение наиболее вероятно при температуре ниже 70 ° F (21 ° C) и относительной влажности выше 80%.

    Приведенная ниже диаграмма вероятности обледенения показывает, что обледенение карбюратора может происходить в очень широком диапазоне температур и влажности и всегда должно быть в центре внимания пилота, особенно на критических этапах полета, таких как взлет и посадка.Обледенение карбюратора можно уменьшить за счет использования подогрева карбюратора, который будет более подробно обсужден ниже.

    Рисунок 10: Диаграмма вероятности обледенения карбюратора
    Обледенение дроссельной заслонки

    Обледенение дроссельной заслонки - это еще одна форма обледенения, которая проявляется из-за конструкции карбюратора. Здесь лед образуется на задней стороне дроссельной заслонки, обычно, когда дроссельная заслонка находится в частично закрытом положении. За дроссельной заслонкой образуется область низкого давления из-за возникающего в результате воздушного потока, что приводит к резкому падению давления на клапане.Падение давления снижает температуру до точки ниже точки замерзания, и любая влага в воздухе замерзает и оседает на клапане.

    Обледенение дроссельной заслонки ограничивает прохождение воздуха к двигателю почти так же, как и обледенение от испарения, за исключением того, что для заметной потери мощности требуется лишь небольшой объем льда. Это связано с и без того относительно ограниченным проходом, который диктуется низкой настройкой дроссельной заслонки.

    Рисунок 11: Обледенение карбюратора может происходить в горловине или на дроссельной заслонке
    Ударное обледенение

    Это третий тип обледенения, которое может возникнуть на карбюраторе или вокруг него.В холодные дни, когда температура поверхности опускается ниже нуля, на металлических деталях может накапливаться ударный лед. Обычно ударный лед проявляется при полете по снегу, мокрому снегу или ледяному дождю; в тех же условиях, когда высок риск обледенения конструкции планера.

    Выявление и профилактика

    Обледенение карбюратора ограничивает выходную мощность двигателя и, таким образом, проявляется в виде потери об / мин в воздушном судне с винтом фиксированного шага и потери давления в коллекторе для самолета с винтом постоянной скорости.Неровная работа двигателя является еще одним явным признаком того, что обледенение может быть проблемой.

    Нагрев карбюратора

    Обледенение карбюратора предотвращается или удаляется за счет использования тепла карбюратора . Это система защиты от обледенения, которая направляет горячий воздух в трубку Вентури, чтобы температура карбюратора не замерзла. Его можно использовать для таяния льда, который уже накопился, но лучше всего использовать его заранее, как профилактическую меру.

    Нагрев карбюратора передается через рычаг в кабине.При активации горячий воздух, поступающий в трубку Вентури, будет иметь более низкую плотность, чем окружающий воздух. Поэтому первоначальное применение приведет к падению оборотов двигателя (или падению давления в коллекторе) и обогащению смеси из-за введения менее плотного воздуха. Если он используется для удаления льда, который уже образовался, нагрев карбюратора сначала приведет к падению оборотов двигателя, прежде чем он снова начнет расти, поскольку лед тает и нормальная работа карбюратора восстанавливается.Во время нанесения смеси может потребоваться обеднение, чтобы восстановить полную мощность.

    Атмосферные условия должны контролироваться на протяжении всего полета, и при подозрении на обледенение необходимо использовать полный обогрев карбюратора. Тепло следует оставлять включенным даже после того, как лед растает, и выключать его только тогда, когда пилот уверен, что окружающая среда больше не способствует обледенению. Нагрев карбюратора следует использовать только в полностью включенном положении, а не при частичных настройках, поскольку это может привести к переходу температуры карбюратора в диапазон температур обледенения.Некоторые самолеты оснащены датчиком температуры карбюратора, который может быть полезен для предотвращения и диагностики обледенения карбюратора.

    На этом мы подошли к концу этого руководства по карбюратору. Благодарим вас за чтение и не забудьте поделиться этим ресурсом со своими друзьями, коллегами или однокурсниками-пилотами, если вы сочли его полезным.

    Вам понравился этот пост? Почему бы не продолжить чтение этой серии статей о поршневых двигателях самолетов и их системах?

    Как работают карбюраторы мотоциклов?

    1) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

    2) Для получения информации о результатах программы и другой информации посетите сайт www.uti.edu/disclosures.

    3) Приблизительно 8000 из 8400 выпускников UTI в 2019 году были готовы к трудоустройству. На момент составления отчета приблизительно 6700 человек были трудоустроены в течение одного года после даты выпуска, что составляет в общей сложности 84%. В эту ставку не включены выпускники, недоступные для работы по причине продолжения образования, военной службы, здоровья, заключения, смерти или статуса иностранного студента.В ставку включены выпускники, прошедшие специализированные программы повышения квалификации и занятые на должностях. которые были получены до или во время обучения по ИМП, где основные должностные обязанности после окончания учебы соответствуют образовательным и учебным целям программы. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

    5) Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь, в качестве специалистов по автомобилям, дизельным двигателям, ремонту после столкновений, мотоциклам и морским техникам.Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от в качестве технического специалиста, например: специалист по запчастям, специалист по обслуживанию, изготовитель, лакокрасочный отдел и владелец / оператор магазина. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

    6) Достижения выпускников ИТИ могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату.ИМП образовательное учреждение и не может гарантировать работу или заработную плату.

    7) Для завершения некоторых программ может потребоваться более одного года.

    10) Финансовая помощь и стипендии доступны тем, кто соответствует требованиям. Награды различаются в зависимости от конкретных условий, критериев и состояния.

    11) См. Подробные сведения о программе для получения информации о требованиях и условиях, которые могут применяться.

    12) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2016-2026), www.bls.gov, просмотрено 24 октября 2017 г. Прогнозируемое количество годовых Вакансии по классификации должностей: Автомеханики и механики - 75 900; Специалисты по механике автобусов и грузовиков и по дизельным двигателям - 28 300 человек; Ремонтники кузовов и связанных с ними автомобилей, 17 200. Вакансии включают вакансии в связи с ростом и чистые замены.

    14) Программы поощрения и соответствие критериям для сотрудников остаются на усмотрении работодателя и доступны в определенных местах. Могут применяться особые условия.Поговорите с потенциальными работодателями, чтобы узнать больше о программах, доступных в вашем районе.

    15) Оплачиваемые производителем программы повышения квалификации проводятся UTI от имени производителей, которые определяют критерии и условия приемки. Эти программы не являются частью аккредитации UTI. Программы доступны в некоторых регионах.

    16) Не все программы аккредитованы ASE Education Foundation.

    20) Льготы VA могут быть доступны не на всех территориях кампуса.

    21) GI Bill® является зарегистрированным товарным знаком U.S. Департамент по делам ветеранов (VA). Более подробная информация о льготах на образование, предлагаемых VA, доступна на официальном веб-сайте правительства США.

    22) Грант «Приветствие за служение» доступен всем ветеранам, имеющим право на участие, во всех местах на территории кампуса. Программа «Желтая лента» одобрена в наших кампусах в Эйвондейле, Далласе / Форт-Уэрте, Лонг-Бич, Орландо, Ранчо Кукамонга и Сакраменто.

    24) Технический институт NASCAR готовит выпускников к работе в качестве технических специалистов по обслуживанию автомобилей начального уровня.Выпускники, которые выбирают специальные дисциплины NASCAR, также могут иметь возможности трудоустройства в отраслях, связанных с гонками. Из тех выпускников 2019 года, которые взяли факультативы, примерно 20% нашли возможности, связанные с гонками. Общий уровень занятости в NASCAR Tech в 2019 году составил 84%.

    25) Расчетная годовая средняя заработная плата для специалистов по обслуживанию автомобилей и механиков в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве автомобильных техников.Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, смог. инспектор и менеджер по запасным частям. Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве техников автомобильного сервиса и механиков в штате Массачусетс (49-3023) составляет от 29 050 до 45 980 долларов (данные по Массачусетсу, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: The U.S. Согласно оценке Министерства труда США, средняя почасовая оплата в размере 50% квалифицированных автомобильных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 19,52 доллара США. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,84 и 10,60 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. и Механика, просмотр 14 сентября 2020 года.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

    26) Расчетная годовая средняя заработная плата сварщиков, резчиков, паяльщиков и паяльщиков в Бюро трудовой статистики США по вопросам занятости и заработной платы, май 2019. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников-сварщиков. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например, сертифицированный инспектор и контроль качества.Информация о заработной плате в штате Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих сварщиками, резчиками, паяльщиками и брейзерами в штате Массачусетс (51-4121), составляет от 33 490 до 48 630 долларов. (Массачусетс: трудовые ресурсы и развитие рабочей силы, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в среднем 50% для квалифицированных сварщиков в Северной Каролине, опубликованную в мае 2019 года, и составляет 19 долларов.77. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-е и 10-й процентиль почасовой оплаты труда в Северной Каролине составляют 16,59 и 14,03 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. 14, 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

    27) Не включает время, необходимое для прохождения 18-недельной квалификационной программы предварительных требований плюс дополнительные 12 или 24 недели обучения, зависящего от производителя, в зависимости от производителя.

    28) Расчетная годовая средняя заработная плата специалистов по ремонту кузовов автомобилей и связанных с ними ремонтов в Бюро трудовой статистики США по вопросам занятости и заработной платы, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по ремонту после столкновений. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например оценщик, оценщик. и инспектор. Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве ремонтников автомобилей и связанных с ними (49-3021), в Содружестве Массачусетс составляет от 31 360 до 34 590 долларов. (Массачусетс: трудовые ресурсы и развитие рабочей силы, данные за май 2018 г., просмотр за 10 сентября 2020 г.).Зарплата в Северной Каролине информация: Департамент труда США оценивает почасовую заработную плату в размере 50% для квалифицированных специалистов по борьбе с авариями в Северной Каролине, опубликованную в мае 2019 года, и составляет 21,76 доллара США. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако, 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 16,31 и 12,63 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2018 г. 14 сентября 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

    29) Расчетная годовая средняя заработная плата механиков автобусов и грузовиков и специалистов по дизельным двигателям в разделе «Занятость и заработная плата» Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по дизельным двигателям . Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от дизельных. техник по грузовикам, например техник по обслуживанию, техник по локомотиву и техник по морскому дизелю.Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков автобусов и грузовиков. и специалистов по дизельным двигателям (49-3031) в штате Массачусетс составляет от 29 730 до 47 690 долларов США (Массачусетс, штат Массачусетс, данные за май 2018 г., просмотрено 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: согласно оценке Министерства труда США, средняя почасовая оплата квалифицированных дизельных техников в Северной Каролине составляет около 50%, опубликованная в мае 2019 года, и составляет 22 доллара.04. Бюро статистики труда. не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 18,05 и 15,42 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2018. Механики автобусов и грузовиков и специалисты по дизельным двигателям, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.

    30) Расчетная средняя годовая зарплата механиков мотоциклистов в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников мотоциклов. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, оборудование. обслуживание и запчасти. Информация о заработной плате для Содружества Массачусетс: Средняя годовая заработная плата начального уровня для лиц, занятых в качестве механиков мотоциклов (49-3052) в Содружестве Массачусетса, составляет 28 700 долларов США (данные по развитию трудовых ресурсов штата Массачусетс, май 2018 г., просмотр на 10 сентября 2020 г.) .Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата составляет 50% в среднем для Стоимость квалифицированных специалистов по мотоциклам в Северной Каролине, опубликованная в мае 2019 года, составляет 16,92 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,18 и 10,69 долларов. соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г., Motorcycle Mechanics, просмотр 14 сентября 2020 г.)) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.

    31) Расчетная годовая средняя заработная плата механиков моторных лодок и техников по обслуживанию в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве морских техников. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических специалистов, например, в сфере обслуживания оборудования, инспектор и помощник по запчастям.Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков моторных лодок и техников по обслуживанию (49-3051) в Содружестве Массачусетса. составляет от 31 280 до 43 390 долларов (данные по Массачусетсу, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированного морского техника в Северной Каролине, опубликованная в мае 2019 года, составляет 18 долларов.56. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 14,92 доллара и 10,82 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Специалисты по обслуживанию, просмотр 2 сентября 2020 г.) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.

    34) Расчетная годовая средняя заработная плата операторов компьютерных инструментов с числовым программным управлением в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве технических специалистов по механической обработке с ЧПУ. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, оператор ЧПУ, подмастерье. слесарь-механик и инспектор обработанных деталей. Информация о заработной плате для штата Массачусетс: средняя годовая заработная плата начального уровня для лиц, работающих в качестве операторов станков с компьютерным управлением, металла и пластика (51-4011) в Содружестве штата Массачусетс составляет 36 740 долларов (данные за май 2018 г., данные за май 2018 г., данные за 10 сентября, штат Массачусетс, 2020).Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных станков с ЧПУ в Северной Каролине, опубликованная в мае 2019 года, составляет 18,52 доллара. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 15,39 и 13,30 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Операторы инструмента, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

    37) Курсы Power & Performance не предлагаются в Техническом институте NASCAR. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Информацию о результатах программы и другую информацию можно найти на сайте www.uti.edu/disclosures.

    38) Бюро статистики труда США прогнозирует, что к 2029 году общая занятость в каждой из следующих профессий составит: Техники и механики автомобильного сервиса - 728 800; Сварщики, резаки, паяльщики и паяльщики - 452 500 человек; Автобусы и грузовики и специалисты по дизельным двигателям - 290 800 человек; Ремонтники кузовов автомобилей и сопутствующие товары - 159 900; и операторы инструментов с ЧПУ, 141 700.См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 г. и прогноз на 2029 г. Бюро статистики труда США, www.bls.gov, дата просмотра - 3 июня 2021 г.

    39) Переподготовка доступна для выпускников только в том случае, если курс еще доступен и есть места. Студенты несут ответственность за любые другие расходы, такие как оплата лабораторных работ, связанных с курсом.

    41) Для специалистов по обслуживанию автомобилей и механиков Бюро статистики труда США прогнозирует в среднем 61 700 вакансий в год в период с 2019 по 2029 год.Вакансии включают вакансии, связанные с ростом и чистым замещением. См. Таблицу 1.10 Разделения и вакансии по профессиям, прогноз на 2019-29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра - 3 июня 2021 г.

    42) Для сварщиков, резчиков, паяльщиков и паяльщиков, Бюро труда США По статистике, в период с 2019 по 2029 год в среднем будет открываться 43 400 вакансий в год. В число вакансий входят вакансии, связанные с ростом и чистым замещением. См. Таблицу 1.10 Разделение профессий и вакансии, прогнозируемые на 2019-29 гг., U.S. Bureau of Labor Statistics, www.bls.gov, дата просмотра - 3 июня 2021 г.

    43) Для специалистов по механике автобусов и грузовиков и специалистов по дизельным двигателям Бюро статистики труда США прогнозирует в среднем 24 500 вакансий в год в период с 2019 по 2029. Вакансии включают вакансии в связи с ростом и чистым замещением. См. Таблицу 1.10 Разделения и вакансии по профессиям, прогнозируемые на 2019-29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра 3 июня 2021 года.

    44) Для кузовных и связанных с ними ремонтников U.По прогнозам Бюро статистики труда, в период с 2019 по 2029 год в среднем будет открываться 13 600 рабочих мест в год. В число вакансий входят вакансии, связанные с ростом и чистым замещением. См. Таблицу 1.10 Разделение и вакансии по профессиям, прогноз на 2019-29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра 3 июня 2021 г.

    45) Для операторов компьютерных инструментов с числовым программным управлением Бюро статистики труда США прогнозирует в среднем 11 800 вакансий в период с 2019 по 2029 год. Вакансии включают вакансии, связанные с ростом и чистым замещением.См. Таблицу 1.10 Профильные увольнения и вакансии, прогнозируемые на 2019-29 годы, Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 года.

    46) Студенты должны иметь средний балл не ниже 3,5 и посещаемость 95%.

    47) Бюро статистики труда США прогнозирует, что к 2029 году общая численность специалистов по обслуживанию автомобилей и механиков составит 728 800 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 г. и прогноз на 2029 г. Бюро статистики труда США, www.bls.gov, дата просмотра - 3 июня 2021 г.

    48) Бюро статистики труда США прогнозирует, что к 2029 году общая занятость механиков автобусов и грузовиков и специалистов по дизельным двигателям составит 290 800 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 г. и прогноз на 2029 г. Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 г.

    49) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено в сентябре 8, 2020. Планируемое общее количество ремонтов кузовов и связанных с ними автомобилей к 2029 году составит 159 900 человек.

    50) Бюро статистики труда США прогнозирует, что общая занятость сварщиков, резчиков, паяльщиков и паяльщиков к 2029 году составит 452 500 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 г. и прогноз на 2029 г. Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 г.

    51) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено в сентябре 8, 2020. Планируемое общее количество операторов инструмента с ЧПУ к 2029 году составит 141 700 человек.

    Универсальный технический институт штата Иллинойс, Inc. одобрен Отделом частного бизнеса и профессиональных школ Совета по высшему образованию штата Иллинойс.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *