Калькулятор онлайн цилиндра: Калькулятор для расчета объема цилиндра

Содержание

Калькулятор расчета жидкости в бочке, цистерне, цилиндре

Инструкция для калькулятора расчета физических показателей круглой емкости

При помощи онлайн калькулятора Вы сможете правильно рассчитать объем емкости типа: цилиндра, бочки, цистерны или объем жидкости в любой другой горизонтальной цилиндрической емкости.

Определим количество жидкости в неполном баке цилиндрической формы

Все параметры указываем в миллиметрах

L — Высота бочки.

H — Уровень жидкости.

D — Диаметр бака.

Наша программа в онлайн режиме выполнит расчет количества жидкости в емкости, определит площадь поверхностей, свободную и общую кубатуру.

Как посчитать объем бочки

Для тог, чтобы правильно рассчитать вместительность резервуара для определения количества жидкости и полезной кубатуры цилиндрической емкости, необходимо определить основные параметры бака. В нашем случае это горизонтальная цистерна.

Определение главных параметров кубатуры резервуаров (к примеру, обычная бочка или цистерна) должен производиться, основываясь на геометрическом методе расчета вместительности цилиндров. В отличие от способов калибровки емкости, где подсчет объема выполняют в виде реальных измерений количества жидкости путем мерной линейки (согласно показаниям метрштока).

V=S*L – формула расчета объема бака цилиндрической формы, где:

L — длина тела.

S — площадь поперечного сечения резервуара.

Согласно полученным результатам создают калибровочные таблицы емкости, которые еще называются тарировочными, позволяют определить вес жидкости в баке по удельному весу и объему. Эти параметры будут зависеть от уровня наполнения цистерны, который можно измерять при помощи метрштока.

Наш онлайн калькулятор предоставляет возможность выполнить расчет вместительности горизонтальных и вертикальных емкостей по геометрической формуле. Вы сможете узнать полезную вместительность резервуара более точно, если при этом правильно определите все главные параметры, которые указаны выше и участвуют в расчете.

Как правильно определить основные данные

Определяем длину

L

При помощи обычной рулетки, Вы сможете измерить длину L цилиндрического резервуара с неплоским дном. Для этого Вам необходимо замерить расстояние между пересекающими линиями днища с цилиндрическим телом емкости. В случае, когда горизонтальный бак с плоским дном, то для того, чтобы определить размер L, достаточно измерить длину резервуара по наружной стороне (от одного края бака до другого), и от полученного результата вычесть толщину дна.

Определяем диаметр D

Проще всего определить диаметр D бочки цилиндрической формы. Для этого достаточно при помощи рулетки замерять расстояние между двумя любыми крайними точками крышки или края.

Если трудно правильно выполнить расчет диаметра емкости, то в этом случае можно использовать измерение длины окружности. Для этого при помощи обычной рулетки обхватываем по окружности весь резервуар. Для правильно расчета окружности делают два измерения в каждом сечении резервуара. Для этого поверхность, измеряемая должна быть чистой. Узнав усредненную длину окружности нашей емкости – Lокр, переходим к определению диаметра по следующей формуле:

d=Lокр/3,14

Этот метод наиболее простой, так как зачастую измерение диаметра бака сопровождается рядом затруднений, связанных с нагромождением на поверхности различного вида оборудования.

Важно! Измерения диаметра правильней всего выполнить в трех разных сечениях емкости, и после этого выполнить подсчет среднего значения. Так как зачастую, эти данные могут существенно отличаться.

Усредненные значения после трех замеров позволяют минимизировать погрешность расчета объема резервуара цилиндрической формы. Как правило, используемые накопительные баки во время эксплуатации подвергаются деформации, могут терять прочность, уменьшаться в размерах, что ведет к уменьшению количества жидкости внутри.

Определяем уровень H

Чтобы определить уровень жидкости, в нашем случае это H, нам понадобиться метршток. При помощи этого измерительного элемента, который опускают на дно емкости, мы сможем точно определить параметр H. Но эти расчеты будут верны для резервуаров с плоским дном.

В результате подсчета онлайн калькулятора мы получаем:

  • Свободный объем в литрах;
  • Количество жидкости в литрах;
  • Объем жидкости в литрах;
  • Общую площадь резервуара в м²;
  • Площадь дна в м²;
  • Площадь боковой поверхности в м².

Расчет объёма цилиндра - онлайн калькулятор. Как посчитать объем цилиндра

Объем цилиндра

Объем цилиндра равен произведению площади его основания на высоту.

Формулы объема цилиндра:

V = π R2h

V = So h

где V – объем цилиндра,
So – площадь основания цилиндра,
R – радиус цилиндра,
h – высота цилиндра,
π = 3.2} — это формула площади круга, а в нашем случае — площадь основания. Поэтому формулу объема цилиндра можно записать через площадь основания и высоту:

Зная радиус r и высоту h

Чему равен объем цилиндра если его радиус r = ,а высота h = ?
Ответ: V =

0

Чему равен объем цилиндра V если известны его радиус r и высота h?

Формула

V = π⋅r2⋅h

Пример

Если цилиндр имеет высоту h = 8 см, а его радиус r = 2 см, то:

V = 3.14156 ⋅ 22 ⋅ 8 = 3.14156 ⋅ 32 = 100.53 см

3

Зная диаметр d и высоту h

Чему равен объем цилиндра если его диаметр d = ,а высота h = ?
Ответ: V =

0

Чему равен объем цилиндра V если известны его диаметр d и высота h?

Формула

V = π⋅(d/2)2⋅h

Пример

Если цилиндр имеет высоту h = 5 см, а его диаметр d = 1 см, то:

V = 3.14156 ⋅ (1/2)2 ⋅ 5 = 3.14156 ⋅ 1.25 ≈ 3.927 см3

Формула вычисления объема цилиндра

1. Через площадь основания и высоту

Объем (V) цилиндра равняется произведению его высоты и площади основания.

V = S ⋅ H

2. Через радиус основания и высоту

Как мы знаем, в качестве оснований цилиндра (равны между собой) выступает круг, площадь которого вычисляется так: S = π ⋅ R2. Следовательно, формулу для вычисления объема цилиндра можно представить в виде:

V = π ⋅ R2 ⋅ H

Примечание: в расчетах значение числа

π округляется до 3,14.

3. Через диаметр основания и высоту

Как нам известно, диаметр круга равняется двум его радиусам: d = 2R. А значит, вычислить объем цилиндра можно следующим образом:

V = π ⋅ (d/2)2 ⋅ H

Введите радиус основания и высоту цилиндра

Примеры задач

Задание 1
Найдите объем цилиндра, если дана площадь его основания – 78,5 см2, а также, высота – 10 см.

Решение:
Применим первую формулу, подставив в нее известные значения:
V = 78,5 см2 ⋅ 10 см = 785 см3.

Задание 2
Высота цилиндра равна 6 см, а его диаметр – 8 см. Найдите объем фигуры.

Решение:
Воспользовавшись третьей формулой, в которой участвует диаметр, получаем:
V = 3,14 ⋅ (8/2 см)2 ⋅ 6 см = 301,44 см3.

Поэтапный расчет объема картонной коробки

Для расчета нужно:

Радиус:
Высота:

Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.

Формула объема цилиндра:

, где R – радиус оснований, h – высота цилиндра

Тип: Профиль: Толщина (мм):
Трехслойный гофрокартон B 3
Трехслойный гофрокартон C 3,7
Трехслойный гофрокартон E 1,6
Пятислойный гофрокартон BC 7
Пятислойный гофрокартон BE 4