Схемы самодельных зарядных устройств для автомобильного аккумулятора
Для того чтобы автомобиль завёлся, ему необходима энергия. Такая энергия берётся из аккумулятора. Как правило, его подзарядка происходит от генератора во время работы двигателя. Когда автомобиль долго не используется или батарея неисправна, она разряжается до такого состояния, что машина уже не может завестись. В этом случае требуется внешняя зарядка. Такое устройство можно купить или собрать самостоятельно, но для этого понадобится схема зарядного устройства.
Принцип работы автомобильного аккумулятора
Автомобильный аккумулятор подаёт питание на различные приборы в автомобиле при выключенном двигателе и предназначен для его запуска. По виду типу исполнения применяется свинцово-кислотная батарея. Конструктивно она собирается из шести элементов питания с номинальным значением напряжения 2,2 вольта, соединённых между собой последовательно. Каждый элемент представляет собой набор решетчатых пластин из свинца. Пластины покрываются активным материалом и погружаются в электролит.
Раствор электролита включает в свой состав дистиллированную воду и серную кислоту. От плотности электролита зависит морозостойкость батареи. В последнее время появились технологии, позволяющие адсорбировать электролит в стеклянном волокне или сгущать его с использованием силикагеля до гелеобразного состояния.
Каждая пластина имеет отрицательный и положительный полюс, а изолируются они между собой использованием пластмассового сепаратора. Корпус изделия выполняется из пропилена, не разрушающегося под действием кислоты и служащий диэлектриком. Положительный полюс электрода покрывается диоксидом свинца, а отрицательный губчатым свинцом. В последнее время стали выпускаться аккумуляторные батареи с электродами из свинцово-кальциевого сплава. Такие аккумуляторы полностью герметичные и не требуют обслуживания.
При подключении к аккумулятору нагрузки активный материал на пластинах вступает в химическую реакцию с раствором электролита, и возникает электрический ток. Электролит со временем истощается из-за осаждения сульфата свинца на пластинках. Аккумуляторная батарея (АКБ) начинает терять заряд. В процессе зарядки химическая реакция происходит в обратном порядке, сульфат свинца и вода преобразуются, повышается плотность электролита и восстанавливается величина заряда.
Аккумуляторы характеризуются значением саморазряда. Он возникает в АКБ при его бездействии. Основной причиной служит загрязнения поверхности батареи и плохого качества дистиллятора. Скорость саморазряда ускоряется при разрушении свинцовых пластин.
Виды зарядных устройств
Разработано большое количество схем автомобильных зарядных устройств, использующих разные элементные базы и принципиальный подход. По принципу действия приборы заряда разделяются на две группы:
- Пуско-зарядные, предназначенные для запуска двигателя при нерабочем аккумуляторе. Кратковременно подавая на клеммы аккумулятора ток большой величины, происходит включение стартера и запуск двигателя, а в дальнейшем заряд батареи происходит от генератора автомобиля. Они выпускаются только на определённое значение тока или с возможностью выставления его величины.
- Предпусковые зарядные, к клеммам аккумуляторной батареи подключаются выводы с устройства и подаётся ток длительное время. Его значение не превышает десяти ампер, в течение этого времени происходит восстановление энергии батареи. В свою очередь, они разделяются: на постепенные (время зарядки от 14 до 24 часов), ускоренные (до трёх часов) и кондиционирующие (около часа).
По своей схемотехники выделяются импульсные и трансформаторные устройства. Первого вида используют в работе высокочастотный преобразователь сигнала, характеризуются малыми размерами и весом. Второго вида в качестве основы используют трансформатор с выпрямительным блоком, просты в изготовлении, но обладают большим весом и низким коэффициентом полезного действия (КПД).
Выполнено зарядное устройство для автомобильных аккумуляторов своими руками или приобретено в торговой точке, требования, предъявляемые к нему одинаковы, а именно:
- стабильность выходного напряжения;
- высокое значение КПД;
- защита от короткого замыкания;
- индикатор контроля заряда.
Одной из главных характеристик прибора заряда является величина тока, которым заряжается батарея. Правильно зарядить аккумулятор и продлить его рабочие характеристики получится только при подборе нужного его значения. При этом важна и скорость заряда. Чем больше ток, тем выше и скорость, но высокое значение скорости приводит к быстрой деградации аккумулятора. Считается, что правильным значением тока будет величина равная десяти процентам от ёмкости батарейки. Ёмкость определяется как величина тока, отдаваемая АКБ за единицу времени, измеряется она в ампер-часах.
Самодельный зарядный прибор
Приспособление для заряда должно быть у каждого автолюбителя, поэтому если нет возможности или желания приобрести готовый прибор, ничего не останется, как сделать зарядку для аккумулятора самостоятельно. Несложно изготовить своими руками как простейшее, так и многофункциональное устройство. Для этого понадобится схема и набор радиоэлементов. Существует также возможность переделать источник бесперебойного питания (ИБП) или компьютерный блок (АТ) в прибор для подзарядки АКБ.
Трансформаторное зарядное устройство
Такое устройство самое простое в сборке и не содержит дефицитных деталей. Схема состоит из трёх узлов:
- трансформатор;
- выпрямительный блок;
- регулятор.
Напряжение из промышленной сети поступает на первичную обмотку трансформатора. Сам трансформатор может использоваться любого вида. Состоит он из двух частей: сердечника и обмоток. Сердечник собирается из стали или феррита, обмотки — из проводникового материала.
Принцип работы трансформатора основан на появлении переменного магнитного поля при прохождении тока по первичной обмотке и передачи его на вторичную. Для получения на выходе требуемого уровня напряжения количество витков во вторичной обмотке делается меньше, по сравнению с первичной. Уровень напряжения на вторичной обмотке трансформатора выбирается равным 19 вольт, а его мощность должна обеспечивать троекратный запас по току заряда.
С трансформатора пониженное напряжение проходит через выпрямительный мост и поступает на реостат, подключённый последовательно к аккумулятору. Реостат предназначен для регулирования величины напряжения и тока, путём изменения сопротивления. Сопротивление реостата не превышает 10 Ом. Величина тока контролируется включённым последовательно перед аккумулятором амперметром. Такой схемой не получится заряжать АКБ с ёмкостью более 50 Ач, так как реостат начинает перегреваться.
Упростить схему можно, убрав реостат, а на входе перед трансформатором установить набор конденсаторов, использующихся как реактивные сопротивления для уменьшения напряжение сети. Чем меньше номинальное значение ёмкости, тем меньше напряжение поступает на первичную обмотку в сети.
Особенность такой схемы в необходимости обеспечения уровня сигнала на вторичной обмотке трансформатора в полтора раза большее, чем рабочее напряжение нагрузки. Такую схему можно использовать и без трансформатора, но это очень опасно. Без гальванической развязки можно получить поражение электрическим током.
Импульсное устройство подзаряда
Достоинство импульсных устройств в высоком КПД и компактных размерах. В основе прибора лежит микросхема с широтно-импульсной модуляцией (ШИМ). Собрать мощное импульсное зарядное устройство своими руками можно по следующей схеме.
В качестве ШИМ контроллера используется драйвер IR2153. После выпрямительных диодов параллельно АКБ ставится полярный конденсатор С1 с ёмкостью в пределах 47−470 мкФ и напряжением не менее 350 вольт. Конденсатор убирает всплески сетевого напряжения и шумы линии. Диодный мост используется с номинальным током более четырёх ампер и с обратным напряжением не менее 400 вольт. Драйвер управляет мощными N-канальными полевыми транзисторами IRFI840GLC, установленными на радиаторах. Ток такой зарядки будет равен до 50 ампер, а выходная мощность до 600 Ватт.
Изготовить импульсное зарядное устройство для автомобиля своими руками можно, используя переделанный компьютерный источник питания формата АТ. В качестве ШИМ контроллера в них используется распространённая микросхема TL494. Сама переделка заключается в увеличении выходного сигнала до 14 вольт. Для этого понадобится правильно установить подстроечный резистор.
Резистор, который соединяется первую ногу TL494 со стабилизированной шиной + 5 В, удаляется, а вместо второго, связанного с 12 вольтовой шиной, впаивается переменный резистор с номиналом 68 кОм. Этим резистором и устанавливается требуемый уровень выходного напряжения. Включение блока питания осуществляется через механический выключатель, согласно указанной на корпусе блока питания схеме.
Устройство на микросхеме LM317
Довольно простая, но стабильно работающая схема зарядки легко выполняется на интегральной микросхеме LM317. Микросхема обеспечивает установку уровня сигнала 13,6 вольт при максимальной силе тока 3 ампера. Стабилизатор LM317 снабжён встроенной защитой от короткого замыкания.
Напряжение на схему прибора подаётся через клеммы от независимого блока питания постоянного напряжения 13−20 вольт. Ток, проходя через индикаторный светодиод HL1 и транзистор VT1, поступает на стабилизатор LM317. С его выхода непосредственно на АКБ через X3, X4. Делителем, собранным на R3 и R4, устанавливается необходимое значение напряжения для открывания VT1. Переменным резистором R4 задаётся ограничение тока подзарядки, а R5 уровень выходного сигнала. Выходное напряжение устанавливается от 13,6 до 14 вольт.
Схему можно максимально упростить, но её надёжность уменьшится.
В ней резистором R2 подбирают ток. В качестве резистора используется мощный проволочный элемент из нихрома. Когда АКБ разряжен, ток заряда максимальный, светодиод VD2 горит ярко, по мере заряда ток начинает спадать и светодиод тускнеет.
Зарядное из источника бесперебойного питания
Сконструировать зарядник можно из обычного бесперебойника даже с неисправностью узла электроники. Для этого удаляется из блока вся электроника, кроме трансформатора. К высоковольтной обмотке трансформатора на 220 В добавляется схема выпрямителя, стабилизации тока и ограничения напряжения.
Выпрямитель собирается на любых мощных диодах, например, отечественных Д-242 и сетевом конденсаторе 2200 мкФ на 35−50 вольт. На выходе получится сигнал с напряжением 18−19 вольт. В качестве стабилизатора напряжения используется микросхема LT1083 или LM317 с обязательной установкой на радиатор.
Подключив аккумуляторную батарею, выставляется напряжение, равное 14,2 вольта. Контролировать уровень сигнала удобно с помощью вольтметра и амперметра. Вольтметр подключается параллельно клеммам батареи, а амперметр последовательно. По мере заряда АКБ его сопротивление будет возрастать, а ток падать. Ещё проще выполнить регулятор с помощью симистора, подключённого к первичной обмотке трансформатора наподобие диммера.
При самостоятельном изготовлении устройства следует помнить про электробезопасность при работе с сетью переменного тока 220 В. Как правило, верно выполненный прибор зарядки из исправных деталей начинает работать сразу, требуется лишь только выставить тока заряда.
Электрическая схема зарядного устройства
Неуклонная тенденция развития портативной электроники практически ежедневно заставляет рядового пользователя сталкиваться с зарядкой аккумуляторов своих мобильных устройств. Будь вы владельцем мобильного телефона, планшета, ноутбука или даже автомобиля, так или иначе вам неоднократно придётся столкнуться с зарядкой аккумуляторов этих устройств. На сегодняшний день рынок выбора зарядных устройств настолько обширен и велик, что в этом многообразии довольно тяжело сделать грамотный и правильный выбор зарядного устройства, подходящего к типу используемого аккумулятора. К тому же, сегодня существуют более 20-и типов аккумуляторов с различным химическим составом и основой. Каждый из них имеет свою специфику работы заряда и разряда. В силу экономической выгоды современное производство в этой сфере сейчас сконцентрировано преимущественно на выпуске свинцово-кислотных (гелевых) (Pb), никель – металл — гидридных (NiMH), никель – кадмиевых (NiCd) аккумуляторов и аккумуляторов на основе лития – литий-ионных (Li-ion) и литий-полимерных (Li-polymer). Последние из указанных, кстати, активно используются в питании портативных мобильных устройств. Главным образом литиевые аккумуляторы заслужили популярность за счёт применения относительно недорогих химических компонентов, большого количества циклов перезаряда (до 1000), высокой удельной энергии, низкой степени саморазряда, а так же способности удерживать ёмкость при отрицательных значениях температуры.
Электрическая схема зарядного устройства литиевых аккумуляторов, применяемых в мобильных гаджетах сводится к обеспечению их в процессе заряда постоянным напряжением, превышающим на 10 – 15 % номинальное. К примеру, если для питания мобильного телефона используется литий-ионная батарея на 3,7 В., то для её заряда необходим стабилизированный источник питания достаточной мощности для поддержания напряжения заряда не выше 4,2В – 5В. Именно поэтому большинство портативных зарядных устройств, идущих в комплекте с устройством, выпускают на номинальное напряжение 5В, обусловленное максимальным напряжением питания процессора и заряда батареи с учётом встроенного стабилизатора.
Конечно, не стоит забывать и о контроллере заряда, который берёт на себя основной алгоритм заряда батареи, а так же опрос её состояния. Современные литиевые аккумуляторы, выпускаемые для мобильных устройств с малыми токами потребления, уже идут со встроенным контроллером. Контроллер выполняет функцию ограничения тока заряда в зависимости от текущей ёмкости аккумулятора, отключает подачу напряжения устройству в случае критического разряда батареи, защищает батарею в случае короткого замыкания нагрузки (литиевые батареи очень чувствительны к большому току нагрузки и имеют свойство сильно нагреваться и даже взрываться). С целью унификации и взаимозаменяемости литий-ионных аккумуляторов ещё в 1997 году компании Duracell и Intel разработали управляющую шину опроса состояния контроллера, его работы и заряда с названием SMBus. Под эту шину были написаны драйвера и протоколы. Современные контроллеры и сейчас используют основы алгоритма заряда, прописанные этим протоколом. В плане технической реализации существует множество микросхем, способных реализовать контроль заряда литиевых аккумуляторов. Среди них выделяется серия MCP738xx, MAX1555 от MAXIM, STBC08 или STC4054 с уже встроенным защитным n-канальным MOSFET транзистором, резистором определения тока заряда и диапазоном напряжения питания контроллера от 4,25 до 6,5 Вольт. При этом у последних микросхем от STMicroelectronics значение напряжения заряда аккумулятора 4,2 В. имеет разброс всего +/- 1%, а зарядный ток может достигать 800 мА, что позволит реализовать зарядку аккумуляторов ёмкостью до 5000 мА/ч.
Рассматривая алгоритм заряда литий-ионных аккумуляторов стоит сказать, что это один из немногих типов, предусматривающих паспортную возможность зарядки током до 1С (100% ёмкости аккумулятора). Таким образом, аккумулятор ёмкостью в 3000 ма/ч может заряжаться током до 3А. Однако, частая зарядка большим «ударным» током хоть и существенно сократит её время, но в то же время довольно быстро снизит ёмкость аккумулятора и приведёт его в негодность. Из опыта проектирования электрических схем зарядных устройств скажем, что оптимальным значением зарядки литий-инного (полимерного) аккумулятора является значение 0,4С – 0,5С от его ёмкости.
Значение тока в 1С допускается лишь в момент начального заряда батареи, когда ёмкость аккумулятора достигает приблизительно 70% своей максимальной величины. Примером может стать работа зарядки смартфона или планшета, когда первоначальное восстановление ёмкости происходит за короткое время, а оставшиеся проценты набираются медленно.
На практике довольно часто случается эффект глубокого разряда литиевого аккумулятора, когда его напряжение опускается ниже 5% его ёмкости. В этом случае контроллер не в состоянии обеспечить достаточный пусковой ток для набора начальной ёмкости заряда. (Именно поэтому не рекомендуется разряжать такие аккумуляторы ниже 10%). Для решения таких ситуаций необходимо аккуратно разобрать аккумулятор и отключить встроенный контроллер заряда. Далее необходимо к выводам аккумулятора подсоединить внешний источник заряда, способный выдать ток не менее 0,4С ёмкости аккумулятора и напряжение не выше 4,3В (для аккумуляторов на 3,7В.). Электрическая схема зарядного устройства для начальной стадии зарядки таких аккумуляторов может примениться из примера ниже.
Данная схема состоит из стабилизатора тока в 1А. (задаётся резистором R5) на параметрическом стабилизаторе LM317D2T и импульсном регуляторе напряжения LM2576S-adj. Напряжение стабилизации, определяется обратной связью на 4-ю ногу стабилизатора напряжения, то есть соотношением сопротивлений R6 и R7, которыми на холостом ходу выставляется максимальное напряжение зарядки аккумулятора. Трансформатор должен на вторичной обмотке выдавать 4,2 – 5,2 В переменного напряжения. Тогда после стабилизации мы получим 4,2 – 5В постоянного напряжения, достаточного для заряда вышеупомянутого аккумулятора.
Никель – металл — гидридные аккумуляторы (NiMH) чаще всего можно встретить в исполнении корпусов стандартных батареек – это формфактор ААА (R03), АА (R6), D, С, 6F22 9В. Электрическая схема зарядного устройства для NiMH и NiCd аккумуляторов должна в себя включать нижеперечисленные функциональные возможности, связанные со спецификой алгоритма заряда этого типа аккумуляторов.
У различных аккумуляторов (даже с одинаковыми параметрами) со временем меняются химические и емкостные характеристики. В итоге возникает необходимость организовывать алгоритм заряда каждого экземпляра индивидуально, поскольку в процессе зарядки (особенно большими токами, что допускают никелевые аккумуляторы) избыточный перезаряд влияет на быстрый перегрев аккумулятора. Температура в процессе заряда выше 50 градусов из-за химически необратимых процессов распада никеля полностью погубит аккумулятор. Таким образом, электрическая схема зарядного устройства должна иметь функцию контроля температуры аккумулятора. Для увеличения срока службы и количества циклов перезаряда никелевого аккумулятора желательно каждую его банку разрядить до напряжения не ниже 0,9В. током порядка 0,3С от его ёмкости. К примеру, аккумулятор с 2500 – 2700 мА/ч. разрядить на активную нагрузку током в 1А. Так же зарядное устройство должно поддерживать зарядку с «тренировкой», когда в течении нескольких часов происходит циклический разряд до 0,9В с последующим зарядом током 0,3 – 0,4С. Исходя из практики таким образом можно оживить до 30% убитых никелевых аккумуляторов, причём никель-кадмиевые аккумуляторы «реанимации» поддаются гораздо охотнее. По времени заряда электрические схемы зарядных устройств могут делиться на «ускоренные» (ток заряда до 0,7С с временем полного заряда 2 – 2,5ч.), «средней длительности» (0,3 – 0,4С – заряд за 5 – 6ч.) и «классические» (ток 0,1С – время заряда 12 – 15ч.). Конструируя зарядное устройство для NiMH или NiCd аккумулятора, так же можно воспользоваться общепринятой формулой расчёта времени заряда в часах:
T = (E/I) ∙ 1.5
где Е – ёмкость аккумулятора, мА/ч.,
I – ток заряда, мА,
1,5 – коэффициент для компенсации КПД во момент зарядки.
К примеру, время заряда аккумулятора ёмкостью 1200 мА/ч. током 120 мА (0,1С) будет:
(1200/120)*1,5 = 15 часов.
Из опыта эксплуатации зарядных устройств для никелевых аккумуляторов стоит отметить, что чем ниже зарядный ток, тем больше циклов перезаряда перенесёт элемент. Паспортные циклы, как правило, производитель указывает при зарядке аккумулятора током 0,1С с наиболее длительным временем заряда. Степень заряженности банок зарядное устройство может определять через измерение внутреннего сопротивления за счёт разницы падения напряжения в момент заряда и разряда определённым током (метод ∆U).
Итак, учитывая всё вышеизложенное, одним из наиболее простых решений для самостоятельной сборки электрической схемы зарядного устройства и в то же время обладающей высокой эффективностью является схема Виталия Спорыша, описание которой без труда можно найти в сети.
Основными преимуществами данной схемы является возможность зарядки как одного, так и двух последовательно соединённых аккумуляторов, термоконтроль заряда цифровым термометром DS18B20, контроль и измерение тока в процессе заряда и разряда, автоотключение по завершению зарядки, возможность зарядки аккумулятора в «ускоренном» режиме. Кроме того, с помощью специально написанного программного обеспечения и дополнительной платы на микросхеме — преобразователе TTL уровней MAX232 возможен вариант контроля зарядки на ПК и дальнейшей её визуализации в виде графика. К недостаткам стоит отнести необходимость наличия независимого двухуровневого питания.
Аккумуляторы на основе свинца (Pb) довольно часто можно встретить в устройствах с большим потреблением тока: автомобилях, электромобилях, бесперебойниках, в качестве источников питания различного электроинструмента. Нет смысла перечислять их достоинства и недостатки, которые можно разыскать на многих сайтах на просторах сети. В процессе реализации электрической схемы зарядного устройства для таких аккумуляторов следует различать два режима зарядки: буферный и циклический.
Буферный режим зарядки предусматривает одновременное подключение к аккумулятору и зарядного устройства, и нагрузки. Такое подключение можно наблюдать в блоках бесперебойного питания, автомобилях, ветряных и солнечных энергосистемах. При этом, во время подзаряда устройство является ограничителем тока, а когда аккумулятор набирает свою ёмкость – переходит в режим ограничения напряжения для компенсации саморазряда. В этом режиме аккумулятор выступает в роли суперконденсатора. Циклический режим предусматривает отключение зарядного устройства по завершению зарядки и его повторное подключение в случае разряда батареи.
Схемных решений по зарядке данных аккумуляторов в Интернете достаточно много, поэтому рассмотрим некоторые из них. Для начинающего радиолюбителя для реализации простого зарядного устройства «на коленках» отлично подойдёт электрическая схема зарядного устройства на микросхеме L200C от STMicroelectronics. Микросхема представляет собой АНАЛОГОВЫЙ регулятор тока с возможностью стабилизации напряжения. Из всех преимуществ, которые имеет эта микросхема – это простота схемотехники. Пожалуй, на этом все плюсы и заканчиваются. Согласно даташиту на эту микросхему, максимальный ток заряда может достигать 2А, что теоретически позволит зарядить аккумулятор ёмкостью до 20 А/ч напряжением (регулируемым) от 8 до 18В. Однако, как оказалось на практике, минусов у этой микросхемы гораздо больше, чем плюсов. Уже при зарядке 12 амперного cвинцово-гелевого SLA аккумулятора током 1,2А микросхема требует радиатор площадью не менее 600 кв. мм. Хорошо подходит радиатор с вентилятором от старого процессора. Согласно документации к микросхеме, к ней можно прикладывать напряжение до 40В. На самом деле, если подать по входу напряжение более 33В. – микросхема сгорает. Данное зарядное требует довольно мощный источник питания, способный выдать ток не менее 2А. Согласно приведённой схеме вторичная обмотка трансформатора должна выдавать не более 15 – 17В. переменного напряжения. Значение выходного напряжения, при котором зарядное устройство определяет, что аккумулятор набрал свою ёмкость, определяется значением Uref на 4-й ножке микросхемы и задаётся резистивным делителем R7 и R1. Сопротивления R2 – R6 создают обратную связь, определяя граничное значение зарядного тока аккумулятора. Резистор R2 в то же время определяет его минимальное значение. При реализации устройства не стоит пренебрегать значением мощности сопротивлений обратной связи и лучше применять такие номиналы, какие указаны в схеме. Для реализации переключения зарядного тока лучшим вариантом станет применение релейного переключателя, к которому подключаются сопротивления R3 – R6. От использования низкоомного реостата лучше отказаться. Данное зарядное устройство способно заряжать аккумуляторы на свинцовой основе ёмкостью до 15 А/ч. при условии хорошего охлаждения микросхемы.
Существенно уменьшить габариты зарядки свинцовых аккумуляторов небольшой ёмкости (до 20 А/ч.) поможет электрическая схема зарядного устройства на импульсном 3А. стабилизаторе тока с регулировкой напряжения LM2576-ADJ.
Для зарядки свинцово-кислотных или гелевых аккумуляторных батарей ёмкостью до 80А/ч. (к примеру, автомобильных). Отлично подойдёт импульсная электрическая схема зарядного устройства универсального типа представленная ниже.
Схема была успешно реализована автором этой статьи в корпусе от компьютерного блока питания ATX. В основе её элементной базы лежат радиоэлементы, большей частью взятые из разобранного компьютерного блока питания. Зарядное устройство работает как стабилизатор тока до 8А. с регулируемым напряжением отсечки заряда. Переменное сопротивление R5 устанавливает значение максимального тока заряда, а резистор R31 устанавливает его граничное напряжение. В качестве датчика тока используется шунт на R33. Реле K1 необходимо для защиты устройства от изменения полярности подключения к клеммам аккумулятора. Импульсные трансформаторы T1 и Т21 в готовом виде были так же взяты из компьютерного блока питания. Работает электрическая схема зарядного устройства следующим образом:
1. включаем зарядное устройство с отключённой батареей (клеммы зарядки откинуты)
2. выставляем переменным сопротивлением R31(на фото верхнее) напряжение заряда. Для свинцового 12В. аккумулятора оно не должно превышать 13,8 – 14,0 В.
3. При правильном подключении зарядных клемм слышим, как щёлкает реле, и на нижнем индикаторе видим значение тока заряда, которое выставляем нижним переменным сопротивлением (R5 по схеме).
4. Алгоритм заряда спроектирован таким образом, что устройство заряжает аккумулятор постоянным заданным током. По мере накопления ёмкости значение зарядного тока стремится к минимальному значению, а «дозаряд» происходит за счёт выставленного ранее напряжения.
Полностью посаженый свинцовый аккумулятор не включит реле, как и собственно саму зарядку. Поэтому важно предусмотреть принудительную кнопку подачи мгновенного напряжения от внутреннего источника питания зарядного устройства на управляющую обмотку реле К1. При этом следует помнить, что в момент нажатой кнопки защита от переполюсовки будет отключена, поэтому нужно перед принудительным пуском обратить особое внимание на правильность подключения клемм зарядного устройства к аккумулятору. Как вариант, возможен запуск зарядки от заряженного аккумулятора, а уж потом перебрасываем клеммы зарядки на требуемый посаженный аккумулятор. Разработчика схемы можно найти под ником Falconist на различных радиоэлектронных форумах.
Для реализации индикатора напряжения и тока была применена схема на pic-контроллере PIC16F690 и «супердоступных деталях», прошивку и описание работы которой можно найти в сети.
Данная электрическая схема зарядного устройства, конечно же, не претендует на звание «эталонной», но она в полной мере способна заменить дорогостоящие зарядные устройства промышленного производства, а по функциональности может даже значительно превзойти многие из них. В окончании стоит сказать, что последняя схема универсального зарядного устройства рассчитана главным образом на человека, подготовленного в радиоконструировании. Если же вы только начинаете, то лучше в мощном зарядном устройстве применить гораздо более простые схемы на обычном мощном трансформаторе, тиристоре и системе его управления на нескольких транзисторах. Пример электрической схемы такого зарядного устройства приведён на фото ниже.
Смотрите также схемы:
АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ УСТРОЙСТВО
Эта схема простого автомобильного зарядного устройства попалась мне еще 90-х годах в книжке «1000 советов любителям мастерить», после забыл про эту схему и книжка куда то задевалась. Но в прошлом году решили собрать зарядники с другом, и порывщись по интернету остановились олять же на этой схеме.
Она не очень сложная и детали были в наличии на пару зарядников. Занялись сборкой. Корпус достался на халяву, то есть то что от него осталось — две стенки и каркас, остальное пришлось выпиливать по новой.
Мощные сопротивления использовал импортные, они квадратные и их можно с легкостью крепить к радиатору для ослаждения, но в процессе настройки 5-ти ваттное сопротивление сгорело и надо было искать замену.
Подходяший резистор не нашел — взял похожий на 10 Вт. Спилил в двух местах родное сопротивление, намотал нихром 0.3 сверху сопротивления 0.5-0.6 ом.
Диоды на радиаторе — Д242, два по 10 ампер. Трансформатор для автомобильного зарядного устройства выбрал типа ТПП-319, переменный резистор после долгих замен остановился на СП5-35Б.
На ожлаждение зарядого устройства для автомобильных аккумуляторов пошли два компьютерных вентилятора, маленкий на вытяжку тепла с сопротивления R3, а большой на обдув.
Их можно запитать с одной обмотки, а я увлекся и поставил два диодных мостика — на каждый вентилятор отдельно. Реле — отдельная история, не нашел на 24в и пришлось выкручиваться тем что есть.
Кроме вольтметра добавил индикатор заряда, при 13,6 начинает загоратся красный светодиод, а при достижении 14,5 он загорается уже ярко.
Синий светодиод показывает включение устройства в сеть. Силовой транзистор и сопротивление закрепил на радиаторы, так как греются они не слабо в процессе зарядки автомобильных аккумуляторов.
Со всеми этими вентиляторами и радиаторами все получилось нормально и при долговременной работе схема остается в пределах нормы по температурному режиму. Пробовал на АКБ, привезли 5 убитых аккумуляторов, два из них получилось запустить — гонял их до трех суток и наконец ожили.
Хотя старой бабке сколько не делай пластических операций, она всё-равно останется…, и тут так же:)
И напоследок, три элементарные вещи для работы с АКБ: заряжать на заряднике не зависимо стоит машина или ездит, после зарядки проверять плотность электролита (это важно для нашего климата), и не разряжать его до упора. Автор: Николай К.
Originally posted 2019-08-27 03:34:10. Republished by Blog Post Promoter
Схемы зарядных устройств для автомобильных аккумуляторов
Доброго времени суток всем автолюбителям! Если у вас есть свой автомобиль, значит, есть и аккумулятор. А если есть аккумулятор, значит, его нужно заряжать. Большинство автолюбителей используют заводские зарядные устройства. Но ведь его можно изготовить и самому. Для этого нужна схема зарядного устройства для автомобильного аккумулятора, инструмент и желание его сделать.
Содержание
Какие бывают зарядные для аккумуляторов
Как вы знаете, генератор заряжает АКБ на 85-90%. И чтобы не допустить потери емкости, его нужно периодически подзаряжать. Например, вы определяетесь, какой аккумулятор лучше купить, и выбор падает на кальциевый. В этом случае, стоит знать, что его рекомендуется заряжать каждые 2-3 месяца. А если этого не делать – через год батарея пойдет на свалку. Т.е. без зарядного устройства обойтись не получится.
Давайте разберемся, какие вообще существуют зарядные устройства, в чем их основные отличия, достоинства и недостатки.
По типу, они делятся на 2 большие группы:
- импульсные зарядные устройства;
- трансформаторные.
В свою очередь, они также могут быть разных видов. Давайте их рассмотрим.
Импульсные зарядные устройства
Принцип работы импульсного устройства заключается в зарядке аккумулятора на малых токах. Поэтому, отпадает необходимость использования большого трансформатора. А следовательно, они обладают компактными размерами и малым весом. Кроме того, многие модели оснащены функцией десульфатации восстанавливающей емкость аккумулятора.
Из недостатков, стоит отметить сложность ремонта. Принципиальная схема импульсных зарядных устройств, довольно сложная, поэтому без соответствующих знаний с ней будет сложно разобраться.
Трансформаторные устройства
В основе работы лежит трансформатор, который преобразовывает высокое напряжение в низкое. Отсюда большой вес и немалые габариты. Электрическая схема таких устройств, довольно простая, поэтому их легко ремонтировать и при желании можно собрать самостоятельно, воспользовавшись заводской схемой.
Основное различие этих приборов в реализации регулировки тока:
- тиристорная регулировка – сейчас используется редко, т.к. есть более совершенные аналоги;
- транзисторная – эта схема очень популярна, в ее основе лежит использование шим контроллеров;
- ступенчатая – регулировка напряжения делается механически, за счет добавления или уменьшения обмоток трансформатора.
Большое преимущество трансформаторных устройств в их простоте и надежности.
Десульфатирующее устройство
Большой плюс, когда зарядное устройство для автомобильного аккумулятора умеет работать в режиме десульфатации. Если вы не знаете – это разрушение сульфатов серной кислоты, которые образуются на свинцовых пластинах после глубоких разрядов АКБ.
Принцип работы десульфатирующего устройства довольно прост. В первый период, когда диоды открыты, аккумулятор заряжается, а во второй разряжается малым током. Например, ток заряда 10А, а для разряда – 1А. При желании, можно сделать его своими руками.
Для этого понадобятся:
- трансформатор мощностью от 200 Вт;
- реле для защиты АКБ от разрядки;
- диоды;
- переменный резистор для регулировки напряжения;
- амперметр;
- стабилитроны.
В этой схеме нужно предусмотреть радиаторы для охлаждения транзисторов.
Самодельные устройства
В интернете можно найти множество схем для изготовления зарядных для АКБ своими руками. Давайте сделаем небольшой обзор самых популярных и простых вариантов.
Популярные способы:
- самодельные зарядные из компьютерного блока питания. Один из самых простых вариантов. Для его изготовления потребуется минимум запчастей, т.к. он делается на базе готовой платы. На выходе можно получить регулируемое и мощное устройство;
- на диодах. Самая простая схема, включает диод, проводящий ток в одну сторону и обычную электролампу. Конечно, ее можно использовать лишь в экстренных случаях. Более совершенное устройство можно получить, используя понижающий трансформатор и выпрямительный диод на ток от 20 ампер;
- любительские устройства для аккумуляторов, основанные на использовании трансформаторов.
Браться за собственноручное изготовление зарядного устройства для аккумулятора, имеет смысл лишь в том случае, если у вас есть соответствующие знания. Иначе можно получить неожиданные результаты.
Если вы все же решите делать его самостоятельно, стоит учесть несколько деталей:
- прибор должен быть регулируемым;
- его электрическая схема должна включать стабилизатор зарядного тока. Она нужна для того, чтобы ограничивать подаваемый на АКБ ток по мере его зарядки;
- для мощного зарядного, необходимо предусмотреть систему принудительной вентиляции. Обычных радиаторов может не хватить.
Давайте рассмотрим несколько примеров изготовления альтернативы заводским приборам.
Зарядное из блока компьютерного блока питания
Один из доступных способов изготовления зарядного устройства своими руками – сделать его на базе компьютерного блока питания. Давайте разберемся, как его изготовить.
Понадобится:
- блок питания;
- переменный резистор на 33 и 68 кОм;
- предохранитель на 10А;
- два крокодила и провода для их подсоединения к плате;
- паяльник;
Мощность блока питания должна быть не меньше 150Вт, иначе он просто не сможет выдать достаточного напряжения для автомобильных аккумуляторов.
Подготовка
Самое главное, найти подходящий блок питания. Это определяется по шим-контроллеру, установленному на плате. Чтобы сделать самодельное зарядное устройство, подойдут:
- TL494;
- KA7500;
- TL495;
- MB3759;
- UTC51494;
Либо их аналоги. Кстати, в обозначении микросхемы важны цифры – буквы могут быть другими. Если шим-контроллер подходящий, нужно проверить исправность блока питания. Для этого нужно взять основной разъем блока и замкнуть зеленый провод с любым черным. Блок должен запуститься без компьютера.
Переделка платы
Когда вы достанете плату, первым делом нужно избавиться от всех лишних проводов. Легче всего их выпаять мощным паяльником. Для этого, нужно расплавлять припой с обратной стороны платы и аккуратно вытягивать проводки.
Максимальное напряжение, которое может выдать компьютерный блок питания – 12В. А этого для зарядки мало, т.к. нужно 14,5В. Поэтому потребуется отключить на плате защиту от повышения напряжения.
Для этого:
- находится 13, 14 и 15 ноги шим контроллера TL494;
- тестером определяется +5В, которые к ним подходят;
- дорожка перерезается.
После этого, нужно отпаять от первой ноги два резистора и впаять переменные резисторы на 33 и 68 кОм. К резистору на 33 кОм подключается регулятор.
Теперь нужно сделать выводы для подключения платы к АКБ. Для этого подойдет кабель с сечением в 2,5 мм2. Меньше брать не стоит. На плате находится вывод 12 В и земля, к которым нужно припаять эти провода. С другой стороны, к ним присоединяются крокодилы. Для защиты от замыкания, на плюсовую клемму желательно установить предохранитель на 10А.
После этого, блок собирается. Таким образом, можно своими руками сделать простейшее регулируемое зарядное для автомобильных батарей. Его можно усовершенствовать, добавив к электросхеме блок автоматического понижения выходящего тока и вольтметр.
Простое зарядное на диодах
Как уже писалось выше – заряжать аккумулятор таким способом, стоит лишь в экстренных случаях. Для изготовления понадобится:
- автомобильная лампа на 12В;
- зарядное от ноутбука – используется как диод;
- провода.
Последовательность подключения к батарее:
- плюс от зарядки подключается к плюсовой клемме напрямую;
- минус, подключается через лампу.
И все – такая вот схема простого зарядного устройства. Заряжаться аккумулятор будет 6-8 часов. При подключении, важно не перепутать плюс с минусом.
Таким образом, при желании, можно самому сделать полноценное зарядное для машины. Пусть даже и самое простое. Самое главное, что им можно зарядить свой аккумулятор. Но если вы сомневаетесь в своих силах – лучше приобрести заводской прибор. Тем более цена на них не такая уж и высокая.
Схема зарядного устройства для восстановления АКБ реверсивным током
Всем привет, в этой статье поговорим о том, как собрать устройство для зарядки автомобильного аккумулятора реверсивным, ассиметричным током на полевых транзисторах.
Что такое зарядка АКБ реверсивным током, подробно останавливаться не буду, так как этой информации полно в инете. Для данного устройства было перепробовано много различных схем, большинство из них или не работало вообще, или работа остальных, тем или иным способом не устраивала по параметрам.
Поэтому пришлось начинать с нуля и сделать надёжную, работающую схему, что в конце концов и получилось. Вот так выглядит схема для зарядки аккумуляторов реверсивным током.Данная схема очень элементарна, очень надёжна и очень проста в повторении. Что мы видим на этой схеме, два 555-ых таймера включенных здесь в качестве генераторов импульсов. Каждая микросхема управляет своим полевым ключом.
Соответственно один мосфет отвечает за зарядку аккумулятора, второй мосфет за разрядку. Сначала давайте рассмотрим узел, который отвечает у нас за разрядку аккумулятора.555-ый таймер (№2) здесь настроен на частоту около 1Кгц с коэффициентом заполнения около 85%. Питание данной схемы осуществляется непосредственно от самого аккумулятора, именно поэтому в данной схеме очень важно использовать полевые транзисторы. Потому что в них присутствует, так называемый обратный диод, благодаря этому диоду и возможна работа данной схемы.
Вторая микросхема (№1) отвечает за зарядку аккумулятора, соответственно от того, как вы подберёте частота-задающую обвязку данной микросхемы и будет, в конечном итоге, зависеть время заряда и время разряда вашего аккумулятора.
Значит как же эта схема работает в целом…
Как только на выход нашего устройства мы подключаем какой-либо АКБ, соответственно у нас запускается микросхема №2 и начинает на своём выходе генерировать прямоугольные импульсы, в следствии чего у нас открывается транзистор VT2, который в свою очередь разряжает наш аккумулятор на какую-либо нагрузку, в моём случаи это автомобильная лампа на 21 ватт.
Микросхема под №1 у нас не запускается, так как на выходе нашего устройства стоит диод VD1 (сдвоенный диод-шоттки). На вход нашего устройства мы подключаем какой-либо источник питания, будь то зарядное устройство или какой-нибудь блок питания, соответственно у нас запускается микросхема под №1 и начинает также на своём выходе вырабатывать прямоугольные импульсы с той частотой с которой вы ей задали с помощью частота-задающей обвязки.И как только на выходе №1 микросхемы появляется высокий уровень у нас открываются транзисторы VT1 и VT3. Ну и как видно из схемы транзистор VT1 у нас закорачивает 5 вывод микросхемы №2 на землю, тем самым останавливая генерацию прямоугольных импульсов и запирая транзистор VT2, тем самым прекращая разрядку нашего аккумулятора.
И в то же время открытый транзистор VT3 соединяет наш аккумулятор с нашим источником питания, тем самым обеспечивая его зарядку.
Ну и соответственно, как только с выхода микросхемы №1 высокий уровень исчезает два транзистора VT1 и VT3 закрываются, тем самым разъединяя наше зарядное устройство от нашего аккумулятора и в то же время рассоединяя 5 вывод микросхемы №2 с землёй, тем самым восстанавливая генерацию прямоугольных импульсов на выходе.
По деталям…
Обе микросхемы питаются через 12-ти вольтовые стабилизаторы 7812.
Время заряда и время разряда АКБ можно регулировать изменяя номиналы резисторов R2,R3,R4 и частота-задающего конденсатора С3.
Плата получилась довольно компактная, мосфеты и диод установил на небольшой радиатор.
Хотя они работают в ключевом режиме и нагрев минимальный.
Клемники поставил для подключения разрядной лампы и аккумулятора.Вот подключил, загорелась лампочка, то есть пошла разрядка аккумулятора.Цикл разряда и цикл зарядаПоворачивая бегунок подстроечного резистора можно менять скорость заряда и разряда данной схемы.Данную платку можно разместить непосредственно в корпусе зарядного устройства, тем самым добавив ему очень полезную функцию десульфатации.
Печатку в формате .lay можно скачать здесь.
Выбор схемы зарядного устройства для автомобильного аккумулятора: простые и сложные схемы
Любой автолюбитель знает, сколько неприятностей может доставить аккумулятор, не работающий в штатном режиме. Гарантированно безотказно он может проработать минимум 5 лет при условии, что водитель постоянно следит за его состоянием. Но ситуации, когда аккумуляторная батарея (АКБ) перестаёт выполнять свои функции, случаются довольно часто. Причин может быть довольно много, начиная от неисправностей в системе электроснабжения автомобиля и заканчивая длительным простоем авто в тяжёлых погодных условиях, чаще всего на холоде.
Поэтому к выбору подзарядки АКБ автолюбители, не желающие тратить деньги в специальных сервисных центрах, должны подойти с большой ответственностью.
Виды зарядных устройств
Перед приобретением зарядного устройства (ЗУ) автолюбитель должен знать, что торговля предлагает ЗУ двух основных видов:
- устройства зарядно-предпусковые;
- зарядно-пусковые ЗУ.
Первый вид предназначен только для подзарядки аккумуляторных батарей.
При подключении клемм АКБ проводами с клещевидными зажимами к выходу устройства осуществляется подзарядка аккумулятора.
Используя зарядно-пусковые ЗУ можно осуществлять как обычную подзарядку аккумулятора, так и запуск двигателя вращением стартера без подключения аккумуляторной батареи.
Основные критерии выбора
Критериями могут служить рабочие параметры. К ним относятся:
- максимальное выходное напряжение;
- максимальный нагрузочный ток.
Максимальное напряжение для зарядки 12- вольтовых кислотных батарей (с учётом падения напряжения на проводах и клеммах АКБ) 15,5 В. При выборе такого ЗУ в конце зарядки напряжение аккумулятора составит порядка 14,5 В.
Максимальный ток выбирается исходя из номинальной ёмкости АКБ.
Для кислотных аккумуляторов действует простое соотношение между ними:
Imax =0,1 C ном.
Для щелочных батарей:
Imax =0,25Сном.
C ном — мощность АКБ, выраженная в Ампер-часах (А-ч).
Выбрав ЗУ с Imax =10А, можно зарядить любой автомобильный аккумулятор.
Классификация зарядных устройств
ЗУ можно классифицировать по схемным решениям, по элементной базе, используемой при их проектировании, по принципам преобразования переменного тока в постоянный. Исходя из этого, можно выделить две группы устройств зарядки аккумуляторов:
- трансформаторные ЗУ;
- импульсные устройства зарядки.
В устройствах первой группы используется мощный силовой трансформатор.
В импульсных устройствах зарядки осуществляется преобразование тока сети в последовательность импульсов высокой частоты.
Трансформаторные ЗУ
В трансформаторных ЗУ используются мощные электронные компоненты. Они могут выдерживать перегрузки (в разумных пределах), справляются с ситуациями ошибочного подключения к клеммам АКБ. В ЗУ самодельного изготовления такого типа не всегда присутствуют все компоненты, необходимые для стабильной и безопасной зарядки аккумуляторов. К необходимым компонентам схемы зарядки относятся:
- трансформаторный блок питания;
- стабилизатор тока зарядки;
- токовый регулятор заряда АКБ;
- устройство защиты от коротких замыканий;
- устройства индикации параметров.
В простых «самоделках» регулятором тока часто выступают проволочные реостаты с ручным управлением, лампы ближнего и дальнего света автомобиля, которые облают в некоторой степени свойством термосопротивлений. С увеличением силы тока через спираль лампы её сопротивление возрастает. Таким образом, величина тока как бы поддерживается на постоянном уровне. На элементах таких схем выделяется большая тепловая мощность. КПД этих ЗУ невелик. Элементы устройств, собранных по таким схемам, пожароопасны, и их надёжность оставляет желать лучшего.
В некоторых схемах используют набор конденсаторов разной ёмкости. Они вручную включаются по очереди последовательно с первичной обмоткой понижающего трансформатора. Обладая ёмкостным сопротивлением, они понижают величину входного напряжения. Уменьшается напряжение в понижающей обмотке трансформатора и величина тока заряда аккумуляторной батареи. Нагрев элементов в этих схемах меньше, а их КПД возрастает.
Диоды в выпрямительном мосту должны быть подобраны по величине тока заряда батареи. Ток через них должен быть больше максимального зарядного тока. Они обычно устанавливаются на пластинчатые металлические радиаторы, отводящие от диодов избыток тепла и предотвращающие их перегрев.
Более совершенные конструкции предусматривают возможность их автоматического отключения от нагрузки при полной зарядке АКБ. Такие схемные решения позволяют не бояться обрывов в цепи нагрузки и коротких замыканий в ней.
В «продвинутых» схемах для регулирования зарядного тока используют тиристоры. Напряжение на управляющем электроде, определяющее степень открывания прибора, через который протекает ток зарядки, устанавливается вручную переменным резистором схемы. Его ось выведена на переднюю панель устройства зарядки.
В качестве устройств индикации параметров зарядки выступают стрелочные амперметры, включаемые последовательно в цепь нагрузки и вольтметры, контролирующие напряжение на клеммах аккумуляторных батарей. В последних моделях ЗУ стрелочные индикаторы постепенно заменяют цифровыми. Схема усложняется, так как необходимо питать и элементы электронной индикации.
Схема автоматического зарядного устройства для аккумуляторов 12 В позволяет подключать ЗУ к сети при подсоединении проводов с клещевидными зажимами к АКБ. По окончании заряда, когда ток уменьшается до величины срабатывания компаратора схемы, контакты реле размыкаются, светодиод сигнализирует об окончании процесса зарядки и ЗУ отключается от сетевого напряжения.
Импульсные устройства
Устройства этого класса, как и трансформаторные ЗУ, ставят перед собой задачу — восстановление работоспособности аккумуляторных батарей при их частичном или полном разряде. Но схемные решения, использованные в них, основываются на применении современной базы.
Для того чтобы избавиться от мощных силовых понижающих трансформаторов, в импульсных ЗУ переменное сетевое напряжение (50 Герц) преобразуется в переменное напряжение импульсной формы высокой частоты. Это высокочастотное напряжение с помощью импульсного трансформатора доводится до значений, необходимых для зарядки АКБ. Затем оно выпрямляется и фильтруется. Частота преобразования обычно около 50 килогерц, размеры трансформатора, который в основном определяет размеры устройства, минимизируются.
Повышенные требования в ЗУ импульсного типа предъявляются к уровню помех, создаваемых генераторами этих устройств. Для этих целей в схемах используют высокочастотные дроссели. Трансформаторы выполнены в виде обмоток на ферритовых кольцах. Импульсные диоды имеют небольшие размеры.
Если представить общую схему устройства в виде отдельных составных частей, то она будет включать в себя:
- блок сетевого выпрямителя;
- блок преобразователя;
- импульсный трансформатор;
- блок контроля зарядки;
- приборы индикации параметров.
В устройствах импульсной зарядки можно использовать один из способов восстановления работоспособности батарей:
- постоянным током;
- напряжением постоянной величины;
- комбинированным способом.
Последний из них позволяет на разных этапах процесса использовать как первый, так и второй способы. При разряженном аккумуляторе необходимо его подзарядить постоянным током до определённого предела. После этого включается режим стабилизации напряжения при уменьшающемся токе заряда.
Импульсные ЗУ можно разделить, в свою очередь, на ручные, требующие самостоятельного регулирования напряжения и силы тока, автоматические, в которых процесс регулируется программным путём, и полуавтоматы.
Сравнение ЗУ разных классов
Надо заметить, что как одни, так и другие устройства зарядки аккумуляторов обладают рядом преимуществ и недостатков. Рассмотрев каждый класс и сравнив их между собой, можно прийти к окончательному выводу о приобретении того или иного устройства.
Трансформаторные зарядные устройства
Среди достоинств трансформаторных ЗУ можно отметить такие: простота конструкции, которую может повторить радиолюбитель не очень высокого класса, надёжность, проверенная временем, доступность элементов схемы, отсутствие сетевых и радиопомех.
Из недостатков можно отметить: значительный вес и габариты, невысокий коэффициент полезного действия из-за потерь в металлических сердечниках трансформаторов.
Импульсные ЗУ
Достоинствами этих устройств являются: небольшой вес из-за отсутствия железа сетевых трансформаторов и радиаторов силовых элементов, высокий (до 98%) КПД, большие допуски на частоту и напряжение питающей сети, большое количество элементов защиты и автоматизации процесса зарядки АКБ.
К недостаткам относятся следующие: отсутствие гальванической развязки от питающей сети, наличие широкого спектра гармоник, требующее принимать дополнительные схемные решения для их подавления.
Постепенно всё большее число автолюбителей, стремящихся обезопасить себя от неприятных ситуаций, связанных с неисправностями аккумуляторных батарей, выбирают зарядные устройства импульсного класса.
Зарядное для авто своими руками – инструкция – как сделать
Бывает, что приобрести зарядное устройство для автомобильного аккумулятора нет возможности – и тогда стоит попробовать сделать его собственными руками. Трудности будут, но все равно такая идея вполне реальна.
Причины, по которым вы однажды не сможете купить новую зарядку для автомобильного аккумулятора, могут быть разные: или дорого, или магазины закрыты или их просто нет рядом. Поэтому мы предложим различные варианты самодельной “зарядки”.
Зарядное устройство для аккумулятора должно быть надежным, ведь его приходится надолго оставлять под напряжением возле автомобиля. А такое стоит недешево
Предупредим сразу: даже если вы не имеете диплома электрика, сделать зарядное устройство своими силами можно. Вы сможете сами сделать корпус и несущую панель( раму), смонтировать на нем детали и приготовить провода для соединения деталей.
ЧИТАЙТЕ ТАКЖЕ: Как правильно «прикурить» авто, если сел аккумулятор
А вот когда дойдет очередь до собственно соединения клемм деталей между собой проводами, советуем попросить о помощи профессионального электрика. Да и в случае каких-либо сомнений стоит обратиться за консультацией к профессионалу.
Чтобы он проконтролировал важные моменты:
- Правильность подбора трансформатора и других компонентов
- Правильность соединения деталей между собой проводами
- Надежность изоляции там, где это необходимо
Схема простейшего зарядного устройства для АКБ несложная. Вместо готового диодного моста можно взять четыре отдельных диода (третья схема)
Как работает зарядное устройство
Зарядное устройство для аккумулятора – это прибор, который снижает напряжение бытовой сети 220 вольт до 13-14 вольт, одновременно преобразуя ток из переменного в постоянный (именно такой нужен аккумулятору). Также у многих “зарядок” есть схема, регулирующая силу тока, подаваемого на клеммы АКБ. Таким образом, зарядное устройство содержит лишь два-три основных компонента, которые вам понадобится раздобыть прежде всего.
Поэтому, вам понадобятся такие компоненты:
- Трансформатор для снижения напряжения с 220 до 20 вольт. Можно найти такой на барахолке, где продают старые радиодетали – от лампового телевизора, большой радиолы и тому подобное.
- Выпрямитель – диодный мост, спайку из 4-х диодов. Мост можно также соорудить самостоятельно из мощных диодов, а можно позаимствовать от старого автомобильного генератора.
- Провода многожильные – сечением жилы не менее 2,5 мм для соединения деталей и подключения к розетке 220 В и аккумулятору.
- Амперметр с пределами измерения 0-10 ампер.
- Два предохранителя – один на 0,5 ампер, второй – на 10 ампер с корпусами.
- Зажимы – ”крокодилы” и штепсельная вилка для сети 220 вольт.
Два вида соединений в электрических цепях: параллельное (слева) и последовательное (справа).
Что на самом деле трудно – и очень важно – так это правильно подключить трансформатор и соединить с ним выпрямитель – диодный мост. Здесь желательно обратиться за помощью к профессиональному электрику, тем более что некоторые легкодоступные трансформаторы (например, телевизионный ТС-180) имеют первичную и вторичную обмотки из двух частей каждая, и их надо тоже правильно соединить между собой.
ЧИТАЙТЕ ТАКЖЕ: Какое купить зарядное устройство для аккумулятора
После окончательной сборки зарядного устройства и проверки его опытным электриком прибор нужно наладить – имеется в виду в первую очередь ток зарядки. В самом простом случае он может быть нерегулируемым, но все равно его надо установить на определенном значении. После подключения «зарядки» к батарее следует в один из проводов, ведущих к АКБ, последовательно включить амперметр и проверить силу тока.
Чтобы сложить зарядное устройство для АКБ, понадобится буквально несколько вполне доступных компонентов. Главное – правильно их соединить
Если регулятор не планируется, желательно установить среднее значение тока – около 3-5 ампер (номинальный ток зарядки – 10% от емкости АКБ). Скорее всего, сначала ток окажется большим, поэтому для его снижения надо врезать в этот же провод последовательно резистор большой мощности (номинал в Омах подбирается расчетным путем) или 12-вольтную автомобильную лампочку. И от ее мощности (5, 21, 55 Ватт) будут зависеть сила тока.
Для обустройства простейшего регулятора тока можно установить в корпусе устройства несколько мощных (с большой теплоотдачей) резисторов, которые по очереди или одновременно вы будете потом включать в цепь подзарядки. Для удобства здесь понадобится определенный переключатель, который будет переключать провода между резисторами разного номинала.
Диодный мост нужен, чтобы сделать из переменного тока постоянный, мост состоит из 4-х диодов. Имейте в виду, что он снижает напряжение – примерно с 20 вольт до 14-ти.
Советы по изготовлению зарядного устройства
- Главное в электротехнике – безопасность. Ни экономия, ни дефицит материалов не могут послужить поводом для игнорирования безопасностью.
- Проектируя прибор, имейте в виду, что при работе он будет нагреваться, поэтому используйте термостойкие материалы: металл, гетинакс или текстолит, провода большого сечения и с надежной изоляцией
- Соединение проводов с клеммами компонентов схемы надо фиксировать не только пайкой, а предварительно еще и механическим путем – скруткой или загибанием жилы.
- Ток заряда имеет большое значение для долговечности аккумулятора, поэтому очень желателен амперметр. Даже если сначала вы не сможете установить этот прибор, оставьте на корпусе место для него, чтобы прокачать свою зарядку позже.
Рекомендация Авто24
Если финансовый вопрос для вас имеет большое значение, имейте в виду: качественное, то есть долговечное и безопасное зарядное устройство не может стоить дешево. Между тем, сделать такой добротный прибор своими руками вполне возможно, главное – заручиться поддержкой консультанта – профессионального электрика.
ЧИТАЙТЕ ТАКЖЕ: Как проверить, почему разряжается аккумулятор
Схема простого автомобильного зарядного устройства и индикатораАвтомобильный аккумулятор — это типичный свинцово-кислотный аккумулятор, состоящий примерно из 6 ячеек, каждый по 2 В, так что общее напряжение аккумулятора составляет около 12 В. Типичные значения номинальных значений батареи находятся в диапазоне от 20 Ач до 100 Ач. Здесь мы рассматриваем автомобильный аккумулятор номиналом 40 Ач, поэтому требуемый зарядный ток будет около 4 А. В этой статье описывается принцип действия, конструкция и работа простого автомобильного зарядного устройства от сети переменного тока и секция управления с обратной связью для управления зарядкой аккумулятора.
Принцип работы автомобильного зарядного устройства
:Это простая схема автомобильного зарядного устройства с индикацией. Аккумулятор заряжается от сети переменного тока 230 В, 50 Гц. Это переменное напряжение выпрямляется и фильтруется, чтобы получить нерегулируемое постоянное напряжение, используемое для зарядки аккумулятора через реле. Это напряжение батареи постоянно контролируется схемой обратной связи, состоящей из делителя потенциала, диода и транзистора. Реле и цепь обратной связи питаются от регулируемого постоянного напряжения (полученного с помощью регулятора напряжения).Когда напряжение аккумулятора превышает максимальное значение, схема обратной связи рассчитывается таким образом, что реле выключается и заряд аккумулятора прекращается.
Также получите представление о том, как работает схема зарядного устройства свинцово-кислотной батареи?
Схема автомобильного зарядного устройства
: Схема цепи зарядного устройства для автомобильного аккумулятора Конструкция зарядного устройства для автомобильного аккумулятора:Чтобы спроектировать всю схему, мы сначала проектируем три разных модуля: блок питания, обратную связь и нагрузочную секцию.
Этапы проектирования источника питания:
- Здесь желаемой нагрузкой является автомобильный аккумулятор емкостью около 40 Ач. Поскольку зарядный ток батареи должен составлять 10% от номинала батареи, требуемый зарядный ток будет около 4А.
- Теперь требуемый вторичный ток трансформатора будет около 1,8 * 4, т. Е. Ток около 8 А. Поскольку требуемое напряжение нагрузки составляет 12 В, мы можем остановиться на трансформаторе с номиналом 12 В / 8 А. Теперь необходимое среднеквадратичное значение переменного напряжения составляет около 12 В, пиковое напряжение будет около 14.4 В, то есть 15 В.
- Поскольку здесь мы используем мостовой выпрямитель, PIV для каждого диода должен более чем в четыре раза превышать пиковое напряжение переменного тока, то есть более 90 В. Здесь мы выбираем диоды 1N4001 с рейтингом PIV около 100 В.
- Поскольку здесь мы также разрабатываем регулируемый источник питания, максимально допустимая пульсация будет равна пиковому напряжению конденсатора за вычетом необходимого минимального входного напряжения для регулятора. Здесь мы используем регулятор напряжения LM7812, чтобы обеспечить регулируемое напряжение 5 В для реле и таймера 555.Таким образом, пульсация будет около 4 В (пиковое напряжение около 15 В и входное напряжение регулятора около 8 В). Таким образом, расчетная емкость конденсатора фильтра составляет около 10 мФ.
Расчет секции обратной связи и нагрузки:
Проектирование секции обратной связи и нагрузки предполагает подбор резисторов секции делителя напряжения. Поскольку диод будет проводить только тогда, когда напряжение батареи достигнет 14,4 В, номиналы резисторов должны быть такими, чтобы положительное напряжение, подаваемое на диод, было не менее 3 В, когда напряжение батареи примерно равно максимальному.
Имея это в виду и сделав необходимые вычисления, мы выбираем потенциометр 100 Ом и другие резисторы на 100 Ом и 820 Ом каждый.
Работа цепи зарядного устройства автомобильного аккумулятора:Также прочтите пост — Работа и применение схемы зарядного устройства солнечной батареи
Работа схемы начинается после подачи питания. Мощность переменного тока 230 В RMS понижается до 15 В RMS понижающим трансформатором.Это низковольтное переменное напряжение затем выпрямляется мостовым выпрямителем для получения нерегулируемого постоянного напряжения с пульсациями переменного тока. Конденсатор фильтра пропускает через него пульсации переменного тока, создавая на нем нерегулируемое и фильтрованное постоянное напряжение. Здесь выполняются две операции: — 1. Это нерегулируемое напряжение постоянного тока подается непосредственно на нагрузку постоянного тока (в данном случае аккумулятор) через реле. 2. Это нерегулируемое постоянное напряжение также подается на регулятор напряжения для создания регулируемого источника постоянного тока 12 В.
Здесь реле представляет собой реле 1С, и общая точка подключена к нормально замкнутому положению, так что ток течет через реле к батарее, и она заряжается.Когда через светодиод проходит ток, он начинает проводиться, указывая на то, что батарея заряжается. Часть тока также протекает через последовательные резисторы, так что напряжение батареи разделяется с помощью устройства делителя потенциала. Первоначально падение напряжения на делителе потенциала недостаточно для смещения диода. Это напряжение равно напряжению аккумулятора и, таким образом, определяет зарядку и разрядку аккумулятора. Первоначально потенциометр настраивается до середины.По мере того, как напряжение батареи постепенно увеличивается, оно достигает точки, когда напряжения на делителе потенциала достаточно для прямого смещения диода. Когда диод начинает проводить, переход база-эмиттер транзистора Q2 приводится в состояние насыщения, и транзистор включается.
Поскольку коллектор транзистора подсоединяется к одному концу катушки реле, последний получает питание, и точка общего контакта перемещается в нормально разомкнутое положение. Таким образом, источник питания отключается от батареи, и зарядка батареи прекращается.По прошествии некоторого времени, когда батарея начинает разряжаться и напряжение на делителе потенциала снова достигает положения, при котором диод смещен в обратном направлении или находится в выключенном состоянии, транзистор вынужден отключаться, и таймер теперь находится в выключенном положении, так что нет выхода. Общая точка реле возвращается в исходное положение, то есть в нормально замкнутое положение. Аккумулятор снова начинает заряжаться, и весь процесс повторяется.
Применения цепи зарядного устройства автомобильного аккумулятора:- Эта схема является портативной и может использоваться в местах, где имеется источник переменного напряжения.
- Может использоваться для зарядки аккумуляторов игрушечных автомобилей.
- Это теоретическая схема и может потребовать некоторых практических изменений.
- Зарядка и разрядка аккумулятора может занять больше времени.
Создайте свой собственный решения для зарядки аккумуляторов электромобиля
Приведенное ниже примечание по применению должно помочь разработчикам создавать собственные решения для зарядки аккумуляторов электромобилей. При необходимости можно получить помощь от компании.
Популярность электромобилей (EV) в Индии быстро растет. Согласно опросу, рынок электромобилей в Индии увеличится с 3 миллионов единиц в 2019 году до 29 миллионов единиц к 2027 году с среднегодовым темпом роста 21,1 процента. В результате возрастет спрос на зарядные устройства переменного / постоянного тока, интеллектуальные зарядные устройства для электромобилей.
Для эффективной зарядки аккумуляторов и обеспечения их длительного срока службы нам нужна интеллектуальная система управления аккумулятором или система зарядки. Для реализации такой системы зарядки электромобилей компания Holtek разработала интеллектуальные решения для зарядки аккумуляторов электромобилей, основанные на их недорогом флэш-микроконтроллере (MCU) ASSP HT45F5Q-X для зарядки аккумуляторов электромобилей.
В настоящее время доступны три модели зарядных устройств для электромобилей, подходящие для индийского рынка — с характеристиками 48 В / 4 А, 48 В / 12 А и 48 В / 15 А — для быстрой разработки продукта. Эта интеллектуальная система зарядки на основе полупроводников может поддерживать как литий-ионные, так и свинцово-кислотные батареи.
Блок-схема решения для зарядки аккумуляторов электромобилей показана на рис. 1. Здесь зарядное устройство ASSP flash MCU HT45F5Q-X является сердцем схемы зарядного устройства электромобиля со встроенными операционными усилителями (OPA) и преобразователем цифрового сигнала в цифровое. аналоговые преобразователи (ЦАП), необходимые для зарядки аккумулятора.
Рис. 1: Блок-схема зарядного устройства электромобиляТехнические характеристики флэш-микроконтроллера для зарядного устройства серии HT45F5Q-X показаны на рис. 2. Разработчики могут выбрать подходящий микроконтроллер из серии HT45F5Q-X в соответствии с требованиями своего приложения.
Рис. 2: Характеристики HT45F5Q-XХарактеристики и работа зарядного устройства EV для спецификации 48 В / 12 А кратко описаны ниже. В этой конструкции зарядного устройства для электромобилей используется микроконтроллер HT45F5Q-2 для реализации функции управления зарядкой аккумулятора.
MCU включает в себя модуль зарядки аккумулятора, который можно использовать для управления зарядкой с обратной связью с постоянным напряжением и постоянным током для эффективной зарядки аккумулятора.Внутренняя структурная схема микроконтроллера HT45F5Q-2 представлена на рис. 3.
Рис. 3: Блок-схема HT45F5Q-2Модуль зарядки аккумулятора в HT45F5Q-2 имеет встроенные OPA и DAC, необходимые для процесса зарядки. Следовательно, конструкция снижает потребность во внешних компонентах, таких как шунтирующие регуляторы, OPA и DAC, которые обычно используются в обычных схемах зарядки аккумуляторов. В результате периферийная схема стала компактной и простой, что привело к уменьшению площади печатной платы и низкой общей стоимости.
Работа зарядного устройства EV
Входная мощность зарядного устройства EV — это переменное напряжение в диапазоне от 170 до 300 В.Зарядное устройство для электромобилей использует конструкцию полумостового LLC-резонансного преобразователя из-за его характеристик высокой мощности и высокого КПД для получения мощности постоянного тока для зарядки аккумулятора.
В конструкции используется выпрямительная схема для преобразования входного переменного напряжения в высоковольтное выходное постоянное напряжение, а также имеется фильтр электромагнитных помех (EMI) для устранения высокочастотного шума от входного источника питания. ИС контроллера широтно-импульсной модуляции (ШИМ), такая как UC3525, может использоваться для управления полевыми МОП-транзисторами полумостового LLC-преобразователя.
Процесс зарядки аккумулятора контролируется MCU HT45F5Q-2. Он контролирует уровни напряжения аккумулятора и зарядного тока и передает обратную связь на ИС контроллера ШИМ. На основе обратной связи контроллер PWM изменяет рабочий цикл своего сигнала PWM и управляет схемой MOSFET для получения переменного выходного напряжения и тока для зарядки аккумулятора.
Для лучшей защиты HT45F5Q-2 изолирован от остальной части схемы (т. Е. Высоковольтных компонентов) с помощью оптопары.Светодиодные индикаторы уровня заряда аккумулятора позволяют узнать о состоянии зарядки.
Процесс зарядки аккумулятора
Изменение зарядного напряжения и тока во время процесса зарядки графически проиллюстрировано на рис. 4. Если напряжение аккумулятора слишком низкое при подключении для зарядки, сначала будет установлен низкий зарядный ток (т. Е. Непрерывный заряд (TC)) и зарядка процесс начнется.
Рис. 4: Кривая зарядки аккумулятораКогда напряжение аккумулятора увеличивается до заданного уровня (Vu), для зарядки применяется постоянное напряжение (CV) и постоянный ток (CC), и продолжается до тех пор, пока аккумулятор не будет полностью заряжен.Батарея считается полностью заряженной, когда напряжение достигает VOFF. Когда зарядный ток падает до Iu, устанавливается конечное напряжение (FV). Ниже описывается процесс контроля напряжения, тока и температуры в этом зарядном устройстве для электромобилей.
(а) Контроль напряжения
Напряжение зарядки определяется на основе начального напряжения аккумулятора, когда он подключен для зарядки. По мере того, как зарядка продолжается, напряжение зарядки изменяется соответствующим образом, и, наконец, когда аккумулятор полностью заряжен, устанавливается окончательное напряжение.Уровни напряжения зарядки для зарядного устройства 48 В / 12 А поясняются ниже.
- Если напряжение батареи <36 В, зарядка TC (0,6 A), установка напряжения FV (56 В)
- Если напряжение батареи <40 В, зарядка TC (0,6 A), установка напряжения CV (58 В)
- Если напряжение аккумулятора> 40 В, зарядка CC (12,0 A), установка напряжения CV (58 В)
- При полной зарядке устанавливается напряжение FV (56 В). Если напряжение аккумулятора ниже FV, зарядный ток будет сброшен до CC (12,0 А).
(б) Текущий контроль
Ток зарядки устанавливается в зависимости от напряжения аккумулятора.Первоначально, если напряжение батареи слишком низкое, для зарядки батареи будет установлен ток капельной зарядки. Как только напряжение аккумулятора достигает определенного уровня, для зарядки подается постоянный ток, пока аккумулятор не зарядится полностью. Уровни выбора зарядного тока для зарядного устройства 48 В / 12 А перечислены ниже.
- Ток зарядки <1,2 А, определение окончания зарядки
- Ток зарядки> 0,2 А, определение начала зарядки
(c) Защита от перегрева
Зарядное устройство EV имеет термистор с отрицательным температурным коэффициентом (NTC) для контроля температуры и вентилятор для регулирования нагрева.При повышении температуры автоматически включается вентилятор для отвода тепла; он отключается, когда температура снижается до нижнего установленного порога. Кроме того, вентилятор включается при высоком токе зарядки и выключается при низком токе зарядки.
- Когда температура NTC> 110 ° C, зарядный ток будет снижен до 50% от зарядного тока и будет периодически контролироваться
(d) Светодиодные индикаторы состояния зарядки
Они перечислены ниже.
- Зарядка TC, красный свет медленно мигает (0,3 сек горит, 0,3 сек выкл)
- CC, зарядка CV, красный свет быстро мигает (0,1 с горит, 0,1 с не горит)
- Когда не заряжается, горит зеленый свет
- Когда время зарядки превышает восемь часов, горят красный и зеленый свет
(e) Продолжительность зарядки
Когда продолжительность зарядки превышена (продолжительность зависит от емкости аккумулятора), напряжение падает до FV, ток снижается до TC, и зарядное устройство постоянно контролирует напряжение аккумулятора.
Схема и сборка печатной платы
Схема зарядного устройства Holtek EV для типа 48V / 12A показана на рис. 5 для справки, а его печатная плата в сборе показана на рис. 6.
Рис. 5: Схема зарядного устройства EV на 48V / 12AСкачать оригинал:
Нажмите здесьФлэш-MCU HT45F5Q-2 ASSP также может использоваться для разработки решений с более высокой мощностью. Он предлагает программируемую опцию для установки пороговых значений параметров, что делает его очень удобным для зарядных устройств электромобилей.Holtek предоставляет технические ресурсы, такие как блок-схема, схемы приложений, файлы печатных плат, исходный код и т. Д., Чтобы помочь дизайнерам в быстрой разработке продукта и ускорить вывод продукта на рынок.
Рис. 6: Сборка печатной платы зарядного устройства для электромобилейПлатформа для разработки зарядных устройств для электромобилей серии HT45F5Q-X также будет доступна в ближайшее время. Используя этот программный инструмент, пользователи смогут легко выбрать напряжение / ток зарядки и другие параметры для создания программы. Это приложение также сможет сгенерировать программу, содержащую стандартный процесс зарядки, тем самым значительно упростив процесс разработки.
Кришна Чайтанья Камасани — директор по операциям в Индии в Holtek Semiconductor
Как установить зарядную станцию для электромобиля
Если вы обратили внимание на шум, исходящий в последнее время в автомобильной промышленности, то этот гудящий звук, который вы слышите, является электрическим. Автопроизводитель после того, как автопроизводитель представил новые электромобили (EV) и объявил о своих планах сделать это. И многие другие уже в пути. Некоторые автомобильные компании заявляют, что половина или более автомобилей, грузовиков и внедорожников, которые они продают в 2030 году, будут электрическими.
Ближе к дому вы, вероятно, знаете нескольких человек, которые сделали решительный шаг и уже купили электромобиль. Если они похожи на типичных владельцев электромобилей, они хвалят свои новые машины. По мнению большинства, электромобили плавные, тихие, надежные и — что, пожалуй, лучше всего — они никогда не требуют, чтобы их водители останавливались на заправочной станции, чтобы заправиться.
Все эти атрибуты являются определенными преимуществами, но последнее, никогда не останавливаться на заправке, имеет собственное значение. Электроэнергия для подзарядки автомобиля должна откуда-то поступать.Если ваш план не предусматривает замену коротких остановок на заправке на продолжительные сеансы на общественной зарядной станции, вам захочется подзарядить электромобиль дома. И, как правило, это означает, что вам понадобится домашняя зарядная станция для электромобилей.
Как установить домашнее зарядное устройство для электромобиля?Ответ на этот вопрос одновременно чрезвычайно прост и очень сложен. И эти прилагательные можно использовать для описания практически всего, что связано с электромобилями и отраслью, которую они породили.
Цель этой статьи — не только рассказать вам, как установить зарядную станцию для электромобилей, но и ответить на несколько связанных с этим вопросов. Пример:
- Что такое зарядная станция для электромобилей?
- Какие бывают типы зарядных станций?
- Сколько стоит электрическая зарядная станция?
- Сколько времени нужно на зарядку электромобиля?
- Сколько стоит зарядка электромобиля?
Вы обнаружите, что некоторые из этих вопросов являются современными эквивалентами извечного вопроса о том, сколько ангелов может танцевать на булавочной головке?
Что такое зарядная станция для электромобилей?Во-первых, полезно определить, что такое зарядная станция для электромобилей.Простой способ объяснить это — рассматривать смартфон в кармане или сумочке как суррогат электромобиля.
Как и ваш телефон, у электромобиля есть аккумулятор, который позволяет ему работать. Если в аккумуляторе вашего телефона нет электричества, он не будет работать. Точно так же, если в аккумуляторной батарее электромобиля нет электроэнергии, она никуда не денется. Как и в случае со смартфоном, электричество, хранящееся в аккумуляторе электромобиля, расходуется, когда вы используете автомобиль. Вы должны восполнить это электричество, зарядив аккумулятор автомобиля.
Как заряжать смартфон? Ну конечно, воткни. Но на самом деле вы используете зарядное устройство, которое преобразует 120-вольтовый переменный ток (AC), поступающий от обычной сетевой розетки, в ток, который ваш телефон может использовать для зарядки своей батареи.
Преобразование энергии в форму, которую может принять аккумулятор электромобиля, — это именно то, что делает зарядная станция для электромобилей. Он принимает электрический ток, имеющийся в вашем доме — 120 или 240 вольт переменного тока — и преобразует его в ток, который может принять аккумуляторная система электромобиля.
Зарядные станции для коммерческих электромобилей, подобные тем, которые вы видите на парковках в торговых центрах и на некоторых крупных межштатных автомагистралях, используют гораздо более высокие напряжения и, таким образом, могут заряжать аккумуляторы намного быстрее, чем домашние зарядные станции. Однако их установка чрезвычайно дорога. Кроме того, даже если у вас есть деньги, которые можно потратить на коммерческую зарядную станцию, ваша домашняя электрическая система и даже электрическая сеть, в которой находится ваш дом, могут быть не оборудованы для этого.
Какие типы станций зарядки электромобилей существуют?Существует три основных типа зарядных станций для электромобилей, которые часто называют «сервисным оборудованием для электромобилей» или EVSE.Они варьируются от простых и простых до более сложных, чем вы когда-либо могли бы подумать об установке в своем домашнем гараже.
Что такое зарядная станция уровня 1?Зарядная станция уровня 1 — самая простая из трех типов. Зарядный кабель, который поставляется с покупкой или арендой электромобиля, по сути, является зарядным устройством уровня 1. Эти зарядные устройства используют обычный домашний электрический ток — 110–120 вольт переменного тока — и многие просто подключаются к стандартной заземленной розетке с помощью обычной трехконтактной вилки.
Простота и низкая стоимость зарядных устройств уровня 1 привлекательны, но их недостатком является медленное, а иногда и мучительно медленное время перезарядки аккумулятора. Хорошее практическое правило для подзарядки электромобиля с помощью зарядного устройства уровня 1 — четыре мили заряда батареи на каждый час зарядки. Если ваш электромобиль имеет запас хода 200 миль при полной батарее, полная зарядка автомобиля может занять 50 часов.
Мы рекомендуем использовать решения для зарядки уровня 1 только с подключаемыми к сети гибридными электромобилями (PHEV). С обычным PHEV вы можете легко зарядить аккумулятор за ночь.
Что такое зарядная станция уровня 2?Следующим по шкале зарядных станций для электромобилей является зарядное устройство 2-го уровня. В устройствах уровня 2 используются цепи на 240 вольт, тип электрических цепей, которые обычно используются в электрических сушилках для одежды.
Некоторые зарядные станции уровня 2 портативны и используют специальную вилку с несколькими штырями и соответствующую розетку, которые используются для сушилок для одежды. Во многих домах есть такая схема и розетка в прачечных. Но, конечно, неудобно отключать сушилку от сети, чтобы можно было подключить зарядное устройство для своего электромобиля.
По этой причине подавляющее большинство людей, устанавливающих у себя дома зарядную станцию 2-го уровня, нанимают электрика для подключения к гаражу 240-вольтовой цепи. Как только в гараже появится электричество, потребители могут подключить зарядную станцию к этой цепи. Или они могут подключить портативное зарядное устройство 2-го уровня к специальной розетке на 240 В в своем гараже, при этом наслаждаясь возможностью взять зарядное устройство с собой в дорогу.
Конечно, наем электрика и изменение домашней электросети может оказаться дорогостоящим делом.Но большим преимуществом является более высокая скорость перезарядки, которая сокращает время перезарядки. Зарядная станция уровня 2 часто заряжает батарею электромобиля за четверть времени, которое требуется от зарядного устройства уровня 1, что делает ее лучшей зарядной станцией для людей, которые покупают чисто электрический автомобиль.
Для электромобиля с радиусом действия 200 миль вы можете зарядить аккумулятор примерно за 12 часов или меньше. Используйте зарядную станцию уровня 2 с PHEV, и вы сможете зарядиться за пару часов.
Что такое зарядная станция уровня 3?Третий тип зарядной станции для электромобилей — это уровень 3, и он предназначен для коммерческого использования.
Зарядные станции уровня 3 обеспечивают быструю зарядку постоянным током, что значительно сокращает время зарядки. Некоторые зарядные станции уровня 3 могут разряжать аккумулятор электромобиля до полной зарядки за час или меньше.
Полная установка зарядной станции уровня 3 может легко стоить 50 000 долларов. Но даже если у вас есть такие деньги, маловероятно, что ваша энергоснабжающая компания разрешит установку зарядного устройства уровня 3 в вашем доме, потому что электрическая сеть во многих жилых районах не поддерживает это.
Сколько стоит зарядная станция для электромобиля?Если вы рассматриваете электромобиль, вы, безусловно, хотите знать, сколько будет стоить установка зарядной станции для электромобиля. Ответ, как и во многих случаях, касающихся электромобилей, — «это зависит от обстоятельств».
Если вас устраивает очень медленная зарядка уровня 1, это может вам ничего не стоить. Вы просто подключаете шнур для зарядки к розетке в гараже или даже за пределами дома и таким образом заряжаете аккумулятор вашего автомобиля.Новые электромобили оснащены зарядным шнуром уровня 1, совместимым с электрическими розетками в вашем доме. Но если вы не хотите спорить с ним каждый раз, когда вам нужно зарядить свой автомобиль, вы можете купить зарядное устройство уровня 1 примерно за 180–300 долларов в зависимости от его сложности и сложности. Они крепятся к стене и подключаются к существующей розетке.
Зарядные станции 2-го уровня дороже. Они начинаются примерно с 300 долларов и могут легко превысить 700 долларов за сложное настенное устройство с жестким монтажом. Для установки зарядного устройства уровня 2 вам почти наверняка потребуется нанять электрика, и, в зависимости от возраста вашего дома и нагрузки на существующую электрическую панель, вам, возможно, также придется модернизировать электрическую систему вашего дома.Также вероятно, что вам нужно будет получить разрешение на работу в вашем районе. Затраты могут легко составить от 1000 до 2000 долларов.
Установка зарядной станции уровня 3 дома, как мы уже сказали, является непомерно дорогостоящей. У вас есть лишние 50 тысяч долларов, которые бездействуют?
Сколько времени нужно на зарядку электромобиля?Мы дали вам представление о том, сколько времени требуется для зарядки электромобиля в наших описаниях различных доступных зарядных станций, но, опять же, реальный ответ — «это зависит от обстоятельств».»
Важно учитывать, что подзарядка электромобиля — это другой процесс, чем заправка обычного автомобиля бензином. С домашней зарядной станцией для электромобилей, и особенно если у вас также есть возможность подзарядить свой автомобиль на работе, многие владельцы электромобилей никогда не приближайтесь к истощению запаса электроэнергии в своем автомобиле. Держите аккумулятор полностью заряженным, и время подзарядки никогда не должно вызывать беспокойства.
Теперь предположим, что вы находитесь вдали от дома и офиса, а аккумулятор вашего электромобиля почти разряжен.Сколько времени нужно для зарядки электромобиля в этом сценарии?
Воспользуйтесь общедоступным зарядным устройством постоянного тока, и вы сможете зарядить свой электромобиль за час или меньше. Подключайтесь к более распространенной (и доступной) общественной зарядной станции уровня 2, и вы можете окупить от 25 до 35 миль пробега за каждый час, когда электромобиль подключен. Если вы навещаете друзей или родственников, это может занять много времени. четыре дня, чтобы подзарядить самый дальнобойный Tesla, подключив его к той же домашней розетке, которую вы использовали бы для зарядки своего телефона.
Время зарядки зависит от общей емкости аккумулятора, его состояния заряда и типа используемой зарядной станции.
Сколько стоит зарядка электромобиля?К настоящему моменту вы можете догадаться, что ответ на этот вопрос — «это зависит от обстоятельств». В число вовлеченных факторов входит то, сколько коммунальные предприятия взимают с вас плату за электроэнергию и даже время суток, когда вы заряжаете свой автомобиль.
Прежде всего, тарифы на электроэнергию сильно различаются в зависимости от того, где вы живете.Кроме того, поставщики электроэнергии часто предлагают различные тарифные планы, поэтому вы можете платить за электроэнергию больше, чем ваш ближайший сосед, но намного меньше, чем ваш двоюродный брат в Коннектикуте.
Многие коммунальные предприятия также взимают разные тарифы за электроэнергию в зависимости от времени суток, в которое она используется. Тарифы могут быть самыми высокими в дневное время, когда спрос выше, и ниже ночью, когда спрос на электроэнергию намного ниже. Вот почему вы можете запрограммировать многие электромобили так, чтобы они начинали заряжаться в определенное время, чтобы воспользоваться преимуществами низких тарифов на электроэнергию.
Вообще говоря, разумная оценка заключается в том, что зарядка электромобиля будет стоить типичному потребителю от 3,5 центов за пройденную милю до 12 центов за милю *. Сравните это с автомобилем с двигателем внутреннего сгорания, который стоит от 4,4 цента за милю до 38,75 цента за милю **.
Электромобиль против. Стоимость бензинаДавайте сравним яблоки с яблоками, используя Volvo XC40, который предлагает выбор между двигателем внутреннего сгорания и системой электропривода.
Согласно EPA, Volvo XC40 2021 года с полным приводом потребляет четыре галлона бензина на каждые 100 миль пути. Исходя из средней цены за галлон бензина (2,88 доллара США) в США на 18 марта 2021 года, поездка на этом внедорожнике на 100 миль стоит 11,52 доллара. Это относится только к расходам на бензин и не включает затраты на замену масла и другие расходы на техническое обслуживание и ремонт, характерные для двигателей внутреннего сгорания.
Volvo предлагает электрическую версию XC40. Агентство по охране окружающей среды заявляет, что оно использует 43 кВтч электроэнергии на каждые 100 миль пути.При среднем тарифе на электричество в США 13,19 цента за кВтч проехать 100 миль на внедорожнике стоит 5,67 долларов. Это относится только к расходам на электроэнергию и не включает амортизированную стоимость зарядной станции и установки зарядной станции. Также не учитывается, что электрический XC40 стоит на 14 500 долларов больше, чем эквивалентный XC40 с газовым двигателем (до применения федерального налогового кредита, государственных и местных льгот или стимулов для производителей).
Подводя итогиПомимо разницы в цене между бензиновыми и электромобилями, переход на полностью электрический требует некоторых первоначальных инвестиций с точки зрения покупки и установки домашней зарядной станции для электромобилей.Но, как мы продемонстрировали, стоимость проезда на электромобиле за милю существенно ниже, чем на эквивалентном транспортном средстве с двигателем внутреннего сгорания.
После этого электромобили просто должны быть более конкурентоспособными с точки зрения закупочной цены, а общественные зарядные станции должны стать более доступными, чтобы американцы отказались от динозавров в пользу электричества.
* Этот диапазон основан на самом низком (24 кВтч / 100) и максимальном (50 кВтч / 100) киловатт-часах на 100 миль рейтинга, присвоенном электромобилям 2021 модельного года Агентством по охране окружающей среды, и измеряется относительно самого низкого (Луизиана) и самые высокие (Гавайи) средние тарифы на электроэнергию в США.S. в феврале 2021 года.
** Этот диапазон основан на самом низком (10 миль на галлон) и самом высоком (59 миль на галлон) рейтинге EPA, присвоенном автомобилям 2021 модельного года с двигателями внутреннего сгорания, измеренным по сравнению с самыми низкими (Миссисипи) и самыми высокими (Калифорния) ценами за галлон бензина в США 18 марта 2021 года.
Разработка индивидуальной схемы зарядного устройства
Я разработал и опубликовал множество схем зарядного устройства на этом веб-сайте, однако читатели часто путаются при выборе правильной схемы зарядного устройства для своих индивидуальных приложений.И я должен подробно объяснить каждому из читателей, как настроить данную схему зарядного устройства для их конкретных нужд.
Это отнимает много времени, так как это то же самое, что я должен время от времени объяснять каждому из читателей.
Это побудило меня опубликовать этот пост, в котором я попытался объяснить стандартную конструкцию зарядного устройства и способы ее настройки несколькими способами в соответствии с индивидуальными предпочтениями с точки зрения напряжения, тока, автоматического отключения или полуавтоматических операций.
Правильная зарядка аккумулятора имеет решающее значение
Три основных параметра, которые требуются всем аккумуляторам для оптимальной и безопасной зарядки:
- Постоянное напряжение.
- Постоянный ток.
- Автоматическое отключение.
Итак, по сути, это три основные вещи, которые необходимо применить для успешной зарядки аккумулятора, а также для обеспечения того, чтобы срок службы аккумулятора не пострадал в процессе.
Несколько расширенных и дополнительных условий:
Управление температурой.
и Пошаговая зарядка.
Два вышеуказанных критерия особенно рекомендуются для литий-ионных аккумуляторов, в то время как они могут быть не столь важны для свинцово-кислотных аккумуляторов (хотя нет ничего плохого в том, чтобы реализовать их для тех же самых)
Давайте разберемся с вышеуказанными условиями поэтапно и посмотрите, как можно настроить требования в соответствии со следующими инструкциями:
Важность постоянного напряжения:
Все батареи рекомендуется заряжать при напряжении, которое может быть примерно на 17-18% выше, чем напряжение батареи, указанное на принтере. , и этот уровень не должен сильно увеличиваться или колебаться.
Следовательно, для аккумулятора 12 В значение составляет около 14,2 В, и его не следует сильно увеличивать.
Это требование называется требованием постоянного напряжения.
При наличии большого количества микросхем регуляторов напряжения на сегодняшний день создание зарядного устройства постоянного напряжения занимает считанные минуты.
Самыми популярными среди этих микросхем являются LM317 (1,5 ампер), LM338 (5 ампер), LM396 (10 ампер). Все это микросхемы регуляторов переменного напряжения, которые позволяют пользователю устанавливать любое желаемое постоянное напряжение в любом месте от 1.От 25 до 32 В (не для LM396).
Вы можете использовать IC LM338, который подходит для большинства батарей для достижения постоянного напряжения.
Вот пример схемы, которую можно использовать для зарядки любой батареи от 1,25 до 32 В с постоянным напряжением.
Схема зарядного устройства постоянного напряжения
Изменение потенциометра 5 кОм позволяет установить любое желаемое постоянное напряжение на конденсаторе C2 (Vout), которое можно использовать для зарядки подключенного аккумулятора по этим точкам.
Для фиксированного напряжения вы можете заменить R2 на фиксированный резистор, используя следующую формулу:
VO = VREF (1 + R2 / R1) + (IADJ × R2)
Где VREF = 1,25
Поскольку IADJ слишком мал его можно игнорировать
Хотя может потребоваться постоянное напряжение, в местах, где напряжение от входной сети переменного тока не меняется слишком сильно (вполне приемлемо повышение / понижение на 5%), можно полностью исключить указанную выше схему и забыть о ней. коэффициент постоянного напряжения.
Это означает, что мы можем просто использовать трансформатор с правильными номиналами для зарядки аккумулятора, не учитывая условия постоянного напряжения, при условии, что входная сеть достаточно надежна с точки зрения его колебаний.
Сегодня, с появлением устройств SMPS, вышеупомянутая проблема полностью становится несущественной, поскольку все SMPS являются источниками питания постоянного напряжения и обладают высокой надежностью с учетом своих характеристик, поэтому, если доступен SMPS, указанная выше схема LM338 может быть определенно исключена.
Но обычно SMPS поставляется с фиксированным напряжением, поэтому в этом случае его настройка для конкретной батареи может стать проблемой, и вам, возможно, придется выбрать универсальную схему LM338, как описано выше … или если вы все еще хотите Во избежание этого вы можете просто изменить саму схему SMPS для получения желаемого зарядного напряжения.
В следующем разделе поясняется разработка индивидуальной схемы управления током для конкретного выбранного зарядного устройства.
Добавление постоянного токаКак и параметр «постоянное напряжение», рекомендуемый зарядный ток для конкретной батареи не должен сильно увеличиваться или колебаться.
Для свинцово-кислотных аккумуляторов скорость зарядки должна составлять примерно 1/10 или 2/10 от напечатанного значения Ач (ампер-часов) аккумулятора.это означает, что если батарея рассчитана, скажем, на 100 Ач, то ее зарядный ток (ампер) рекомендуется на уровне 100/10 = минимум 10 ампер или (100 x 2) / 10 = 200/10 = 20 ампер максимум, это значение должно не увеличивать, желательно для поддержания нормального состояния батареи.
Однако для литий-ионных или липоаккумуляторных батарей критерий совершенно другой, для этих аккумуляторов скорость зарядки может быть такой же высокой, как и их скорость в ампер-часах, что означает, что если спецификация AH литий-ионной батареи составляет 2,2 Ач, то можно заряжать он на том же уровне, что и на 2.2 ампера. Здесь не нужно ничего делить и заниматься какими-либо вычислениями.
Для реализации функции постоянного тока снова становится полезным LM338, который может быть настроен для достижения параметра с высокой степенью точности.
Приведенные ниже схемы показывают, как можно сконфигурировать ИС для реализации зарядного устройства с регулируемым током.
Обязательно ознакомьтесь с этой статьей , которая предоставляет отличную и настраиваемую схему зарядного устройства.
Схема зарядного устройства с постоянным и постоянным током
Как обсуждалось в предыдущем разделе, если входная сеть достаточно постоянна, вы можете игнорировать правую часть LM338 и просто использовать левую схему ограничителя тока с либо трансформатор, либо SMPS, как показано ниже:
В приведенной выше схеме напряжение трансформатора может быть рассчитано на уровне напряжения батареи, но после выпрямления оно может быть немного выше указанного напряжения зарядки батареи.
Этой проблемой можно пренебречь, поскольку подключенная функция контроля тока заставит напряжение автоматически понижать избыточное напряжение до безопасного уровня напряжения зарядки аккумулятора.
R1 можно настроить в соответствии с потребностями, следуя инструкциям, представленным ЗДЕСЬ.
Диоды должны иметь соответствующий номинал в зависимости от зарядного тока и предпочтительно должны быть намного выше, чем указанный уровень зарядного тока.
Настройка тока для зарядки аккумулятораВ приведенных выше схемах упомянутая микросхема LM338 рассчитана на ток не более 5 А, что делает ее пригодной только для аккумуляторов до 50 Ач, однако у вас могут быть батареи с гораздо более высоким номиналом в порядка 100, 200 или даже 500 ах.
Для них может потребоваться зарядка при более высоких скоростях тока, которых одного LM338 может быть недостаточно.
Чтобы исправить это, можно модернизировать или улучшить ИС, добавив больше ИС параллельно, как показано в следующем примере статьи:
Схема зарядного устройства 25 А
В приведенном выше примере конфигурация выглядит немного сложной из-за включения операционного усилителя. Однако небольшая работа показывает, что на самом деле микросхемы могут быть добавлены напрямую параллельно для увеличения выходного тока, при условии, что все микросхемы установлены на общем радиаторе, см. диаграмму ниже:
Любое количество микросхем может быть добавлено в показанный формат для достижения любого желаемого предела тока, однако для получения оптимального отклика от конструкции необходимо обеспечить две вещи:
Все ИС должны быть установлены на общем радиаторе, а все ограничивающие ток резисторы (R1) должны быть фиксируется с точно совпадающим значением, оба параметра необходимы для обеспечения равномерного распределения тепла между ИС и, следовательно, равного распределения тока на выходе для подключенной батареи .
До сих пор мы узнали, как настроить постоянное напряжение и постоянный ток для конкретного приложения зарядного устройства.
Однако без автоматического отключения цепь зарядного устройства может быть неполной и совершенно небезопасной.
До сих пор в наших руководствах по зарядке аккумулятора мы узнали, как настроить параметр постоянного напряжения при создании зарядного устройства, в следующих разделах мы попытаемся понять, как реализовать автоматическое отключение полной зарядки для обеспечения безопасной зарядки для подключенный аккумулятор.
Добавление автоматического отключения в зарядное устройство
В этом разделе мы узнаем, как можно добавить автоматическое отключение в зарядное устройство, что является одним из наиболее важных аспектов в таких схемах.
Простой каскад автоматического отключения может быть включен и настроен в выбранную схему зарядного устройства путем включения компаратора операционного усилителя.
Операционный усилитель может быть расположен так, чтобы обнаруживать повышение напряжения батареи во время ее зарядки и отключать зарядное напряжение, как только напряжение достигает полного уровня заряда батареи.
Возможно, вы уже видели эту реализацию в большинстве схем автоматического зарядного устройства, опубликованных на данный момент в этом блоге.
Концепцию можно полностью понять с помощью следующего пояснения и показанной имитации схемы в формате GIF:
ПРИМЕЧАНИЕ: Пожалуйста, используйте замыкающий контакт реле для входа зарядки вместо показанного замыкающего контакта. Это гарантирует, что реле не будет дребезжать при отсутствии батареи. Чтобы это работало, также не забудьте поменять местами входные контакты (2 и 3) друг с другом .
В приведенном выше эффекте моделирования мы видим, что операционный усилитель настроен как датчик напряжения батареи для определения порогового значения избыточного заряда и отключения питания батареи, как только это обнаруживается.
Предустановка на выводе (+) ИС настраивается таким образом, что при полном напряжении батареи (здесь 14,2 В) контакт № 3 приобретает более высокий потенциал, чем вывод (-) ИС, который фиксируется опорным сигналом. напряжение 4,7В с стабилитроном.
Вышеупомянутый источник «постоянного напряжения» и «постоянного тока» подключается к цепи, а аккумулятор через замыкающий контакт реле.
Первоначально напряжение питания и аккумулятор отключены от цепи.
Во-первых, разряженный аккумулятор может быть подключен к цепи, как только это будет сделано, операционный усилитель обнаруживает потенциал, который ниже (10,5 В, как предполагается здесь), чем уровень полного заряда, и из-за этого загорается КРАСНЫЙ светодиод. горит, указывая на то, что уровень заряда аккумулятора ниже полного.
Затем включается входной зарядный источник питания 14,2 В.
Как только это будет сделано, входное напряжение мгновенно опустится до напряжения батареи и достигнет 10.Уровень 5В.
Начинается процедура зарядки, и аккумулятор начинает заряжаться.
По мере увеличения напряжения на клеммах аккумулятора во время зарядки, напряжение на контакте (+) также соответственно увеличивается.
И в тот момент, когда напряжение батареи достигает полного входного уровня, то есть уровня 14,3 В, контакт (+) также пропорционально достигает 4,8 В, что чуть выше, чем напряжение на контакте (-).
Это мгновенно заставляет выходной сигнал операционного усилителя повышаться.
Теперь КРАСНЫЙ светодиод погаснет, а зеленый светодиод загорится, указывая на действие переключения, а также на то, что аккумулятор полностью заряжен.
Однако то, что может произойти после этого, не показано в приведенном выше моделировании. Мы узнаем это из следующего объяснения:
Как только реле сработает, напряжение на клеммах батареи быстро упадет и восстановится до некоторого более низкого уровня, так как батарея 12 В никогда не будет поддерживать уровень 14 В постоянно и будет пытаться достичь 12.Отметка 8V примерно.
Теперь, из-за этого условия, напряжение на контакте (+) снова будет падать ниже опорного уровня, установленного контактом (-), что снова побудит реле выключиться, и процесс зарядки будет снова инициирован. .
Это включение / выключение реле будет продолжать циклически повторяться, издавая нежелательный «щелкающий» звук из реле.
Чтобы избежать этого, необходимо добавить в схему гистерезис.
Это достигается путем подключения резистора высокого номинала к выходу и контакту (+) ИС, как показано ниже:
Добавление гистерезиса
Добавление указанного выше резистора гистерезиса предотвращает колебания реле ВКЛ / ВЫКЛ при пороговые уровни и фиксирует реле до определенного периода времени (до тех пор, пока напряжение батареи не упадет ниже допустимого предела этого значения резистора).
Резисторы большего номинала обеспечивают меньшие периоды фиксации, в то время как резисторы меньшего номинала обеспечивают более высокий гистерезис или больший период фиксации.
Таким образом, из приведенного выше обсуждения мы можем понять, как правильно сконфигурированная схема автоматического отключения батареи может быть спроектирована и настроена любым любителем для его предпочтительных характеристик зарядки батареи.
Теперь давайте посмотрим, как может выглядеть вся конструкция зарядного устройства, включая постоянное напряжение / ток, установленное вместе с вышеуказанной конфигурацией отключения:
Итак, вот готовая индивидуальная схема зарядного устройства, которая может быть использована для зарядки любой желаемой батареи после настраивая его, как описано во всем нашем руководстве:
- Операционный усилитель может быть IC 741
- Предустановка = 10k предустановка
- , оба стабилитрона могут быть = 4.7 В, 1/2 Вт
- стабилитрон = 10 кОм
- Светодиодные и транзисторные резисторы также могут быть = 10 кОм
- Транзистор = BC547
- реле, диод = 1N4007
- реле = выбрать соответствие напряжения батареи.
Как заряжать батарею без каких-либо из вышеперечисленных средств
Если вам интересно, можно ли заряжать батарею, не подключая какие-либо из вышеупомянутых сложных схем и частей? Ответ — да, вы можете безопасно и оптимально заряжать любую батарею, даже если у вас нет ни одной из вышеупомянутых схем и деталей.
Прежде чем продолжить, было бы важно знать несколько важных вещей, которые требуются батарее для безопасной зарядки, а также то, что делает такие важные параметры «автоматическое отключение», «постоянное напряжение» и «постоянный ток».
Эти функции становятся важными, когда вы хотите, чтобы аккумулятор заряжался с максимальной эффективностью и быстро. В таких случаях вы можете захотеть, чтобы ваше зарядное устройство было оснащено многими расширенными функциями, как предложено выше.
Однако, если вы готовы согласиться с тем, что полный уровень заряда вашей батареи немного ниже оптимального, и если вы готовы предоставить еще несколько часов для завершения зарядки, то, безусловно, вам не потребуются какие-либо рекомендуемые функции. такие как постоянный ток, постоянное напряжение или автоматическое отключение, вы можете забыть обо всем этом.
Обычно аккумулятор не следует заряжать с помощью расходных материалов, мощность которых превышает номинал аккумулятора, указанный в печатной версии, это очень просто.
Это означает, что ваша батарея рассчитана на 12 В / 7 Ач, в идеале вы никогда не должны превышать полную скорость заряда выше 14,4 В, а ток выше 7/10 = 0,7 ампер. Если эти две скорости поддерживаются правильно, вы можете быть уверены, что ваша батарея в надежных руках и ни при каких обстоятельствах не пострадает.
Таким образом, чтобы обеспечить выполнение вышеуказанных критериев и зарядить аккумулятор без использования сложных цепей, просто убедитесь, что входной источник питания, который вы используете, рассчитан соответствующим образом.
Например, если вы заряжаете аккумулятор на 12 В / 7 Ач, выберите трансформатор, который вырабатывает около 14 В после выпрямления и фильтрации, а его ток рассчитан примерно на 0,7 ампер. То же правило может быть применимо и к другим батареям пропорционально.
Основная идея здесь состоит в том, чтобы параметры зарядки были немного ниже максимально допустимого значения. Например, аккумулятор 12 В может быть рекомендован для зарядки на 20% выше указанного значения, то есть 12 x 20% = 2.4 В выше 12 В = 12 + 2,4 = 14,4 В.
Поэтому мы стараемся поддерживать это значение немного ниже на уровне 14 В, что может не заряжать аккумулятор до оптимальной точки, но будет просто хорошо для чего угодно, на самом деле, поддержание значения немного ниже увеличит срок службы аккумулятора, позволяя гораздо больше заряда / циклы разряда в долгосрочной перспективе.
Точно так же поддержание зарядного тока на уровне 1/10 от напечатанного значения Ач гарантирует, что аккумулятор заряжается с минимальным напряжением и рассеиванием, что продлевает срок службы аккумулятора.
Окончательная установка
Простая установка, показанная выше, может универсально использоваться для безопасной и оптимальной зарядки любой батареи, при условии, что у вас будет достаточно времени для зарядки или пока стрелка амперметра не опустится почти до нуля.
Конденсатор фильтра 1000 мкФ на самом деле не нужен, как показано выше, и его устранение фактически увеличило бы срок службы батареи.
Есть еще сомнения? Не стесняйтесь выражать их в своих комментариях.
Источник: зарядка аккумулятора
Зарядка электромобиля 101 | CALeVIP
Узнайте больше о различных вариантах зарядки электромобилей (EV).
Зарядные устройства для электромобилей уровня 1, 2 и постоянного тока
Зарядные устройстваEV делятся на три категории: уровень 1, уровень 2 и быстрая зарядка постоянного тока (DC). Одно из различий между этими тремя уровнями — это входное напряжение, уровень 1 использует 110/120 вольт, уровень 2 использует 208/240 вольт, а быстрые зарядные устройства постоянного тока используют от 200 до 600 вольт. Многочисленные производители выпускают зарядные устройства с разнообразной продукцией и разными ценами, приложениями и функциями.
Уровень 1 Зарядка
ЗарядкаLevel 1 является рентабельной — в ней используется стандартная розетка на 110 В, что позволяет водителям электромобилей использовать комплект зарядных шнуров, поставляемый с большинством электромобилей, практически в любом месте.Эта зарядка занимает больше всего времени и используется в основном в качестве дополнительной, аварийной или резервной зарядки.
Зарядка уровня 1 может быть жизнеспособным решением в многоквартирных домах (MUD), таких как многоквартирные дома или кондоминиумы, а также на некоторых рабочих местах. В настройках MUD большая часть зарядки Уровня 1 осуществляется от существующих розеток 110 В на стоянке или в личных гаражах / навесах жителей. Когда планируются новые зарядные устройства, схема с более высокой выходной мощностью 240 В часто оказывается более рентабельной, поскольку предлагает большую емкость для зарядки по эквивалентной установленной цене.
Выходная мощность зарядки уровня 1 незначительно отличается, но обычно составляет от 12 до 16 ампер непрерывной мощности. При таких уровнях мощности зарядное устройство уровня 1, по оценкам, обеспечивает запас хода от 3,5 до 6,5 миль в час. Эти тарифы могут быть удовлетворительными для водителей, которые не проезжают более 30-40 миль в день и могут использовать зарядное устройство на ночь.
Большинство электромобилей поставляются с фирменным шнуром Level 1 в багажнике. Существует всего несколько сторонних производителей зарядных устройств уровня 1, и большинство из них предназначены для использования в жилых помещениях.
Уровень 2 Зарядка
Зарядные устройстваLevel 2 — это типичные решения для жилых и коммерческих помещений. Большинство из них предлагают более высокую выходную мощность, чем зарядные устройства уровня 1, и обладают дополнительными функциями, недоступными для зарядных устройств уровня 1. В целом зарядные устройства уровня 2 различаются между зарядными устройствами, не подключенными к сети, и зарядными устройствами, подключенными к сети.
Зарядные устройства уровня 2, не подключенные к сети
Зарядные устройства уровня 2, не подключенные к сети, используются как в одноквартирных домах, так и в MUD.Они могут быть разработаны для использования внутри или вне помещений (например, NEMA 3R, NEMA 6P, NEMA 4x) и обычно вырабатывают от 16 до 40 ампер выходной мощности, что может обеспечить от 14 до 35 миль электрического диапазона за час зарядки. Они выполняют ту же функцию, что и зарядные устройства 1-го уровня, однако, если для установки выделенной цепи для зарядки электромобилей требуется разрешение на электричество, чаще всего лучше установить 240-вольтовую цепь для зарядки 2-го уровня.
Зарядные устройства уровня 2, не подключенные к сети, полезны для установки в MUD или коммерческих объектах, которые питаются от субпанелей жителей или арендаторов.В этом случае вся электроэнергия, используемая зарядными устройствами, будет включена в счет за электроэнергию человека, что устраняет необходимость в отдельном счетчике зарядных устройств. Кроме того, при наличии электрической емкости несетевые зарядные устройства уровня 2 полезны для узлов сети, которым требуется более высокая мощность, чем зарядка уровня 1, но которые не имеют большого бюджета.
Зарядные устройствауровня 2 доступны с различными выходными мощностями от 16 до 40 ампер, с несетевыми зарядными устройствами по несколько более низкой цене, чем сетевые зарядные устройства.Таким образом, если жителю / владельцу недвижимости не нужны сетевые зарядные устройства (описанные в следующем разделе), зарядных устройств, не подключенных к сети, будет достаточно.
Сетевые зарядные устройства
Хотя сетевые зарядные устройства иногда используются в частных домах, они более распространены в коммерческих / рабочих условиях, где требуются платежи, или в MUD, где счет за электроэнергию распределяется между несколькими жителями. Они могут быть разработаны для использования внутри или вне помещений (например, NEMA 3R, NEMA 6P, NEMA 4x).Сетевые зарядные устройства уровня 2, как и несетевые зарядные устройства, обычно вырабатывают от 16 до 40 ампер выходной мощности, что может обеспечить от 14 до 35 миль электрического диапазона за час зарядки, а их выходная мощность иногда регулируется. Некоторые из расширенных функций включают удаленный доступ / управление через Wi-Fi или сотовую связь, контроль доступа / возможность принимать несколько форм оплаты, балансировку нагрузки между несколькими зарядными устройствами и многое другое.
Сетевые зарядные устройстваполезны для сайтов, которым необходимо отслеживать потребление электроэнергии несколькими зарядными устройствами, у которых несколько водителей используют одно зарядное устройство или требуют оплаты за использование зарядных устройств, а также для сайтов с небольшой электрической мощностью и, следовательно, для балансировки своей нагрузки.Некоторые модели сетевых зарядных устройств также могут ограничивать зарядку определенными часами, что позволяет оператору максимизировать структуру тарифов на электроэнергию по времени использования (TOU) и разрешать зарядку только тогда, когда электричество самое дешевое (обычно где-то между 21:00 и 6:00). . Этот тип контроля также увеличивает вероятность участия в программах реагирования на спрос коммунальных предприятий. Следовательно, хотя сетевые зарядные устройства дороже, чем несетевые зарядные устройства, они обладают гораздо большей функциональностью и могут предоставить больше возможностей для рабочего места, коммерческого объекта или MUD.
DC Быстрая зарядка
Зарядные устройстваDC — самые мощные зарядные устройства для электромобилей на рынке. Они часто используются в качестве расширителей диапазона вдоль основных транспортных коридоров для поездок на дальние расстояния и в городских условиях для поддержки водителей без зарядки дома или водителей с очень большим пробегом. Большинство представленных на рынке устройств быстрой зарядки постоянного тока заряжаются от 25 до 50 кВт. При нынешних скоростях зарядки они идеально подходят для мест, где человек будет проводить от 30 минут до часа, таких как рестораны, зоны отдыха и торговые центры.
Доступные в настоящее время устройства быстрой зарядки постоянного тока требуют входного напряжения 480+ вольт и 100+ ампер (50-60 кВт) и могут произвести полную зарядку электромобиля с аккумулятором на 100 миль диапазона чуть более чем за 30 минут (178 миль электрического привода). за час зарядки). Тем не менее, новые поколения устройств быстрой зарядки постоянного тока набирают обороты и могут производить 150–350 кВт мощности.
Важно отметить, что не каждая модель электромобиля поддерживает быструю зарядку постоянным током, и, следовательно, они не могут использоваться каждым водителем электромобиля.Кроме того, в связи с требованиями к электрической нагрузке и электропроводке для установки требуется наличие коммерческого электрика на начальном этапе планирования. Кроме того, у быстрых зарядных устройств постоянного тока есть несколько стандартов для разъемов, тогда как существует только один общий стандарт для зарядки уровней 1 и 2 (SAE J1772). Зарядные устройства постоянного тока имеют три типа разъемов: CHAdeMO, CCS или Tesla.
Безопасная зарядка автомобильных аккумуляторов
Зарядка автомобильных аккумуляторов? Это действительно необходимо? Если да, то как часто и как долго? Разве современные батареи не требуют обслуживания? Многие водители задавали эти или подобные вопросы.Во-первых: обычно генератор должен адекватно заряжать аккумулятор при повседневном использовании. Однако бывают ситуации, когда подзарядка и другие меры по уходу могут положительно сказаться на сроке службы автомобильного аккумулятора. Например, это рекомендуется для использования обычных свинцово-кислотных аккумуляторов в сочетании с короткими поездками, особенно в холодную погоду. То же самое, если автомобиль стоит в гараже долгое время.
Современные необслуживаемые батареи имеют то преимущество, что больше не нужно доливать в них дистиллированную воду.Чтобы автомобильный аккумулятор работал надежно, хороший уровень заряда может быть обеспечен за счет использования автомобильного зарядного устройства.
Уход и зарядка аккумулятора своими руками — на что обратить вниманиеВажно: При обращении с свинцово-кислотными аккумуляторами необходимо соблюдать осторожность. При неправильном обращении электролит из стартерной батареи может вытечь или разбрызгаться. Перезарядка может привести к образованию взрывоопасного водорода. Если старый автомобиль не оснащен необслуживаемой аккумуляторной батареей, рекомендуется посетить мастерскую.
Важно: Независимо от этого, при обслуживании, снятии или установке аккумулятора необходимо надевать защитные очки и перчатки. Во избежание короткого замыкания важно избегать соединения клемм путем контакта с металлическими или проводящими материалами, так как в противном случае существует опасность поражения электрическим током или получения травм.
Однако при правильном и бережном обращении все водители могут зарядить аккумулятор самостоятельно.
Прежде всего: Подготовка перед зарядкойЗарядка аккумулятора в автомобиле проще и предпочтительнее из соображений безопасности, хотя это не всегда возможно.Если нет гаража или подключения к электричеству, часто нет альтернативы зарядке аккумулятора вне автомобиля. Обеспечьте хорошую вентиляцию при зарядке в закрытых помещениях. Если аккумулятор извлекается из моторного отсека для зарядки, второй человек должен помочь поднять большие аккумуляторы из-за большого веса.
Важно : В свинцово-кислотных аккумуляторах во время зарядки следует ожидать образования взрывоопасного водорода и дегазации.В крайних случаях высокая концентрация водорода может привести к взрыву с серьезными травмами и повреждениями.
Также следует отметить дефекты АКБ. Кислота может вытекать из поврежденных батарей. Физический контакт с аккумуляторной кислотой может вызвать серьезные ожоги. Пораженный участок необходимо тщательно промыть чистой водой и немедленно обратиться к врачу.
Зарядка автомобильного аккумулятора — пошаговая инструкция- Отсоединить соединительные кабели
Важно : Сначала необходимо отсоединить кабель, подключенный к отрицательной клемме.Это предотвращает короткое замыкание между положительной клеммой и массой. Затем отсоедините красный кабель, подключенный к положительной клемме.
- Проверить состояние АКБ
Для свинцово-кислотных аккумуляторов, которые не требуют обслуживания, мы рекомендуем посетить мастерскую. Ни при каких обстоятельствах не следует проверять уровень кислотной воды самостоятельно.
Для необслуживаемых аккумуляторов проверка электролита не требуется.Здесь нужно только очистить от грязи вентиляционные трубы.
Независимо от причины зарядки (например, в случае разряда аккумулятора, длительного простоя, коротких поездок) рекомендуется время от времени проводить проверку аккумулятора на мастерской. Это единственный способ гарантировать, что ваш автомобиль всегда заводится. По данным немецкого ADAC, более 40 процентов всех поломок вызваны плохо обслуживаемыми батареями.
- Начать зарядку
Важно : Если аккумулятор необходимо вынуть из автомобиля для зарядки, необходимо следить за тем, чтобы аккумулятор оставался вертикальным при подъеме и переноске.Если аккумулятор заряжается в автомобиле, все потребители электроэнергии должны быть отключены перед подключением зарядного устройства.
Важно : Зарядное устройство должно быть подключено к аккумулятору, прежде чем оно будет подключено к сети. Чтобы подключить зарядное устройство к аккумулятору, сначала прикрепите красный кабель к положительной клемме аккумулятора. Затем подключите черный кабель к отрицательной клемме.
Важно : Следующая процедура зависит от типа аккумулятора.Чтобы выбрать правильный режим работы, пользователь должен следовать информации в инструкции по эксплуатации зарядного устройства.
- Завершение процесса зарядки
По окончании процесса зарядки зарядное устройство сначала отключается от сети, а затем отсоединяются кабели от аккумулятора. При установке аккумулятора в автомобиль красный кабель необходимо сначала подключить к положительной клемме. Затем черный отрицательный кабель подключается к отрицательной клемме.
- Особенности автомобилей Start-Start-Stop
Зарядка аккумулятора с технологией EFB или AGM идентична, однако необходимо следить за тем, чтобы устройство подходило для аккумуляторов с технологией старт-стоп. В этом случае следует соблюдать информацию в инструкции по эксплуатации.
Интересные факты о зарядных устройствах и времени зарядки
Многие высококачественные зарядные устройства совместимы с различными типами аккумуляторов и автоматически отключаются после завершения зарядки.Интеллектуальные зарядные устройства постепенно отключаются по мере увеличения уровня заряда и автоматически ограничивают ток. Таким образом обеспечивается хороший уровень заряда даже при длительном простое и низких температурах наружного воздуха. В случае сомнений обратитесь к описанию использования производителя устройства. Таким образом, правильное и регулярное использование зарядных устройств может повысить надежность и срок службы аккумулятора.
Даже если нет риска перезарядки при использовании высококачественного зарядного устройства, аккумулятор не должен оставаться подключенным к зарядному устройству более 24 часов.Полная зарядка обычно достигается за ночь.
В режиме обслуживания аккумуляторы могут поддерживать высокий уровень заряда даже при длительном простое автомобиля. Даже после глубокой разрядки некоторые зарядные устройства позволяют хотя бы частично восстановить аккумулятор.
Важно : Несмотря на то, что подключение и работа зарядного устройства несложны, следует отметить несколько моментов. Зарядка автомобильного аккумулятора по нескольким параметрам отличается от зарядки обычного аккумулятора.В инструкции по эксплуатации зарядного устройства содержится вся необходимая информация.
Зарядное устройство— обзор
Простое дешевое зарядное устройство Li-Ion
Зарядное устройство, запрограммированное на 300 мА в режиме постоянного тока с функцией контроля тока заряда, показано на рисунке 210.1. PNP необходим для источника зарядного тока, а резистор R1 используется для программирования максимального зарядного тока. Выводы I SENSE и BAT используются для контроля тока и напряжения заряда соответственно, а вывод DRIVE управляет базой PNP.Обратите внимание, что не требуется внешний резистор для измерения тока или диод для блокировки обратного тока. Для большинства других зарядных устройств требуется блокирующий диод, подключенный последовательно к источнику питания, чтобы предотвратить разряд батареи, если вход источника питания без питания станет низким импедансом. Когда источник питания размыкается или замыкается на массу, зарядное устройство отключается, и от аккумулятора к зарядному устройству течет только несколько наноампер тока утечки. Эта функция продлевает срок службы батареи, особенно если портативное устройство выключено в течение длительного времени.Напряжение питания может варьироваться от 4,75 В до 8 В, но рассеиваемая мощность PNP может стать чрезмерной около верхнего предела, особенно при более высоких уровнях зарядного тока. Рассеивание мощности PNP потребует надлежащего теплоотвода. Требования к теплоотводу см. В паспорте производителя PNP.
Рисунок 210.1. Недорогое литий-ионное зарядное устройство, рассчитанное на 300 мА
Когда напряжение питания приближается к нижнему пределу, напряжение насыщения PNP становится важным. В этом случае может потребоваться транзистор CESAT с низким V , такой как показанный на рисунках, чтобы предотвратить сильное насыщение PNP и требование чрезмерного тока базы от вывода DRIVE.
Для поддержания хорошей стабильности переменного тока в режиме постоянного напряжения на батарее требуется конденсатор для компенсации индуктивности в проводке к батарее. Этот конденсатор (C2) может иметь диапазон от 4,7 мкФ до 100 мкФ, а его ESR может находиться в диапазоне от почти нуля до нескольких Ом в зависимости от компенсируемой индуктивности. Как правило, лучше всего подходит для компенсации емкость от 4,7 мкФ до 22 мкФ и ESR от 0,5 до 1,5 Ом. В режиме постоянного тока хорошая стабильность переменного тока достигается за счет поддержания емкости на выводе PROG на уровне менее 25 пФ.Более высокая емкостная нагрузка, например, от входного фильтра нижних частот к АЦП, может быть легко допущена путем изоляции емкости сопротивлением не менее 1 кОм.
При «горячей» замене входного источника питания следует избегать использования керамического входного конденсатора (C1), поскольку его высокая добротность может вызвать скачки напряжения в два раза превышающие уровень постоянного тока и, возможно, повредить зарядное устройство. Если используется конденсатор с таким низким ESR, добавление сопротивления от 1 до 2 Ом последовательно с конденсатором C1 будет достаточно для гашения этих переходных процессов.
Вывод программирования (PROG) выполняет несколько функций. Он используется для установки тока в режиме постоянного тока, контроля зарядного тока и ручного отключения зарядного устройства. В режиме постоянного тока LTC1734 поддерживает вывод PROG на уровне 1,5 В. Значение программного резистора определяется делением 1,5 В на требуемый ток R1 в режиме постоянного тока. Зарядный ток всегда в 1000 раз больше тока через R1 и, следовательно, пропорционален напряжению на выводе PROG.Напряжение на выводе PROG падает ниже 1,5 В при входе в режим постоянного напряжения и падении зарядного тока. При 1,5 В зарядный ток составляет 300 мА, а при 0,15 В — 1000 · (0,15 / 5100) или около 30 мА. Если на заземленной стороне R1 напряжение превышает 2,15 В или разрешено оставаться на плаву, зарядное устройство переходит в режим ручного отключения и зарядка прекращается. Эти функции поддерживают зарядку аккумулятора до полной емкости, позволяя микроконтроллеру контролировать ток зарядки и выключать зарядное устройство в соответствующее время.Внутренний подтягивающий ток 3 мкА подтянет плавающий вывод PROG вверх. По своей конструкции этот ток не добавляет ошибки, но устанавливает минимальный ток через программный резистор в 3 мкА.
Во время зарядки в режиме постоянного напряжения токи, создаваемые активными динамическими нагрузками, могут создавать чрезмерные переходные уровни на выводе PROG.