Давление в цилиндре: Какая компрессия должна быть в двигателе и как ее проверить?

Содержание

График давления в цилиндре. Работа двигателя на холостом ходу без нагрузки

Положение характерных точек и участков графика давления в цилиндре бензинового двигателя внутреннего сгорания позволяет определить взаимное положение коленчатого и газораспределительных валов, а измерение и сравнение значений абсолютного давления в цилиндре в некоторых характерных точках позволяет определить состояние уплотнений диагностируемого цилиндра. Для наглядности, характерные точки и участки приведённых графиков давления в цилиндре отмечены буквами.

 

 

График давления в цилиндре и его характерные точки и участки прогретого до рабочей температуры исправного четырёхтактного четырёхцилиндрового бензинового двигателя, работающего на холостом ходу.

 

 

Тот же график, но с увеличенным усилением для лучшей наглядности участков выпуска отработавших газов и всасывания рабочей смеси.

Точка A (или ВМТ 0°).

В вершине графика (точка A) давление в цилиндре достигает своего максимума.

Иногда это давление называют динамической компрессией. В этот момент поршень находится на самом близком расстоянии от головки блока цилиндров. Такое положение поршня называют Верхняя Мёртвая Точка (ВМТ). Момент, когда поршень находится в ВМТ и при этом впускные и выпускные клапаны закрыты, отмечают как ВМТ 0° или 0°.

Давление в точке A возникает в результате сжатия смеси в цилиндре (или в результате сжатия воздуха в цилиндре при проведении диагностики механической части двигателя по графику давления в цилиндре; далее по тексту смеси) начиная с момента закрытия впускного клапана (точка L) до момента достижения поршнем ВМТ 0° (точка A). Значение давления в цилиндре в точке A может значительно изменяться и зависит от степени сжатия диагностируемого цилиндра, состояния уплотнений диагностируемого цилиндра, частоты вращения коленчатого вала двигателя и количества сжимаемой в диагностируемом цилиндре смеси.

1) Степень сжатия смеси в цилиндре.

Степень сжатия определяется конструкцией цилиндра — рабочий объём цилиндра и объём камеры сгорания. Степень сжатия фактически показывает во сколько раз полный объём цилиндра (сумма рабочего объёма и объёма камеры сгорания) больше объёма камеры сгорания. Рабочий объём цилиндра в период эксплуатации двигателя практически не изменяется. Объём камеры сгорания в период эксплуатации двигателя может уменьшиться из-за отложения нагара на поверхности камеры сгорания и на дне поршня. Следствием уменьшения объёма камеры сгорания является увеличение степени сжатия. Таким образом, в период эксплуатации двигателя, степень сжатия может измениться.

Чем больше степень сжатия в диагностируемом цилиндре — тем больше значение давления в цилиндре в точке A.

2) Состояние уплотнений.

Качество уплотнения внутренней полости цилиндра определяется состоянием компрессионных колец, состоянием зеркала цилиндра, плотностью закрытия впускных и выпускных клапанов, целостностью прокладки головки блока цилиндров, целостностью стенки цилиндра, головки блока цилиндров и поршня.

В период эксплуатации двигателя качество уплотнений может ухудшаться вследствие износа или разрушений перечисленных элементов. Вследствие негерметичности уплотнений, часть смеси при сжатии выдавливается из цилиндра через уплотнения.

С ухудшением качества уплотнений диагностируемого цилиндра, значение давления в цилиндре в точке A уменьшается.

Количество просочившихся через уплотнения газов зависит от длительности воздействия на уплотнения повышенного давления в цилиндре, а длительность воздействия на уплотнения повышенного давления в цилиндре зависит от частоты вращения коленчатого вала двигателя. С увеличением частоты вращения двигателя, длительность воздействия на уплотнения повышенного давления в цилиндре уменьшается, вследствие чего количество просочившихся через уплотнения газов так же уменьшается. А чем меньше утечки смеси из цилиндра, тем больше значение давления в цилиндре в точке A.

3) Количество смеси в цилиндре в момент закрытия впускного клапана.

Количество смеси в цилиндре зависит от момента закрытия впускного клапана и от значения абсолютного давления во впускном коллекторе. Момент закрытия впускного клапана определяется работой системы газораспределения. При условии, что педаль акселератора не нажата (двигатель работает на холостом ходу), значение абсолютного давления во впускном коллекторе зависит от положения исполнительного механизма регулирования частоты вращения двигателя на холостом ходу (далее по тексту клапана холостого хода). Когда двигатель работает на холостом ходу, значение абсолютного давления во впускном коллекторе ниже атмосферного давления на 0,6…0,7 Bar — то есть, воздух во впускном коллекторе разрежён. С увеличением степени открытия клапана холостого хода, значение абсолютного давления во впускном коллекторе увеличивается (разрежение во впускном коллекторе уменьшается).

Чем больше абсолютное давление во впускном коллекторе, тем большее количество смеси окажется в цилиндре в момент закрытия впускного клапана, а чем большее количество смеси будет сжиматься в цилиндре, тем большего значения достигнет давление в цилиндре в точке A. Таким образом, чем больше степень открытия клапана холостого хода, тем выше значение давления в диагностируемом цилиндре в точке A.

Степень открытия клапана холостого хода в свою очередь зависит в основном от нагрузки на коленчатый вал двигателя, температуры охлаждающей жидкости, соотношения количества работающих и неработающих цилиндров, угла опережения зажигания и состава сжигаемой в работающих цилиндрах топливовоздушной смеси.

а) Нагрузка на коленчатый вал двигателя.

Блок управления двигателем изменяет положение клапана холостого хода так, чтобы частота вращения двигателя была равна заданной частоте вращения на холостом ходу. С увеличением нагрузки на коленчатый вал двигателя (работает насос гидроусилителя рулевого управления в момент вращения рулевого колеса, включены мощные электрические потребители) для поддержания заданной частоты вращения двигателя на холостом ходу, клапан холостого хода приоткрывается. Это вызывает увеличение абсолютного давления во впускном коллекторе, что в свою очередь приводит к увеличению количества смеси сжимаемой в цилиндре и к увеличению значения давления в цилиндре в точке A.

Таким образом, чем выше нагрузка на коленчатый вал двигателя, тем выше значение давления в диагностируемом цилиндре в точке A.

б) Температура охлаждающей жидкости.

Заданная частота вращения двигателя на холостом ходу зависит от температуры охлаждающей жидкости — чем температура ниже, тем заданная частота вращения коленчатого вала двигателя на холостом ходу выше. Для обеспечения повышенной частоты вращения двигателя на холостом ходу при низкой температуре охлаждающей жидкости, блок управления двигателем приоткрывает клапан холостого хода. Это вызывает увеличение абсолютного давления во впускном коллекторе, что в свою очередь приводит к увеличению количества смеси сжимаемой в цилиндре и к увеличению значения давления в цилиндре в точке A.

Таким образом, чем ниже температура охлаждающей жидкости, тем выше значение давления в диагностируемом цилиндре в точке A.

в) Количество работающих и неработающих цилиндров.

Для получения графика давления в цилиндре, датчик давления в цилиндре должен быть установлен на место свечи зажигания диагностируемого цилиндра. Высоковольтный провод диагностируемого цилиндра должен быть подключен к искровому разряднику. Разъём электромагнитной бензиновой форсунки диагностируемого цилиндра по возможности должен быть отключен от форсунки и подключен к резистору номиналом 100 ?. Таким образом, диагностируемый цилиндр оказывается отключенным и воспламенение в диагностируемом цилиндре не происходит.

Так как один из цилиндров уже не работает, для обеспечения заданной частоты вращения двигателя на холостом ходу, клапан холостого хода приоткрывается, увеличивая нагрузку на работающие цилиндры — происходит перенос и распределение нагрузки с неработающего цилиндра на работающие цилиндры. Степень увеличения нагрузки на работающие цилиндры зависит от соотношения количества работающих и количества неработающих цилиндров. Например, при отключении одного из цилиндров четырёхцилиндрового двигателя, нагрузка на каждый из работающих цилиндров (нагрузка на три работающих цилиндра) увеличивается на ~33%. Если же диагностируемый двигатель, к примеру, восьмицилиндровый, то при отключении одного из его цилиндров, нагрузка на каждый из семи работающих цилиндра увеличивается только на ~14%.

В случае если кроме диагностируемого цилиндра отключен или по какой-либо причине не работает ещё один цилиндр, то нагрузка на работающие цилиндры возрастает ещё больше. Так, например, если при проведении диагностики работают только два цилиндра четырёхцилиндрового двигателя, то нагрузка на работающие два цилиндра оказывается увеличенной на ~100%.

Увеличение нагрузки на работающие цилиндры двигателя осуществляется блоком управления путём увеличения степени открытия клапана холостого, что и обеспечивает поддержание заданной частоты вращения двигателя на холостом ходу. При этом, абсолютное давление во впускном коллекторе увеличивается и как следствие — увеличивается количество сжимаемой в цилиндре смеси. А с увеличением количества смеси сжимаемой в цилиндре, увеличивается значения давления в цилиндре в точке A.

Таким образом, значение давления в цилиндре в точке A зависит от соотношения количества работающих и неработающих цилиндров. Чем больше цилиндров двигателя не работает, тем выше значение давления в диагностируемом цилиндре в точке A.

г) Угол опережения зажигания.

С увеличением угла опережения зажигания эффективность работы каждого из работающих цилиндров увеличивается. За счёт этого, для поддержания заданной частоты вращения двигателя на холостом ходу при более раннем угле опережения зажигания требуется сжигание меньшего количества топливовоздушной смеси чем при более позднем угле опережения зажигания. С увеличением угла опережения зажигания, блок управления двигателем уменьшает количество сжигаемой топливовоздушной смеси путём закрытия клапана холостого хода, что обеспечивает поддержание заданной частоты вращения двигателя на холостом ходу. С закрытием клапана холостого хода абсолютное давление во впускном коллекторе уменьшается и как следствие — уменьшается количество смеси сжимаемой в цилиндре. А с уменьшением количества смеси сжимаемой в цилиндре, уменьшается значения давления в цилиндре в точке A. Таким образом, чем больше угол опережения зажигания рабочей смеси в работающих цилиндрах, тем ниже значение давления в диагностируемом цилиндре в точке A.

д) Состав топливовоздушной смеси.

Эффективность работы двигателя так же сильно зависит и от состава топливовоздушной смеси. Чем ближе состав топливовоздушной смеси к стехиометрическому, тем лучше эффективность сгорания такой смеси и как следствие — выше эффективность двигателя, работающего на такой смеси. Стехиометрической называют топливовоздушную смесь такого состава, при сгорании которой в отработавших газах остаётся минимальное количество свободного кислорода и несгоревших остатков топлива. Численное значение этого соотношения для бензина равно 14,7 Kg воздуха на 1 Kg бензина.

С увеличением отклонения состава топливовоздушной смеси от стехиометрического, эффективность работы двигателя ухудшается. Из-за ухудшения эффективности работы двигателя, для поддержания заданной частоты вращения двигателя требуется сжигание уже большего количества такой смеси. Поддержание заданной частоты вращения двигателя на холостом ходу при работе на бедной или богатой топливовоздушной смеси достигается за счёт увеличения количества сжигаемой в работающих цилиндрах смеси путём открытия клапана холостого хода. Вследствие увеличения степени открытия клапана холостого хода, увеличивается абсолютное давление во впускном коллекторе, а с увеличением абсолютного давления во впускном коллекторе увеличивается количество сжимаемой в цилиндре смеси. С увеличением количества сжимаемой в цилиндре смеси, увеличивается значения давления в цилиндре в точке A. Таким образом, чем больше отклонение состава топливовоздушной смеси в работающих цилиндрах от стехиометрического, тем выше значение давления в диагностируемом цилиндре в точке A.

Сгруппируем сделанные выводы.

Значение давления в диагностируемом цилиндре в точке A тем больше, чем:

больше степень сжатия в диагностируемом цилиндре;

выше нагрузка на коленчатый вал двигателя;

ниже температура охлаждающей жидкости;

большее количество цилиндров двигателя не работает;

больше отклонение состава топливовоздушной смеси в работающих цилиндрах от стехиометрического.

Значение давления в диагностируемом цилиндре в точке A тем меньше, чем:

хуже состояние уплотнений диагностируемого цилиндра;

больше угол опережения зажигания рабочей смеси в работающих цилиндрах.

 

При работе прогретого до рабочей температуры исправного бензинового двигателя на холостом ходу без нагрузки, давление в цилиндре в точке A равно 4…6 Bar. Если же при работе бензинового двигателя на холостом ходу давление в цилиндре в точке A ниже 3 Bar, воспламенение рабочей смеси в таком цилиндре на холостом ходу происходить не будет.

При работе прогретого до рабочей температуры исправного бензинового двигателя на холостом ходу в момент резкой перегазовки давление в цилиндре в точке A увеличивается примерно в 3 раза.

Точка B.

По достижении верхней мёртвой точки ВМТ 0°, поршень останавливается и изменяет направление движения на противоположное, начиная отдаляться от головки блока цилиндров. Вследствие этого, объём между поршнем и головкой блока цилиндров начинает постепенно увеличиваться, а давление в цилиндре — уменьшаться.

Когда коленчатый вал провернётся на 30° после ВМТ 0°, давление в цилиндре численно будет близко к половине разницы максимального давления в цилиндре (точка A) и минимального давления в цилиндре (точка D). Эта точка на графике отмечена буквой B.

Точка C.

Пройдя точку B, поршень продолжает отдаляться от головки блока цилиндров с по-прежнему возрастающей скоростью перемещения. Скорость перемещения поршня продолжает увеличиваться до тех пор, пока коленчатый вал не провернётся на 90° после ВМТ 0°, поршень при этом пройдёт половину хода. Здесь скорость перемещения поршня максимальна. По прохождению отметки 90° после ВМТ 0°, скорость перемещения поршня начинает уменьшаться. Эта тачка отмечена на графике давления в цилиндре буквой C.

В точке C давление в цилиндре будет близким к атмосферному ±0,5 Bar. Но так как движение поршня по-прежнему продолжается, объём между поршнем и головкой блока цилиндров продолжает увеличиваться. Из-за дальнейшего увеличения закрытого объёма в цилиндре, абсолютное давление в цилиндре продолжает уменьшаться — то есть в цилиндре возникает разрежение.

Точка D.

Выпускной клапан начинает открываться прежде, чем поршень достигнет нижней мёртвой точки. Момент начала открытия выпускного клапана отмечен на графике буквой D. Поршень всё ещё отдаляется от головки блока цилиндров и объём между поршнем и головкой блока цилиндров продолжает увеличиваться. Но, начиная с точки D, абсолютное давление в цилиндре повышается. Повышение давления в цилиндре происходит за счёт того, что в цилиндр начинают перетекать отработавшие газы из выпускного коллектора через открывающийся выпускной клапан.

Участок E.

Перетекание газов из выпускного коллектора в цилиндр происходит за счёт того, что абсолютное давление в выпускном коллекторе, близкое к атмосферному, оказывается большим абсолютного давления в цилиндре. На графике давления в цилиндре, участок, где происходит перетекание отработавших газов из выпускного коллектора в цилиндр отмечен буквой E.

 

Центр участка E и должен пересекать отметку НМТ 180°.

 

 

 

Если центр участка E находится в пределах 170°…195° после ВМТ 0°

(-10°…+15° от НМТ 180°), то момент начала открытия выпускного клапана считают установленным правильно.

 

Точка НМТ 180°.

Положение поршня, когда расстояние от него до головки блока цилиндров оказывается максимальным, называют Нижняя Мёртвая Точка (НМТ). В НМТ поршень останавливается, и изменят направление движения на противоположное, начав вновь приближаться к головке блока цилиндров. Момент, когда поршень находится в НМТ и при этом впускной клапан закрыт, а выпускной клапан открыт (или начал открываться) отмечают как НМТ 180° или 180°, так как за время перемещения поршня от ВМТ 0° до НМТ 180° коленчатый вал двигателя поворачивается на 180°.

 

Точка F.

Давление в цилиндре повышается до тех пор, пока не выровняется с давлением в выпускном коллекторе. Точка на графике, где давление в цилиндре уравнялось с давлением в выпускном коллекторе, отмечена буквой F.

 

Участок G

Достигнув положения НМТ 180°, поршень начинает двигаться по направлению к головке блока цилиндров, что приводит к постепенному уменьшению объёма между поршнем и головкой блока цилиндров. Постепенное уменьшение объёма между поршнем и головкой блока цилиндров заставляет находящиеся в цилиндре газы перетекать в выпускной коллектор через открытый выпускной клапан — происходит выпуск отработавших газов.

Скорость перемещения поршня продолжает увеличиваться до тех пор, пока коленчатый вал не провернётся на 90° после НМТ 180°. Здесь скорость перемещения поршня максимальна. По прохождению отметки 90° после НМТ 180°, скорость перемещения поршня начинает уменьшаться. Участок, на котором перемещающийся по направлению к головке блока цилиндров поршень заставляет находящиеся в цилиндре газы перетекать в выпускной коллектор, отмечен на графике давления в цилиндре буквой G.

Среднее значение давления в цилиндре на такте выпуска отработавших газов должно быть близким к текущему атмосферному давлению. Повышение абсолютного давления в цилиндре более чем на 0,5 Bar относительно текущего атмосферного давления в середине участка G указывает на затруднённый отток газов из цилиндра.

Ухудшение оттока газов из цилиндра в выпускной коллектор может наступить вследствие недостаточного открытия выпускного клапана либо вследствие недостаточной пропускной способности выхлопной системы двигателя. Выпускной клапан может открываться на недостаточную величину из-за неисправной работы гидрокомпенсатора теплового зазора выпускного клапана (или из-за неправильной регулировки теплового зазора выпускного клапана, в случае если двигатель не оснащён гидрокомпенсаторами тепловых зазоров клапанного механизма) или из-за износа кулачка распредвала, открывающего выпускной клапан. Пропускная способность выхлопной системы двигателя может ухудшиться вследствие механического повреждения металлических труб системы выпуска отработавших газов или вследствие того, что каналы глушителя оказались перекрытыми остатками разрушившегося катализатора.

 

Точка H.

Приблизительно за 30°…0° угла поворота коленчатого вала перед ВМТ 360° впускной клапан начинает открываться. Момент начала открытия впускного клапана на графике давления в цилиндре отмечен буквой H.

По достижении поршнем токи H, впускной клапан начинает открывать канал, через который внутренний объём цилиндра соединяется с впускным коллектором, где абсолютное давление значительно ниже давления в цилиндре. Но давление в цилиндре продолжает по-прежнему уравниваться с давлением в выпускном коллекторе через всё ещё открытый выпускным клапаном канал. По этой причине, обнаружить точку H на графике давления в цилиндре большинства двигателей невозможно.

 

Точка ВМТ 360°.

Достигнув второй верхней мёртвой точки, поршень останавливается, и изменят направление движения на противоположное, начав вновь отдаляться от головки блока цилиндров. Момент, когда поршень находится во второй ВМТ, отмечают как ВМТ 360° или 360°, так как за время перемещения поршня от ВМТ 0° до ВМТ 360°, коленчатый вал двигателя поворачивается на 360°.

 

Участок I.

Когда поршень достигает точки ВМТ 360° и изменят направление движения на противоположное, выпускной клапан оказывается уже почти закрытым. Вследствие закрытия канала, соединяющего внутренний объём цилиндра с выпускным коллектором, давление в цилиндре прекращаёт уравниваться с давлением в выпускном коллекторе. Впускной клапан при этом уже несколько открыл канал впуска рабочей смеси и продолжает открываться. Вследствие того, что канал, соединяющий внутренний объём цилиндра с впускным коллектором начал открываться, давление в цилиндре начинает уравниваться с давлением во впускном коллекторе. Так как значение абсолютного давления в цилиндре близко к атмосферному, газы из цилиндра начинают перетекать из цилиндра во впускной коллектор, где давление значительно ниже атмосферного.

Этот участок графика давления в цилиндре отмечен буквой I. Центр участка I должен пересекать отметку 380° после ВМТ 0° (20° после ВМТ 360°).

 

 

 

 

Если центр участка I находится в пределах 370°…390° после ВМТ 0° (±10° от отметки 380° после ВМТ 0°), то момент начала открытия впускного клапана считают установленным правильно. Для двигателей оснащённых системой изменения фаз газораспределения (система VVT) центр участка I должен находиться в пределах 380°…400° после ВМТ 0° (±10° от отметки 390° после ВМТ 0°).

Точка J.

В точке J давление в цилиндре выравнивается с давлением во впускном коллекторе, так как канал, соединяющий внутренний объём цилиндра с впускным коллектором открылся уже на значительную величину.

Фрагмент участка K между точками J и НМТ 540°.

Так как поршень отдаляется от головки блока цилиндров, объём между поршнем и головкой блока цилиндров увеличивается. Но, не смотря на увеличение внутреннего объёма цилиндра, понижение давления в цилиндре не происходит из-за того, что в цилиндр перетекает воздух из впускного коллектора через открытый впускным клапаном канал.

Скорость перемещения поршня продолжает увеличиваться до тех пор, пока коленчатый вал не провернётся на 90° после ВМТ 360°. Здесь скорость перемещения поршня максимальна. По прохождению отметки 90° после ВМТ 360°, скорость перемещения поршня начинает уменьшаться до тех пор, пока поршень не достигнет точки НМТ 540°.

Точка НМТ 540°.

Достигнув второй нижней мёртвой точки, поршень останавливается, и изменят направление движения на противоположное, начав вновь приближаться к головке блока цилиндров. Момент, когда поршень находится в НМТ и при этом выпускной клапан закрыт, а впускной клапан открыт (или начал закрываться) отмечают как НМТ 540° или 540°, так как за время перемещения поршня от ВМТ 0° до НМТ 540° коленчатый вал двигателя поворачивается на 540°.

Фрагмент участка K между точками НМТ 540° и L.

Достигнув отметки НМТ 540°, поршень начинает вновь приближаться к головке блока цилиндров, что приводит к постепенному уменьшению объёма между поршнем и головкой блока цилиндров. Но впускной клапан при этом некоторое время остаётся всё ещё открытым. Опоздание закрытия впускного клапана служит для улучшения наполняемости цилиндра топливовоздушной смесью. Происходит это за счёт значительной инерционности потока смеси на такте впуска. Когда поршень начинает двигаться к головке блока цилиндров, несмотря на уменьшающийся внутренний объём цилиндра, топливовоздушная смесь ещё некоторое время продолжает по инерции перетекать из впускного коллектора в цилиндр. Данный эффект зависит от скорости потока смеси из впускного коллектора в цилиндр на такте впуска — чем скорость выше, тем эффект заметнее. Скорость потока смеси из впускного коллектора в цилиндр зависит от частоты вращения двигателя и от угла открытия дроссельной заслонки — чем выше частота вращения коленчатого вала двигателя и чем на больший угол открыта дроссе

льная заслонка, тем больше скорость потока смеси из впускного коллектора в цилиндр. Момент закрытия впускного клапана выбирают при проектировании двигателя таким, чтобы эффект избыточного наполнения цилиндра топливовоздушной смесью за счёт инерции потока смеси проявлялся в заданном диапазоне частот вращения двигателя при полностью открытой дроссельной заслонке. Когда же двигатель работает при низкой частоте вращения коленчатого вала, опоздание закрытия впускного клапана приводит к негативному эффекту — перетеканию поступившей в цилиндр смеси обратно во впускной коллектор.

В двигателях, оснащённых системой изменения фаз газораспределения, момент закрытия впускного клапана постоянно регулируется на работающем двигателе в зависимости в основном от частоты вращения двигателя и нагрузки на коленчатый вал двигателя. Благодаря наличию такой системы, эффект избыточного наполнения цилиндра топливовоздушной смесью за счёт инерции потока смеси в таких двигателях проявлялся в очень широком диапазоне частот вращения коленчатого вала и при различных углах открытия дроссельной заслонки, за счёт чего двигатель развивает более высокую мощность в значительно более широком диапазоне частот вращения. Кроме того, в таких двигателях минимален эффект перетекания поступившей в цилиндр смеси обратно во впускной коллектор при низких частотах вращения коленчатого вала, за счёт чего достигается очень устойчивая работа двигателя на холостом ходу и высокие ездовые качества двигателя при низких частотах вращения коленчатого вала.

Точка L.

Конец закрытия впускного клапана отмечен на графике давления в цилиндре буквой L. С закрытием канала соединяющего внутренний объём цилиндра с впускным коллектором, при высоких частотах вращения двигателя прекращается избыточное наполнение цилиндра топливовоздушной смесью за счёт инерции потока смеси, а при низких частотах вращения двигателя прекращается перетекание поступившей в цилиндр смеси обратно во впускной коллектор. Важно заметить, что форма графика давления в цилиндре в точке L определяется направлением движения смеси по впускному каналу непосредственно перед моментом закрытия впускного клапана.

При низких частотах вращения двигателя возникает эффект перетекания поступившей в цилиндр смеси обратно во впускной коллектор и давление в цилиндре не увеличивается вплоть до момента закрытия впускного клапана. С закрытием впускного клапана, после относительно пологого участка K возникает резкий перелом графика в точке L и с этого момента, абсолютное давление в цилиндре начинает сравнительно интенсивно нарастать.

При высоких частотах вращения двигателя возникает эффект избыточного наполнения цилиндра топливовоздушной смесью за счёт инерции потока смеси и давление в цилиндре начинает увеличиваться уже с момента достижения поршнем точки НМТ 540°. С закрытием впускного клапана, после участка относительно интенсивного нарастания давления в цилиндре на участке между точками НМТ 540° и L, возникает заметный перелом графика в точке L и скорость нарастания абсолютного давления в цилиндре с этого момента резко уменьшается.

Поршень и далее продолжает перемещаться по направлению к головке блока цилиндров, уменьшая внутренний объём цилиндра. Теперь, когда оба клапана (впускной и выпускной) закрыты, уменьшение внутреннего объёма цилиндра приводит к увеличению давления в цилиндре.

Момент закрытия впускного клапана отмечен на графике давления в цилиндре буквой L. Точка L должна пересекать отметку 580° после ВМТ 0° (40° после НМТ 540°).

 

 

 

 

Если точка L (конец закрытия впускного клапана) находится в пределах 560°…600° после ВМТ 0° (20°…60° после НМТ 540°), то момент конца закрытия впускного клапана считают установленным правильно.

 

Точка M.

Скорость перемещения поршня увеличивается до тех пор, пока коленчатый вал не провернётся на 90° после НМТ 540°. Здесь скорость перемещения поршня максимальна. Эта тачка отмечена на графике давления в цилиндре буквой M.

В точке M давление в цилиндре будет близким к атмосферному ±0,5 Bar. Но так как движение поршня по-прежнему продолжается, объём между поршнем и головкой блока цилиндров продолжает уменьшаться. Из-за дальнейшего уменьшения закрытого объёма в цилиндре, абсолютное давление в цилиндре продолжает увеличиваться.

По прохождению отметки 90° после НМТ 540°, скорость перемещения поршня начинает уменьшаться.

Точка N.

За 30° перед ВМТ 720° давление в цилиндре численно будет близко к половине разницы минимального давления в цилиндре (точка L) и максимального давления в цилиндре (точка A). Эта точка на графике отмечена буквой N.

Давление в цилиндре продолжает увеличиваться до тех пор, пока поршень не достигнет точки A. Важно заметить, что основная работа по сжатию смеси в цилиндре производится за последние 30° поворота коленчатого вала перед ВМТ 720° — на участке между точками N и ВМТ 720°.

Точка A (или ВМТ 720°).

По достижении точки A поршень останавливается, и изменят направление движения на противоположное, начав вновь отдаляться от головки блока цилиндров. Таким образом, завершается полный цикл работы цилиндра и начинается новый.

За время перемещения поршня от предыдущей точки A (ВМТ 0°) до текущей точки A (ВМТ 720°), коленчатый вал двигателя поворачивается на 720°, по этому эту точку иногда отмечают как ВМТ 720° или 720°.

Утечки газов из цилиндра.

Поршень, двигаясь от точки M к ВМТ, перемещается на расстояние равное расстоянию, на которое он перемещается, двигаясь от ВМТ до точки C. При этом сначала поршень сжимает воздух (смесь), а потом разжимает его.

Переместившись от точки M до точки C, поршень оказывается на прежнем расстоянии от головки блока цилиндров — то есть, внутренний объём цилиндра в точке C равен внутреннему объёму цилиндра в точке M. Таким образом, теоретически, значение абсолютного давления в цилиндре в точке C должно быть равным значению абсолютного давления в цилиндре в точке M. Но на практике, значение абсолютного давления в цилиндре в точке C всегда оказывается меньшим абсолютного давления в цилиндре в точке M. Это происходит потому, что часть смеси при сжатии выдавливается из цилиндра через в той или иной мере негерметичные уплотнения. Разница значений абсолютного давления в цилиндре в точках C и M зависит от количества просочившихся через уплотнения газов. А как ранее было рассмотрено, количество просочившихся через уплотнения газов зависит от состояния самих уплотнений и от частоты вращения коленчатого вала двигателя. Чем лучше состояние уплотнений и чем выше частота вращения коленчатого вала двигателя, тем меньше разница значений абсолютного давления в цилиндре в точках C и M.

 

Прокрутка двигателя стартером.

О правильности установки газораспределительных валов относительно коленчатого вала можно судить по положению ключевых участков E и I графика давления в цилиндре. При работе двигателя на холостом ходу ключевые участки E и I графика давления в цилиндре отчётливо видны за счёт возникающего в цилиндре разрежения в районе точки D и на участке K. Но при прокрутке двигателя стартером величина разрежения в цилиндре в точке D и / или на участке K очень мала, и положение ключевых участков E и I невозможно измерить, так как они почти не видны на графике.

 

 

 

 

График давления в цилиндре при прокрутке двигателя стартером с закрытой дроссельной заслонкой.

 

 

 

 

Тот же график, но с увеличенным усилением для лучшей наглядности ключевых точек.

 

Многие из рассмотренных ранее характерных точек и участков графика давления в цилиндре при работе двигателя на холостом ходу здесь не видны. Но положение ключевых точек D и L можно измерить с приемлемой точностью. Ошибка при измерении положения ключевых точек D и L возникает в основном из-за значительной неравномерности мгновенной частоты вращения коленчатого вала при прокрутке двигателя стартером.

Как видно по приведённым графикам, при прокрутке двигателя стартером возможно измерение положения только некоторых характерных точек графика давления в цилиндре. Измерение положения характерных участков графика давления в цилиндре невозможно. По этой причине, оценить взаимное положение коленчатого и газораспределительных валов по графику давления в цилиндре при прокрутке двигателя стартером можно только приблизительно. Проведение таких измерений имеет смысл только в том случае, если нет возможности получить график давления в цилиндре при работе двигателя на холостом ходу (двигатель невозможно запустить).

Точка A (или ВМТ 0°).

Давление в цилиндре в точке A при прокрутке двигателя стартером всегда выше, чем при работе двигателя на холостом ходу. Если при прокрутке двигателя стартером давление в цилиндре в точке A находится в пределах 8…16 Bar, цилиндр считают исправным. Если же при прокрутке двигателя стартером давление в цилиндре в точке A меньше 6 Bar, такой цилиндр не обеспечивает нормального сгорания топливовоздушной смеси и его считают неисправным.

Участок K.

Величина разрежения в цилиндре на участке K определяется величиной разрежения во впускном коллекторе — чем больше разрежение во впускном коллекторе, тем больше разрежения в цилиндре на участке K.

Когда двигатель выключен, коленчатый вал двигателя не вращается и разрежение во впускном коллекторе не возникает вовсе — то есть, значение абсолютного давления во впускном коллекторе равно текущему атмосферному давлению. С началом прокрутки двигателя стартером, воздух (смесь) из впускного коллектора начинает «всасываться» в цилиндры двигателя и во впускном коллекторе возникает разрежение. Среднее значение возникшего во впускном коллекторе разрежения определяется в основном частотой вращения коленчатого вала двигателя и положением клапана холостого хода (дроссельной заслонки). Чем ниже частота вращения коленчатого вала и чем на большую величину открыт клапан холостого хода (дроссельная заслонка), тем меньшее разрежение возникает в цилиндре на участке K.

При прокрутке двигателя стартером, частота вращения коленчатого вала двигателя оказывается настолько низкой, что даже при закрытой дроссельной заслонке, величина разрежения, возникающего во впускном коллекторе, а значит и в цилиндре на участке K, составляет 0,05…0,3 Bar. Из-за столь низкой величины разрежения в цилиндре,

при прокрутке двигателя стартером обнаружение участка I на графике давления в цилиндре оказывается невозможным. Но в большинстве случаев, можно довольно точно определить точку L.

Точка L.

По положению точки L, можно приблизительно судить о правильности установки впускного газораспределительного вала двигателя.

 

 

 

 

Если измеренное положение точки L (конец закрытия впускного клапана) при прокрутке двигателя стартером находится в пределах 560°…600° после ВМТ 0° (20°…60° после НМТ 540°), то взаимное положение впускного газораспределительного вала и коленчатого вала можно считать приемлемым.

Точка D.

Величина разрежения в точке D графика давления в цилиндре определяется моментом начала открытия выпускного клапана, величиной разрежения в цилиндре на участке K и количеством просочившихся через уплотнения газов.

Чем позже открывается выпускной клапан (но не позже ВМТ 180°), тем больше разрежение в цилиндре в точке D. Момент начала открытия выпускного клапана определяется работой системы газораспределения.

Чем больше разрежение в цилиндре на участке K, тем больше разрежение в цилиндре в точке D. Величина разрежения в цилиндре на участке K определяется частотой вращения коленчатого вала и положением клапан холостого хода и дроссельной заслонки.

Количество просочившихся через уплотнения газов определяется состоянием уплотнений и частотой вращения коленчатого вала. Чем хуже состояние уплотнений и чем ниже частота вращения двигателя, тем большее количество газов успеет просочиться через уплотнения и тем большее разрежение возникнет в цилиндре в точке D.

Таким образом, величина разрежения в точке D графика давления в цилиндре изменяется с изменением частоты вращения двигателя и с изменением положения клапана холостого хода (дроссельной заслонки).

При прокрутке двигателя стартером, частота вращения коленчатого вала двигателя оказывается настолько низкой, что через уплотнения даже исправного цилиндра успевает просочиться достаточно большое количество газов и в цилиндре в точке D графика давления возникает значительное разрежение. По этой причине, измерение положения центра участка E на графике давления в цилиндре при прокрутке двигателя стартером оказывается затруднительным. Но в большинстве случаев, можно с приемлемой точностью определить точку D.

По положению точки D, можно приблизительно судить о правильности установки выпускного газораспределительного вала двигателя.

 

Если измеренное положение точки D (начало открытия выпускного клапана) при прокрутке двигателя стартером находится в пределах 130°…160° после ВМТ 0° (50°…20° перед НМТ 180°), то взаимное положение выпускного газораспределительного вала и коленчатого вала можно считать приемлемым.

При условии, что измеренное положение при прокрутке двигателя стартером точки D графика давления в цилиндре находится в пределах 130°…160° после ВМТ 0° а точки L в пределах 560°…600° после ВМТ 0°, впускной и выпускной газораспределительные валы можно считать установленными с ошибкой не более ±2 зуба газораспределительного ремня (цепи) относительно коленчатого вала. Такое положение газораспределительных валов обеспечивает возможность запуска двигателя и его работы на холостом ходу. После пуска и прогрева двигателя, можно получить график давления в цилиндре при работе двигателя на холостом ходу. Тогда, по полученному графику давления в цилиндре при работе двигателя на холостом ходу, можно измерить положение участков E и I и теперь точно судить о правильность установки газораспределительных валов относительно коленчатого вала.

 

 

 

 

 

Владимир Постоловский,

журнал «Автомастер», 

http://www.a-master.com.ua/

Книги по ремонту автомобилей

Компрессия в двигателе автомобиля: что это, как измерить и какая норма

Уже при первых проблемах с двигателем — затруднённый пуск, повышение расхода масла — рекомендуется проверять техническое состояние поршней. Зная, какая компрессия должна быть в двигателе, можно не ехать в сервис. Достаточно иметь диагностический прибор и уметь проводить расчёты.

Что такое компрессия?

Это давление (не путать с артериальным), создаваемое поршнем в конце такта сжатия. Но никак не степень сжатия — разница объёмов пространства цилиндра при противоположных состояниях поршня или безразмерный коэффициент. Степень сжатия — показатель практически неизменный, меняется только после проведения тюнинга ДВС или расточки цилиндров.

Компрессия — это давление, создаваемое поршнями мотора при вращении коленвала маховиком на оборотах 200-300 в минуту. По мере износа поршневой группы, показатель меняется. Поэтому его и используют для точной диагностики двигателя внутреннего сгорания. Замеряется он в барах, мегапикселях, кгс/см 2. Но, чаще измеряют в атмосферах. Для нахождения проблемной зоны, значение фиксируют во всех цилиндрах и затем сопоставляют с оптимальной величиной.

Причины снижения

Причины снижения компрессии:

  • износ поршневой группы двигателя, с увеличением зазоров и прочими дефектами;
  • подгорание тарелок клапанов, неплотно сидящих в сёдлах и пропускающих газы;
  • прогар или подвисание клапанов, что не позволяет создавать нужное давление;
  • цилиндр имеет задиры на поверхностях, ведущие к утечке газов.

По величине значения можно в полной мере судить о картине, царящей внутри мотора.

Нормы компрессии

Для определения критической изношенности цилиндро‐поршневой группы нужно сверять стандартный показатель с имеющейся величиной. Естественно, идеальным он не может быть, тем более, на моторах со старым устройством. Различают 3 приемлемых значений, при которых работа движка считается удовлетворительной:

  • для старых карбюраторных моторов с низкой степенью сжатия — до 9,9 атмосфер;
  • для инжекторов — 10,8 атмосфер;
  • для дизелей — до 29.7 атмосфер.

Такой разброс значений легко объяснить разностью степени сжатия. На старых силовых агрегатах она априори низкая — редко превышает 8,5 единиц. На DIESEL этот показатель, наоборот, высокий из‐за малых размеров камеры сгорания — доходит до 24 единиц. И только на современных бензиновых инжекторных моторах компрессия равна 9 или максимум 11 единицам.

Принято считать, что компрессия прямо связана со степенью сжатия. Если знать последнюю величину, которая всегда представлена в технических документах на автомобиль, определить компрессию не составит труда. Достаточно умножить коэффициент сжатия на 1,4 или 1,5. Но желательно всё‐таки использовать те значения, которые приведены в официальных источниках.

На двигателе Ваз-2106 показатель компрессии равен 11 кгс/см2, а на уже на Ваз-2110 — 13 кгс/см 2. Дизельный BHDA или BHDB, устанавливаемый на Ford Focus, отличается более высоким значением — 18 кгс/см 2. На Mitsubishi ASX с движками 1.6, 1.8 и 2.0 литра, этот показатель варьируется в пределах 12-13 кгс/см 2.

Как проводят измерение?

Компрессия обязана замеряться на двигателях, набравших свою рабочую температуру. Аккумулятор должен быть хорошо заряжен, проблемы со стартером и другими электрическими узлами — отсутствовать. Иначе замеры нельзя считать правильными.

Измерения следует проводить с помощью специального диагностического прибора. В его состав помимо стрелочного манометра со шкалой 0–4 МПа должно входить:

  • гибкий шланг с резьбовым наконечником для вкручивания в свечное гнездо;
  • обратный клапан, обеспечивающий герметизацию во время 5–10 тактов накачивания максимального давления;
  • ручник — нужен для сброса воздуха, чтобы обнулить показания;
  • переходники под различные резьбовые номера ‐ поскольку дизельные агрегаты мерятся через разные отверстия для форсунок или свечей накала.

Можно также использовать простейший вариант прибора ‐ обычный манометр с клапаном и конусообразной резиновой фурмой. Но в процессе измерения его надо вручную придерживать на свечном отверстии, так как шланг не вкручивается. Да и показатель, который он выдаст в таких условиях, нельзя считать оптимально верным. Куда правильнее использовать, пусть и дорогой, но профессиональный инвентарь.

Наиболее точные результаты получаются на прогретом двигателе. Ниже приводится подробный алгоритм действий:

  • запустить силовой агрегат, довести рабочую температуру до 80 градусов Цельсия;
  • скинуть бронепровода, вывернуть свечи зажигания, на дизеле — форсунки;
  • обесточить топливный насос, вытащив нужный предохранитель;
  • вкрутить насадку манометра в отверстие от первой свечи;
  • открыть дроссель, выжав педаль акселератора, и завернуть стартер несколько раз — 7–8;
  • снять показания с прибора;
  • повторить процедуру на всех цилиндрах.

На дизельных силовых установках можно исключить попадание горючего в масляный картер, отключив электронное управление форсунками. На моторах с механической топливоподачей это делается с помощью рычага отсечки, который взаимодействует с ТНВД.

Безупречными можно считать результаты, которые не отличаются между всеми цилиндрами более чем на 1 бар. Это означает, что поршневая группа и клапаны находятся в исправном состоянии. Если отличия существенные — 2–3 бара и больше — повторите процедуру, но с залитым в проблемные свечные отверстия 5 миллилитрами автола. Повышение значения скажет о том, что неисправна поршневая группа, ведь смазка уплотняет прилегание колец. Если ничего не изменится — прогорел клапан. Наконец, при показаниях ниже нормы во всех цилиндрах, капитальный ремонт неизбежен. Здесь уже никакие тесты с маслом не помогут — мотор придётся разбирать.

Известен также способ проверки с закрытой дроссельной заслонкой, но эффективен он лишь для выявления малых дефектов силового агрегата. Такой вариант поможет определить трещины на клапанной тарелке, отсутствие герметичности и прогар кромки.

Как часто проверять?

Как правило, специалисты рекомендуют проводить данную процедуру одновременно с заменой свечей зажигания — каждые 30–40 тыс. км. Таким образом, обеспечиваются и профилактические цели.

Однако двигатель нуждается во внеплановом проведении замера, если наблюдаются такие признаки:

  • увеличился расход масла до 150 мл/1000 километров;
  • затруднился пуск по утрам и в холодные дни;
  • появился сизый дым из глушителя;
  • ухудшился режим нейтрального хода — мотор частенько трясёт, он глохнет.

Все эти симптомы могут указывать и на другие неполадки. К примеру, нестабильный ХХ является характерным признаком неисправной системы зажигания. Поэтому перед измерениями всё это надо устранять. Иначе показатели будут неточными, а ремонт и затраты — лишними.

Восстановить компрессию агрегата можно, если нет повреждений ГРМ и показатель снижен из‐за закоксовки. Нужно купить специальную жидкость и провести раскоксовку на горячем моторе. Обычно в Москве такую процедуру проводят по сниженным ценам.

Компрессия в цилиндрах двигателя, норма для различных видов силовых агрегатов

Уменьшение объема газа при помощи внешнего воздействия называется компрессией. Какая компрессия должна быть в двигателе автомобиля для его бесперебойного функционирования?

Работа двигателей внутреннего сгорания осуществляется при помощи создания высокого давления в рабочих цилиндрах. Уменьшение объема при движении поршня вверх приводит к существенному повышению температуры в камере сгорания с последующим воспламенением топливовоздушной смеси. Компрессия в цилиндрах двигателя косвенно показывает состояние всех элементов, входящих в цилиндропоршневую группу.

Степень сжатия двигателя характеризует отношение объемов цилиндра при расположении поршня в верхнем положении и нижнем соответственно. Для каждого движка данная величина является постоянной.

Компрессия в двигателе имеет склонность к постепенному уменьшению, т. к. в процессе эксплуатации элементы двигателя, принимающие участие в его работе, изнашиваются и приходят в негодность, что приводит к нарушению герметичности в системе.

От давления в цилиндрах силового агрегата зависят следующие свойства:

  1. Бесперебойный запуск мотора, особенно в зимнее время.
  2. Отсутствие вибрации силового агрегата при работе на малых и холостых оборотах.
  3. Сбалансированность мотора.
  4. Наличие хороших характеристик в динамике автомобиля.

Перечень деталей, ответственных за уровень компрессии движка

При давлении топливной смеси от 15 до 30 атмосфер наибольшую нагрузку получают следующие элементы:

  • прокладка головки блока цилиндров;
  • поршень;
  • корпус цилиндра;
  • впускные и выпускные клапаны;
  • компрессионные кольца.

Все перечисленные детали газораспределительного механизма испытывают многократные нагрузки, возникающие в результате воздействий высокой температуры и давления. Износ любого из этих элементов влияет на компрессию, мощность мотора и его экономические характеристики.

Давление в дизелях и бензиновых моторах

Из-за отличий в конструкции дизелей и моторов, работающих на бензине, наблюдается разная компрессия в цилиндрах двигателя. Норма давления для дизельных моторов вдвое выше, чем для бензиновых. Это обусловлено потребностью в более высоком рабочем давлении для образования вспышки дизельного топлива.

Какой величины должна быть компрессия дизеля? Дизельный двигатель можно запустить только при создании давления в цилиндрах более 22 атмосфер. Оптимальная величина компрессии для дизелей находится в пределах 28–32 атмосфер. Такой уровень возможен благодаря высокой технологичности и сложности устройства мотора.

Компрессия бензинового двигателя характеризует уровень давления на холостых оборотах силового агрегата. Величина давления зависит от марки и модели автомобиля.

Сколько должна быть компрессия в бензиновом двигателе? Для карбюраторных двигателей норма компрессии рассчитывается по специальной формуле. В основу расчета входит степень сжатия, указанная в технической документации и коэффициент, величина которого определяется принадлежностью бензинового мотора к определенной группе.

К примеру, данный коэффициент для четырехтактного движка с искровым разрядом в свече зажигания равен 1,2–1,3. Нормальная компрессия двигателя, работающего на бензине, должна быть немного выше десяти атмосфер.

Низкая компрессия может быть вызвана использованием некачественного масла, несоблюдением режима замены смазки, частой ездой на высоких скоростях.

При появлении таких симптомов, как увеличение расхода топлива и масла, снижение тяги, необходимо осуществлять диагностику мотора. Для выявления причин необязательно разбирать движок, достаточно произвести замер компрессии в цилиндрах.

Описание измерения давления

Измерение компрессии производится на прогретом движке. Проверка давления в каждом цилиндре производится своими силами при наличии измерительного прибора. Компрессия измеряется при помощи специального инструмента — компрессометра.

При выборе измерительного прибора особое внимание необходимо уделить его резьбовому наконечнику, который должен подходить для вкручивания его вместо свечей зажигания.

Для проведения диагностики мотора необходимо выполнить следующие действия:

  1. Снять свечу с одного цилиндра.
  2. Установить измерительный прибор вместо снятой свечи.
  3. Провернуть коленвал с помощью стартера.
  4. Зафиксировать показание прибора.
  5. Замерить давление во всех цилиндрах с последующей фиксацией данных.
  6. Сопоставить полученные результаты.
  7. Добавить немного машинного масла в поршни.
  8. Прокрутить мотор стартером, не вставляя свечи.
  9. Повторно замерить компрессию в цилиндрах.

Для получения реальных результатов при проведении диагностики компрессия должна измеряться при количестве оборотов коленчатого вала, равном 200–250 оборотов в минуту.

Данные мероприятия проводятся с целью выявления сбоя в работе одного из цилиндров. Существенное увеличение давления свидетельствует о повреждении поршня или поршневых колец. Если давление осталось неизменным,следовательно,поломка коснулась элементов головки блока цилиндров или ее прокладки.

Факторы, влияющие на давление в двигателе

Результаты измерения компрессии часто отличаются друг от друга, даже если все детали, участвующие в газораспределении, исправны. На давление в цилиндрах оказывают влияние следующие условия:

  • количество поступающих воздушных масс;
  • скорость вращения коленчатого вала;
  • температура двигателя;
  • вязкость моторного масла.

Если возникли проблемы с запуском теряется мощность, двигатель нуждается в тщательной профессиональной диагностике. Ремонтно-восстановительные работы необходимо доверить опытным специалистам. Продление срока службы двигателя и поддержание компрессии в норме зависит от грамотного и внимательного отношения к мотору.

Увеличение мощности двигателя при помощи компрессора

Компрессор — это устройство, осуществляемое сжатие и подачу воздушных масс под давлением к потребителю. Наибольшую популярность компрессоры приобрели у автогонщиков и приверженцев скоростных режимов вождения.

Для существенного увеличения мощности мотора вместо увеличения его объема можно нагнетать больше воздуха в камеру сгорания. Это повлечет подачу большего количества топлива, что создаст повышенное давление и усиление толчка выбрасываемого газа. Для этих целей используется нагнетатель воздуха — компрессор.

Автомобильный компрессор дает возможность двигателю прибавить более 45% мощности, увеличить крутящий момент на 31%.

В зависимости от способа подачи воздуха нагнетатели делятся на три вида:

  1. Центробежный компрессор.
  2. Двухвинтовой.
  3. Роторный.

Благодаря конструктивным особенностям центробежного компрессора, осуществляющего принудительное повышение мощности,его используют чаще других видов нагнетателей.

Компрессор запускается при помощи вращающегося коленчатого вала двигателя, что создает дополнительную нагрузку на силовой агрегат. При создании моторов, работающих в паре с нагнетателем, дополнительно усиливают узлы, получающие добавочную нагрузку при взрывах в камере сгорания. Усовершенствование элементов силового агрегата существенно увеличивает стоимость двигателя и автомобиля в целом.

низкая, разная, неравномерная. что делать ?

Компрессия в цилиндрах: низкая, разная, неравномерная. что делать ?

Компрессия может понижаться из-за:

  • Проблемного запуска мотора;
  • Неустойчивого функционирования во всех режимах;
  • Нерабочего состояния одного или нескольких цилиндров;
  • Наличия хлопков во впускном либо выпускном трактах;
  • Повышенного расхода горючего;
  • Повышения уровня давления в патрубках системы охлаждения.

Причина неравномерной либо пониженной компрессии кроется в:

  1. Закоксованных поршневых кольцах, наличии нагара внутри камеры сгорания и на дне поршней;
  2. Изнашивании или наличии повреждений на рабочих поверхностях цилиндров, а также не сильном повреждении поршневых колец;
  3. Неправильном регулировании клапанов, изнашивании или наличии повреждений гидрокомпенсаторов;
  4. Изнашивании направляющих втулок клапанов, изменении нормальной формы стержня клапана;
  5. Прогоревшем клапане, неисправной прокладке ГБЦ, наличии трещин в ГБЦ или деформировании последней. Также к низкой компрессии приводит сквозное прогорание или полуразрушенный поршень, повреждение поршневых колец.

Рекомендации специалистов ХАДО

Если поршневые кольца закоксованы, а в камере сгорания и дне поршней образовался нагар, нужно провести раскоксовку узлов автомобиля. Осуществлять эту процедуру рекомендуется при помощи специальных средств автохимии ХАДО Verylube Антикокс или Jet 100 Раскоксовка для двигателей.

Износ цилиндров можно легко устранить, обработав поверхности цилиндров гелем-ревитализантом ХАДО. Если же цилиндры сильно изношены, необходимо осуществить полную процедуру обработки масляной системы мотора ревитализантом, подходящим к определенному типу мотора.

Каталог продукции

Вы вышли из Вашего Личного Кабинета.

Ваша корзина покупок была сохранена. Она будет восстановлена при следующем входе в Ваш Личный Кабинет.

Укажите ваши данные

Заполните все поля формы с подробной информацией о модели Вашей машины для того, чтобы наши эксперты смогли Вам помочь.

Ваш запрос отправлен

Бесплатный звонок

Ваш запрос отправлен

Ваша заявка принята.

С вами свяжется наш консультант в ближайшее время.

Часы работы: Пн-Пт: с 9:00 до 18:00
Суббота, воскресенье: выходной.

Датчик давления в цилиндре

Для анализа процессов, происходящих в цилиндрах двигателей внутреннего сгорания, требуются датчики давления с высокими техническими характеристиками по линейности, частотной характеристике, стойкости к тепловому воздействию. Сравнительные исследования датчиков давления в цилиндре, доступные в конце 60-х годов ХХ века, показали, что те из них, в которых в качестве измерительных элементов использовались пьезоэлектрические кристаллы, обеспечивали лучшую стойкость к тепловым воздействиям, чем те, в которых использовались тензодатчики. В итоге, пьезоэлектрические датчики стали использоваться для измерения давления внутри цилиндров, а тензодатчики (с металлическими или пьезорезистивными элементами) — по большей части при измерениях с умеренными требованиями по стойкости к тепловому воздействию, например, в топливопроводах высокого давления и во впускных коллекторах.

Пьезоэлектрические датчики способны удовлетворить высокие требования по частотной характеристике и линейности в широком диапазоне давлений. В то же время, основным недостатком их использования является нестабильность точки отсчета и малый уровень выходного сигнала.

Принцип работы пьезоэлектрического датчика давления в цилиндре

Принцип работы пьезоэлектрического датчика давления в цилиндре показан на рисунке 1. Скорость изменения давления (dP/dt) на диафрагме датчика через промежуточные элементы передается на пьезоэлектрический кристалл, вызывая его деформацию со скоростью dε/dt. Вследствие пьезоэлектрического эффекта, эта деформация поляризует заряд q в электроде датчика, что приводит к возникновению электрического тока i, создающего выходной сигнал датчика:

где Gs — чувствительность датчика (усиление).

При измерениях давления внутри цилиндра, датчик подвергается воздействию нестационарных тепловых потоков, обуславливающих непрерывное изменение температуры. Эти изменения температуры изменяют чувствительность пьезоэлектрического элемента и приводят к тепловым ударам (термошокам), воздействующим на диафрагму и корпус датчика. Термошоки создают импульсы силы, воздействующие на элемент датчика и вносят дополнительные искажения в сигнал, обеспечиваемый датчиком. Погрешность, обусловленная этими эффектами, получила название дрейфа температуры.

Обычно дрейф температуры разделяют на две компоненты. Первая компонента, соответствующая изменениям теплового потока, происходящим в каждом цикле, получила название кратковременного дрейфа или термошока. Вторая компонента, соответствующая медленным изменениям температуры датчика вследствие изменения условий работы двигателя, получила название дрейфа изменения нагрузки или долговременного дрейфа.

Обычно для сигнала датчика долговременный дрейф обуславливает только медленную нестабильность точки отсчета. Степень влияния долговременного дрейфа и контроль в этом случае зависят от выбранной схемы поляризации датчика.

Рисунок 1. Пьезоэлектрический датчик давления в цилиндре.

Влияние кратковременного дрейфа, в свою очередь, определяется частотой возникновения соответствующего явления. Резкие кратковременные дрейфы, возникающие, например, в условиях работы, в которых датчик может получить неустранимые повреждения, могут создавать значения давления ниже атмосферного в конце процесса расширения. При более умеренных уровнях, однако, присутствие кратковременного дрейфа не может быть идентифицировано по показаниям. Это приводит к тому, что показания давления будут выше реального давления в цилиндре в течение сгорания, и ниже реального давления на протяжении остальной фазы расширения. Хотя современные пьезоэлектрические датчики давления в цилиндре сконструированы так, что эффекты кратковременного дрейфа сведены к минимуму, необходимо учитывать, что их интенсивность сильно зависит от тепловой нагрузки в месте расположения датчика. На эту тепловую нагрузку оказывает влияние интенсивность потоков в течение процесса газообмена, характеризуемая аппроксимацией струи топлива (жиклера) в дизельном двигателе или аппроксимацией передней границы пламени в двигателе с искровым зажиганием. Итак, оценка частоты появления термошоков в месте расположения датчика в каждом конкретном случае – это хороший метод получения точных измерений.

Выбор места монтажа датчика давления в цилиндре

При выборе места, в котором будет смонтирован датчик, приоритет следует отдать хорошо охлаждаемым областям головки и избегать термошоков, которые могут привести к деформации корпуса датчика. Диафрагма датчика должна быть позиционирована в соответствии с рекомендациями изготовителя (обычно с зазором от 1,5 до 3,0 мм от внутренней поверхности головки). Датчик давления в цилиндре с функцией водяного охлаждения обеспечивают великолепное усиление (повышенное отношение сигнал/шум), линейность и термостойкость (в сравнении с неохлаждаемыми малогабаритными датчиками) и должны выбираться в первую очередь, когда в головке достаточно места для их размещения. Каналы, соединяющие камеру сгорания с полостью, в которой находится диафрагма датчика, могут переходить в режим акустического резонанса, генерируя колебания давления, приводящие к погрешностям измерения, которые, в свою очередь, делают неверными индицируемые оценки термодинамических параметров и энергии, освобождаемой при сгорании. Поэтому использование этих параметров (в типичном случае, когда датчик встроен в свечу зажигания) рекомендуется только для идентификации аномального сгорания в двигателях с искровым зажиганием.

Измерения давления внутри цилиндра дизельных двигателей с прямым впрыском топлива (direct injection, DI) требуют более тщательного подхода вследствие большего коэффициента сжатия и особой формы камеры сгорания. В таких двигателях, когда поршень находится вблизи ВМТ, приблизительно 90% массы рабочей жидкости находится внутри чашки цилиндра, в области над полостью. Давление этой порции массы определяется средним давлением цилиндра. Остальная часть массы заполняет зазоры между поршнем и головкой, а также между поршнем и гильзой цилиндра; ее давление может создавать колебания амплитудой до 10 бар, обусловленные турбулентностью потока внутри цилиндра и акустическими явлениями при сгорании. Итак, датчик должен быть размещен в точке, из которой может быть доступно давление массы над чашкой цилиндра. И наконец, важно отметить, что при выборе точки монтажа датчика, необходимо избегать ударов струи топлива в диафрагму датчика.

Подтверждение правильности выбора места монтажа датчика давления в цилиндре

Чтобы проиллюстрировать процедуру подтверждения правильности выбора места монтажа датчика, рассмотрим в качестве примера случай быстрого прямого впрыска топлива в дизельном двигателе с тремя клапанами в каждом цилиндре, в котором индицируемые измерения проводились с помощью неохлаждаемого датчика, смонтированного выше чашки цилиндра в месте расположения свечи зажигания (см. рисунок 2).

Метод позволяет проверить наличие кратковременного дрейфа путем поциклового сравнения изменений показаний давления внутри цилиндра в заданные моменты рабочего цикла. Наличие некоторого количества изменений является нормальным явлением и обусловлено случайной природой процесса сгорания, при котором все циклы немного отличаются друг от друга (в одних и тех же условиях работы). Эти изменения от цикла к циклу приводят к изменениям тепловой нагрузки, действующей на датчик и, когда случается кратковременный дрейф, то он также приводит к изменениям чувствительности датчика, увеличивающим разброс показаний давления.

Чтобы применить метод рассмотрим две точки на протяжении цикла, обозначенные как C1 и B2. Первая точка находится в начале процесса всасывания, она характеризует момент, когда датчик давления в цилиндре находится под влиянием тепловых нагрузок сгорания. Вторая точка находится на ходе сжатия, то есть выбрана сразу после газообмена, в течение которого датчик охлаждается. Таким образом, если происходит кратковременный дрейф, он создает в точке C1 больший разброс показаний, чем в точке B2. На рисунке 4 показаны девиации давления от среднего значения выборки для 56 последовательных циклов. В соответствии с описанным выше, кратковременные дрейфы приведут к большему разбросу точек вдоль оси х, чем вдоль оси у. Однако, точки на этом рисунке распределены равномерно относительно осей; это свидетельствует о том, что кратковременный дрейф в данном примере тривиален. Разброс точек относительно диагонали графика позволяет судить о повторяемости эксперимента. Режим, показанный на рисунке 4, характеризуется хорошей повторяемостью.

Рисунок 2. Место монтажа датчика давления 

Рисунок 3. Девиация показаний давления относительно среднего значения выборки. Точка C1: 145 градусов c.a. после компрессии TDC. Точка B2: 80 градусов c.a. перед компрессией TDC.

В случаях с большим кратковременным дрейфом рекомендуется монтировать датчик через адаптер, устраняющий прямой контакт датчика с газами цилиндра во избежание локального нагрева компонентов датчика, главным образом, его диафрагмы. Другое решение состоит в установке датчика в углублении с помощью измерительного канала. Однако, использование такой процедуры монтажа может привести к погрешностям, обусловленным колебаниями потока в канале. 

Специалисты БЛМ Синержи имеют большой опыт в подборе датчиков давления в цилиндре под различные виды двигателей и измерений, и всегда будут рады провести консультацию и подбор датчиков под задачи Заказчика.

Проверка компрессии в цилиндрах | Обслуживание и ремонт автомобиля

Автор: admin on 2 ноября 2016

Компрессия характеризует состояние деталей поршневой группы, а также плотность прилегания клапанов к своим седлам. Компрессию в цилиндрах двигателя проверяют при техническом обслуживании № 2, при помощи компрессометра. Компрессометры применяют со шкалой для карбюраторных двигателей до 10 кгс/см2 и дизельных до 60 кгс/см2.

Перед проверкой величины давления в цилиндрах двигатель прогревают до 70-80°, вывертывают все свечи зажигания и полностью открывают воздушную и дроссельную заслонки карбюратора. После этого вставляют резиновый наконечник компрессометра в отверстие для свечи зажигания проверяемого цилиндра и стартером проворачивают коленчатый вал (10-12 оборотов) при открытых дросселе и воздушной заслонке; давление в цилиндре отсчитывают по шкале манометра. Во избежание ошибок необходимо, чтобы коленчатый вал вращался со скоростью 180-200 об/мин, что возможно только при хорошо заряженной аккумуляторной батарее. Затем производят выпуск воздуха и вновь повторяют замер компрессии. Таким образом последовательно проверяют компрессию во всех цилиндрах двигателя. Для исправных двигателей ГАЗ-51А, ГАЗ-53Ф, ГАЗ-63, ГАЗ-69 компрессия должна быть 6,5-7,5 кгс/см2; двигателей ЗИЛ-164А и ЗИЛ-120 — 6-7 кгс/см2; ЗИЛ-130 — 7,0-7,5 кгс/см2; М-21 — 7-7,2 кгс/см2; ЯАЗ-204 и ЯАЗ-206 — 27 кгс/см2 и ЯМЗ-236 — 30 кгс/см2. Проверку повторяют 2-3 раза для каждого цилиндра. Разность показаний в отдельных цилиндрах не должна превышать 1 кгс/см2 для карбюраторных и 2 кгс/см2 для дизельных двигателей. Если величина компрессии на 30-40% ниже нормы, это указывает на наличие неисправностей (поломка или пригорание поршневых колец, повреждение прокладки головки цилиндров, неправильная величина теплового зазора). Износ цилиндров, поршневых колец и поршней в карбюраторных двигателях не дает заметных изменений в показаниях компрессометра.

Для выявления причин недостаточной компрессии нужно залить 20-25 см3 свежего масла в цилиндры с пониженной компрессией. Более высокие показания компрессометра, чем при замере без масла, чаще всего характеризуют пригорайте поршневых колец или изношенность цилиндро-поршневой группы. Если же давление не изменяется и после заливки масла, то значит неплотно прилегают клапаны к седлам, прогорели клапаны или повреждена прокладка головки блока цилиндров.

Замер компрессии в дизельном двигателе производят на работающем двигателе при 500 об/мин коленчатого вала. Компрессометр устанавливается на место насос-форсунки или форсунки проверяемого цилиндра.

Другие статьи по теме:

Комментарии закрыты, но вы можете Трекбэк с вашего сайта.

Компрессия в бензиновом и дизельном двигателях: что такое и как измерить

Двигатель внутреннего сгорания (ДВС) относится к основной части любого транспортного средства. Зачастую вместе с понятием ДВС можно услышать и такое понятие как компрессия в двигателе. Это важный показатель, который отвечает за работу двигателя автомобиля. Разберемся, что такое компрессия, какая компрессия должна быть в двигателе и что будет с двигателем при нарушении норм.

Что такое компрессия?

Слово «компрессия» происходит от латинского «compression», что в переводе означает «сжатие». Т.е. под компрессией понимается сжатие газа, происходящее из-за действия внешних сил, чтобы уменьшить объем газа, а также увеличить температуру и давление.

Чтобы понять, что представляет собой компрессия в двигателе, стоит разобраться для начала из чего состоит двигатель внутреннего сгорания. В нем есть блок цилиндров, клапана, поршни с компрессионными и масляными поршневыми кольцами, шатуны и коленчатый вал.

При поднятии поршня на такте сжатия, клапаны закрыты, поэтому происходит топливной смеси, при этом давление образуется в цилиндре максимальное. А цифровое значение этого давления и представляет собой компрессию двигателя.

Измеряется компрессия в единицах измерения давления – бар, кг/см2, МПа.

Нормы компрессии

На показатель компрессии влияют множество факторов. Среди них:

  • посадка клапанов, особенно если они установлены плотно;
  • наличие небольших трещин между седлами клапанов;
  • цилиндры и поршни слишком изношены;
  • поршневые кольца изношены;
  • присутствие в цилиндрах масла.

Для того, чтобы понять работает двигатель в штатном режиме или есть проблемы нужно знать заводские параметры компрессии для каждого двигателя, т.к. они будут отличатся.

Обычно норма компрессии указывается в технических характеристиках. Можно только отметить, что из-за различий дизельных и бензиновых двигателей компрессия будет разная. Как правило, дизели имеют норму давления больше в два раза.

Компрессия в дизельном двигателе составляет более двадцати атмосфер. Чаще всего, она колеблется от двадцати восьми до тридцати двух атмосфер. Такие высокие показатели обусловлены сложностью устройства двигателя.

Норму компрессии для бензиновых двигателей можно рассчитать по формуле, в которую входит степень сжатия двигателя и коэффициент Х, который определяется в зависимости от типа мотора. Степень сжатия берется из технической документаций на автомобиль.

Х = 1,2-1,3 для четырехтактных моторов;
Х = 1,7-2 для четырехтактных дизельных моторов.

Как правило, норма компрессии бензинового двигателя немного больше десяти атмосфер.

Хорошо знать норму компрессии для своего автомобиля, но нужно еще и уметь ее измерять, чтобы быть уверенным, что двигатель работает исправно. Рассмотрим, какие способы измерения компрессии двигателя существуют.

Измерение компрессии своими руками

Чтобы измерить компрессию можно, конечно, обратиться в автосервис. Но проще сэкономить деньги и произвести измерения самостоятельно. Для таких измерений достаточно просто купить специализированный прибор – компрессометр. Это, по сути, манометр, но имеющий обратный клапан, измеряющий максимальное давление в цилиндре двигателя.

Сейчас на рынке предлагаются компрессометры для дизельных и для бензиновых моторов. Отличия в допустимых пределах измерений, потому как в дизельных движках давление намного выше.

Для проверки компрессии нам в первую очередь потребуется:

  1. проверка уровня зарядки аккумулятора. Это необходимо, потому как, при измерении давления двигатель будет работать на аккумуляторе.
  2. прогреть двигатель авто до рабочей температуры. Это необходимо, чтобы получить максимально точные результаты измерения.

После чего переходим ко второму этапу:

  1. снятие всех свечных проводов;
  2. выкручивание свечи зажигания каждого цилиндра;
  3. при электрическом бензонасосе – его необходимо вытащить. Если бензонасос обычный, то просто отключается шланг, отвечающий за топливо;
  4. отключение питающего провода с форсунок при необходимости.

Выполнив эти действия, можно приступать непосредственно к измерению компрессии в цилиндрах двигателя. Желательно измерения проводить вдвоем, чтобы один человек фиксировал результаты измерения, а другой – вращал мотор.

Для измерения выполняются следующие действия:

  1. вкручивание компрессометра в проверяемый цилиндр;
  2. нажатие педали газа до упора, чтобы полностью открыть дроссельную заслонку. Ключ зажигания начинаем вращать стартер. Вращение производится до тех пор, пока показатель прибора не перестанет расти – это и будет компрессия двигателя.

После полученного результата, необходимо сравнить с нормами, которые должны быть для данного двигателя. Если же результаты приближены к показателям нормы, то компрессия в двигателе хорошая и двигатель работает отлично, либо причина поломки двигателя не в этом.

Причины и последствия низкой компрессии

Если при измерениях получена низкая компрессия двигателя, то необходимо в срочном порядке восстанавливать давление в цилиндрах. Иначе могут быть серьезные последствия в дальнейшем при эксплуатации автомобиля. Например, будет сложно завести движок, обороты двигателя будут скакать, мотор будет очень сильно шуметь, мощность двигателя значительно снизится, увеличится расход топлива, появится синий дым, который будет выходить из выхлопной трубы при запуске двигателя.

Самыми распространенными причинами низкой компрессии может быть:

  • сгорела прокладка блока цилиндра;
  • сгорел поршень или клапан;
  • сильный износ деталей цилиндра;
  • разрушилось седло клапана.

В первую очередь необходимо проверить все эти детали и заменить неисправные. После чего, компрессия должна быть в норме, стоит провести повторные измерения.

Причины и последствия высокой компрессии

Если же результаты измерения компрессии оказались высокими, то стоит проверить, возможно в камеру сгорания попадает масло или двигатель перегревается.

Последствия высокой компрессии приводят к детонации и возникновению калильного зажигания, что в свою очередь способствует повреждению поршня и цилиндра двигателя.

При высоких показателях компрессии стоит также, проверить, не износились ли маслосъемные колпачки и кольца или нет ли нагара в цилиндрах, возможно двигателю потребуется раскоксовка ДВС.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Давление в баллоне — обзор

VI. Давление в цилиндре и эффекты диссоциации

Повышение пикового давления в цилиндре имеет два важных эффекта: (a) механические напряжения в компонентах двигателя увеличиваются. В настоящее время большие двигатели работают с пиковым давлением до 170 бар (Herrman and Magnet, 1985). Высокое давление газа также приводит к увеличению потерь на трение из-за повышенного давления за верхним поршневым кольцом. (б) При прочих равных снижается степень диссоциации.Это проиллюстрировано на рисунке 38, который относится к горению этена (C 2 H 4 ) с воздухом в стехиометрических пропорциях. На рис. 38 показано, как равновесный состав продуктов сгорания этена изменяется в зависимости от давления.

Рисунок 38. Влияние давления на диссоциацию.

Уже упоминалось (раздел I), что двигатель DI обычно имеет более низкий удельный расход топлива, чем двигатель IDI.Эта тема будет дополнительно обсуждаться здесь с особым упором на важность местных соотношений воздух / топливо. Как правило, если капли топлива сгорают в регионе с нехваткой кислорода, образуется большое количество окиси углерода. Если позже в процессе сгорания становится доступным больше кислорода, этот монооксид углерода может окисляться или не окисляться до диоксида углерода, в зависимости от температуры. Если к тому времени, когда станет доступен дополнительный кислород, температура упадет ниже примерно 1800 K, концентрация монооксида углерода останется «замороженной» на своем прежнем уровне и не будет значительного преобразования в диоксид углерода.

Если смесь воздух / топливо неоднородна, в выхлопе может появиться значительное количество окиси углерода, даже если общий коэффициент эквивалентности может быть значительно ниже единицы. Это проиллюстрировано для случая двигателя с искровым зажиганием на Рисунке 39 (Uyehara, 1980a), где процентное содержание окиси углерода в выхлопных газах показано как функция от коэффициента эквивалентности. Есть четыре кривых. Кривые A и B представляют собой прогнозируемые концентрации в начале такта расширения и при открытии выпускного клапана (EVO) соответственно.Расчеты основывались на степени сжатия 8 и температуре воздуха 830 K в конце такта сжатия; предполагались условия равновесия. Кривая C и точки D представляют измеренные концентрации CO. При испытаниях, к которым относятся точки D, большое внимание было уделено тому, чтобы наведенный заряд был однородным; Топливо и воздух перед подачей в двигатель тщательно перемешивались в системе баков и экранов. Можно видеть, что в этих условиях и со стехиометрической смесью доля CO в выхлопе была очень низкой — около 0.3%. Кривая C, напротив, представляет данные испытаний, в которых топливо впрыскивалось во впускной коллектор, так что у него было гораздо меньше возможностей для правильного смешивания с воздухом; таким образом, в момент воспламенения можно ожидать, что эквивалентное отношение будет значительно изменяться от точки к точке в камере сгорания. Был измерен общий коэффициент эквивалентности; рабочие условия точно соответствовали условиям точки D. Видно, что концентрация окиси углерода в выхлопе больше, чем для гомогенной смеси; разница особенно заметна для стехиометрических и более слабых смесей.Может показаться, что в случае гомогенной смеси монооксид углерода образуется более или менее равномерно по всей камере сгорания, но когда смесь неоднородна, существуют локальные богатые топливом зоны, в которых образование окись углерода относительно высока. Когда температура падает ниже примерно 1400 ° C, концентрация окиси углерода замерзает. Казалось бы, если общий коэффициент эквивалентности меньше единицы, то для снижения концентрации окиси углерода в выхлопе желательно иметь однородный заряд в камере сгорания, без зон местного обогащения.

Рисунок 39. Концентрация окиси углерода — зависимость от коэффициента эквивалентности. (Уехара, 1980).

Перепечатано с разрешения © 1980 Society of Automotive Engineers, Inc. Авторские права © 1980

Рассмотрим двигатель IDI, в котором объем предкамеры равен половине общего объема зазора, а другая половина состоит из зазора в цилиндр вместе с соединительным каналом. При высоких нагрузках масса воздуха, захваченного в камере предварительного сгорания в ВМТ, будет значительно меньше половины общей имеющейся массы.Это связано с тем, что воздух в форкамере будет поглощать тепло от относительно горячих поверхностей канала и форкамеры и, следовательно, будет иметь несколько меньшую плотность, чем воздух в пространстве над поршнем. Все топливо впрыскивается в камеру предварительного сгорания; таким образом, коэффициент эквивалентности там будет высоким, а отношения [CO 2 ] / [CO] и [H 2 O] / [H 2 ] будут относительно низкими. Хотя позже в процессе сгорания становится доступным гораздо больше кислорода, когда частично сгоревшие газы выходят в главный цилиндр, окисление CO еще далеко не завершено, и как только температура падает ниже 1800 K, реакция становится чрезвычайно медленной.Таким образом, уровень CO в выхлопных газах может быть довольно высоким, даже если общий коэффициент эквивалентности ниже стехиометрического.

Везде, где есть карманы богатой смеси в общей обедненной смеси, вероятно, будет значительная концентрация окиси углерода в выхлопных газах. С монооксидом углерода будет связан водород, часть которого не сможет окисляться до воды, когда местное соотношение эквивалентности будет высоким. Относительные пропорции CO 2 , CO, H 2 O и H 2 регулируются уравнением «водяной газ»:

CO + h3O⇌CO2 + h3

Константа диссоциации для этой реакции дана на

Kp = pCO2ph3pCOph3O = nCO2nh3nCOnh3O

, поскольку количество молей каждого вида одинаково (один).

Из измерений состава выхлопных газов можно работать в обратном направлении, чтобы определить K p и, следовательно, на основании табличных значений K p как функции температуры, чтобы определить температура, при которой реакция замораживалась. На рисунке 40 показан такой график. В этом случае расчетное значение температуры замерзания составляло 1670 К, но большинство значений, цитируемых в литературе, выше этого — около 1800 К.

Рисунок 40. Определение температуры «замерзания» по составу выхлопных газов.

Как указывалось ранее, когда смесь неоднородна и в некоторых частях заряда, которые в целом обеднены, существуют богатые карманы, в продуктах сгорания будут присутствовать оксид углерода и водород, а также диоксид углерода и вода. Эффективное сгорание требует, чтобы пропорции диоксида углерода и воды были как можно более высокими и чтобы они образовывались в начале хода расширения, что подразумевает близкое приближение к сгоранию с постоянным объемом.В двигателе IDI в камере предварительного сгорания неизбежно образуются относительно большие количества окиси углерода и водорода. Эти газы проходят в пространство над поршнем, где они смешиваются с воздухом. Реакции происходят, но когда поршень опускается на такте расширения, температура падает; когда он достигает критического значения, концентрации различных видов замерзают на своем текущем уровне.

Watson и Kamel (1979) использовали компьютерную модель для сравнения скоростей сгорания в аналогичных двигателях DI и IDI.На рисунке 41 показаны графики изменения скорости сгорания в зависимости от угла поворота коленчатого вала для двух случаев. Отчетливо видна большая продолжительность сгорания в двигателе IDI; хотя первая стадия сгорания в форкамере завершается относительно быстро, вторая стадия (в цилиндре) протекает сравнительно медленно.

Рисунок 41. Сравнение скоростей сгорания для двигателей DI и IDI.

Разработка двигателя и давление в цилиндре

В некоторых рубриках Enginology назад мы говорили о функциональных возможностях и преимуществах, получаемых от измерения давления в цилиндрах с приращением углов коленчатого вала.В этом обсуждении мы отметили несколько полезных потоков данных. Один из них связан с непрерывным измерением давления в цилиндре от начала сгорания до его конца, от цикла к циклу в работающем двигателе. Задержите эту мысль на мгновение.

Мы также уделили немного места в этой колонке, говоря о качестве воздушно-топливной смеси, как и о качестве входящего воздушного потока. В частности, мы отметили, что от цикла к циклу (в любом данном цилиндре) возможно различное качество заряда воздух / топливо в зависимости от эффективности смешивания топлива с воздухом.По сути, разделение воздуха и топлива и то, как это может повлиять на диапазон размеров топливных капель, было в центре внимания, которое мы обсуждали. Из-за проблем, связанных с плохим смешиванием воздуха и топлива, общее давление в рабочем цилиндре может изменяться, что отражается в изменении крутящего момента коленчатого вала.

Суть в понижении мощности. Именно эти изменения давления в рабочем цилиндре от цикла к циклу можно определить как «циклическое диспергирование». Интересно, что анализ выхлопных газов на несгоревшее топливо (углеводороды или уровни углеводородов) помог подтвердить, что изменения давления в цилиндрах предполагают потерю мощности из-за плохо перемешанных или сгоревших зарядов воздуха / топлива.Другими словами, поскольку воздух и топливо имеют тенденцию разделяться (либо во время впускного цикла, либо во время движения пламени, либо в обоих случаях), увеличивается количество несгоревшего топлива, которое сопровождается снижением мощности.

Что может вызвать циклическую дисперсию? Из возможностей разделение воздуха и топлива и общее движение смеси в камере сгорания занимают довольно высокое место. И, как и следовало ожидать, эти два условия связаны. Например, хотя два основных типа движения (завихрение и кувырок) использовались как в штатных, так и в гоночных двигателях, возможно, что и того, и другого будет слишком много.Любой из них может быть причиной механического отделения топлива от воздуха где-то на протяжении времени до сгорания, а также снижения полезного объемного КПД или наполнения цилиндра. И, как обсуждалось ранее, существуют причины разделения, которые могут материализоваться во время впускного цикла не только между цилиндрами двигателя, но и случайным образом, от цикла к циклу, в отдельных цилиндрах.

Учитывая характер того, как может развиваться циклическое диспергирование, не требуется большого воображения, чтобы увидеть, что двигатель, оснащенный карбюратором, может быть более проблематичным, чем двигатель с последовательным многоточечным электронным впрыском топлива (MPEFI).Даже EFI «периодического действия» (топливо подается в четыре цилиндра одновременно в конфигурации V-8, например), по-видимому, предлагает снижение циклической дисперсии больше, чем компоновка карбюратора и обычные проблемы с мокрым потоком, которые могут возникнуть. между ним и камерой сгорания. Фактически, данные о давлении в цилиндрах, которые я видел, сравнивая карбюраторные двигатели с двигателями с EFI, ясно показывают снижение как общих циклических схем дисперсии, так и циклических характеристик отдельных цилиндров.

Более того, если мы переместим наше внимание на то, как можно снизить мощность с помощью того, что мы называем «типичными» условиями циклического рассеивания, данные показали, что процент снижения мощности находится в диапазоне 5-8 процентов.Таким образом, просто уменьшив это условие при том же количестве потребляемого топлива, можно увеличить мощность на этот процент. Перевод? Уменьшение циклической дисперсии может привести к повышению эффективности сгорания, что приводит к увеличению крутящего момента коленчатого вала. Это означает больше мощности.

Есть еще одна небольшая проблема, связанная с дальнейшим подтверждением того, почему снижение циклической дисперсии — это хорошо. Заядлые студенты, изучающие двигатели внутреннего сгорания, скажут вам, что циклическое диспергирование практически гарантирует, что в зазоре свечи зажигания будет различная топливно-воздушная смесь при каждом зажигании.Иногда, в зависимости от степени состояния (проще говоря), заправка воздухом / топливом будет богатой, а иногда — бедной. Остаточные побочные продукты сгорания, отделившееся топливо или условия турбулентности в пространстве сгорания могут повлиять на то, что свеча видит во время сгорания.

Независимо от того, что мы будем называть качеством начального сгорания (пламя) и скоростью, с которой оно проходит через пространство сгорания, зависит от соотношения воздух / топливо в зазоре свечи зажигания. Даже несмотря на то, что сам процесс сгорания создает некоторую турбулентность (в начале горения), которая перекрывается последующей активностью по мере продолжения пламени, циклическая дисперсия может повлиять на скорость начального сгорания и чистое давление в цилиндре.Все это возвращает нас к измерению давления в цилиндрах, чтобы определить масштабы проблемы.

Обратите внимание на прилагаемый рисунок, хотя он несколько преувеличен для целей обсуждения. Хотя он не взят непосредственно из графика испытания давления / угла поворота коленчатого вала, он показывает, как пиковое рабочее давление в цилиндре (чистый крутящий момент) может изменяться в зависимости от циклической дисперсии. Как обсуждалось ранее и проиллюстрировано в этой колонке, пиковое давление обычно возникает немного после ВМТ рабочего хода и изменяется пропорционально частоте вращения коленчатого вала.Во всяком случае, рисунок иллюстрирует взаимосвязь между пиковыми рабочими давлениями и углами поворота коленчатого вала, на которые влияет циклическая дисперсия.

Методы, которые мы ранее обсуждали, связанные со способами улучшения качества заряда воздуха / топлива, связаны со всем этим, особенно для двигателей, оснащенных карбюратором. На самом деле, если вы на минутку задумаетесь об этом, мы, которые работали или разрабатывали детали для двигателей с карбюраторами, уже давно сосредоточены на решении проблемы низкого качества смеси и связанных с этим компромиссов, ведущих к снижению мощности.Такова природа зверя. Однако с появлением EFI и того, как эта технология предлагает отличную возможность уменьшить циклическую дисперсию и ее негативное влияние на характеристики двигателя, органам, санкционирующим автоспорт, остается только вступить в современное время и позволить (возможно, даже потребовать) эту концепцию. использоваться.

Существуют группы разработок двигателей для кольцевых гусениц, которые уже уточняют, как EFI может перейти в эту категорию гонок, решая проблемы, которые в противном случае могли бы вызывать беспокойство.Одним из них является то, как поступать с системами подачи топлива под высоким давлением и потенциальным возгоранием на борту, когда гоночные автомобили попадают в аварии.

Учитывая инновационный и творческий потенциал, которым исторически изобилует сообщество разработчиков запчастей для автоспорта, найдутся решения этой и подобных проблем. Дело в том, что проблемы, связанные с управлением воздушно-топливными зарядами в двигателях, оснащенных карбюраторами, могут быть существенно улучшены за счет включения способов, которыми OEM-производители решают как сокращение выбросов, так и требования к экономии топлива для дорожных транспортных средств.EFI, помимо любых опасений по поводу работы с сопутствующей электроникой, представляет собой четкий путь к решению некоторых основных проблем с двигателем внутреннего сгорания, в том числе тех, которые поворачивают налево, направо или их комбинацию. Циклическая дисперсия — это только одна проблема, которую следует уменьшить.

Давление в цилиндрах на холостом ходу (бензин)

Характеристики формы сигнала

С обеими линейками времени и Линейки вращения на оси времени, легенда линейки показывает время и градусы.Согласовав линейки с конкретными характеристиками формы сигнала, можно измерить события фаз газораспределения относительно ВМТ и НМТ (в градусах), чтобы сравнить их с данными производителя.

При съемке с двигателем, работающим на холостом ходу, взаимосвязь между характеристиками формы волны давления в цилиндре и событиями двигателя может быть описана, в свою очередь, следующим образом:

  • Повышение давления на 50 мбар и последующее частичное падение до значительного импульса давления, указывающего, когда цилиндр герметизирован закрытием впускного клапана.
  • Значительный импульс давления, симметричный относительно ВМТ (0 °), указывает на то, что клапаны и поршневые кольца / стенки цилиндра герметизированы, и во время сжатия из цилиндра не выходит заряд.
  • Пониженное пиковое давление по сравнению с измеренным при проворачивании коленчатого вала (обычно давление составляет от 6 до 13 бар). Однако двигатель работает на холостом ходу с закрытой дроссельной заслонкой, поэтому объем всасываемого воздуха невелик.
  • Постоянное падение давления во время такта расширения, так как сгорание отсутствует.
  • Углубление при такте расширения направляется к НМТ, указывая на то, что цилиндр остается герметичным.
  • Повышение давления от отрицательного пика до 0 бар, непосредственно перед НМТ (180 ° после ВМТ), указывающее на открытие выпускного клапана.
  • Приблизительно постоянное атмосферное давление, когда поршень проходит фазу такта выпуска (от 180 ° до 360 ° после ВМТ). Повышение давления здесь указывает на ограничение выпуска.
  • Снижение давления до диапазона от -650 мбар до -750 мбар через некоторое время после ВМТ, указывающее на открытие впускного клапана и на то, что поршень совершает цикл впуска.Точный угол поворота коленвала, при котором происходит это событие, зависит от периода перекрытия клапанов вашего двигателя.
  • Продолжительный период относительно постоянного давления ниже атмосферного, когда поршень циклически проходит фазу такта впуска (от 360 ° до 540 ° после ВМТ). Отклонения здесь указывают на проблемы с поступлением.
  • Еще раз небольшое повышение давления с последующим частичным падением и т. Д.

Когда две линейки размещены на оси времени, легенда частоты указывает эквивалентную частоту цикла, рассчитанную на основе периода времени (дельта) между линейками.Частота отображается в герцах и об / мин. Следовательно, если линейки расположены под углом 0 ° и 360 °, значение числа оборотов в минуту указывает на скорость холостого хода двигателя (которая в этом тесте, вероятно, снижена из-за неактивного цилиндра).

Примечание

Фактическое давление зависит от двигателя и условий испытаний. Принимайте решения о значениях давления только на основе сравнения с данными производителя.

Давление в цилиндрах при запуске (бензин)

Дополнительные указания

Датчик давления WPS500X позволяет измерять изменения давления в цилиндрах на протяжении всего цикла двигателя, чтобы выявить важные сведения о целостности цилиндра и работе клапана:

Анализ формы волны

Линейки вращения PicoScope (представлены в виде перетаскиваемого сине-зеленого круга на правом краю оси времени обзора ), Линейки (представлены в виде перетаскиваемого белого квадрата на левом краю оси времени обзора ) и Zoom являются важными помощниками при анализе формы сигнала давления в цилиндре:

  • Используйте инструмент Zoom , чтобы полностью выделить два последовательных импульса формы сигнала.
  • Установите Линейки вращения для точного совмещения с пиковым давлением на каждом импульсе.

Поскольку пиковое давление возникает в ВМТ после такта сжатия, соседние пики разнесены на 720 ° поворота коленчатого вала.

  • Щелкните на второй метке значения линейки вращения , чтобы изменить его с 360 ° по умолчанию на 720 °.
  • Щелкните всплывающее меню линейки и введите 4 в качестве значения Rotation Partition в настройках линейки .

Форма волны будет разделена каждые 180 °, чтобы обеспечить визуальную индикацию границ между фазами 4-тактного цикла.

Характеристики формы сигнала

С обеими линейками времени и Линейки вращения на оси времени, легенда линейки показывает время и градусы. Согласовав время Rulers с конкретными характеристиками формы волны, можно измерить события фаз газораспределения относительно ВМТ и НМТ (в градусах), чтобы сравнить их с данными производителя.

Когда регистрируется во время проворачивания, взаимосвязь между характеристиками формы волны давления в цилиндре и событиями двигателя может быть описана, в свою очередь, следующим образом:

  • Импульс давления, симметричный относительно ВМТ (0 °), указывает на то, что клапаны и поршневые кольца / стенки цилиндра герметизированы и во время сжатия не происходит утечки заряда из цилиндра.
  • Постоянное падение давления во время такта расширения, так как сгорание отсутствует.
  • Углубление впадины, поскольку такт расширения направлен в сторону НМТ (180 ° после ВМТ), что указывает на то, что цилиндр остается герметичным.
  • Повышение давления от отрицательного пика до 0 бар, указывающее на открытие выпускного клапана.
  • Приблизительно постоянное атмосферное давление, когда поршень проходит фазу такта выпуска (от 180 ° до 360 ° после ВМТ). Повышение давления здесь указывает на ограничение выпуска.
  • Приблизительно постоянное атмосферное давление, когда поршень проходит фазу такта впуска (от 360 ° до 540 ° после ВМТ). Отклонения здесь указывают на проблемы с поступлением.
  • Повышение давления во время цикла сжатия поршня (от 540 ° до 720 ° после ВМТ), что указывает на закрытие впускного клапана.
  • И снова симметричный импульс давления.

Когда две линейки размещены на оси времени, легенда частоты указывает эквивалентную частоту цикла, рассчитанную на основе периода времени (дельта) между линейками. Частота отображается в герцах и об / мин. Следовательно, если линейки расположены под углом 0 ° и 360 °, значение числа оборотов в минуту указывает частоту вращения коленчатого вала двигателя.

Примечание

Фактическое давление зависит от двигателя и условий испытаний. Принимайте решения о значениях давления только на основе сравнения с данными производителя.

Характеристики давления в цилиндре дизельных двигателей с турбонаддувом и без наддува

% PDF-1.7 % 1 0 объект > >> эндобдж 6 0 obj / CreationDate (D: 20150217124326 + 05’30 ‘) / Создатель (Elsevier) / CrossMarkDomains # 5B1 # 5D (sciencedirect.com) / CrossMarkDomains # 5B2 # 5D (иначе.com) / CrossmarkDomainExclusive (истина) / CrossmarkMajorVersionDate (23 апреля 2010 г.) / ElsevierWebPDFS Технические характеристики (6.4) / ModDate (D: 20150217125507 + 05’30 ‘) / Производитель (Acrobat Distiller 10.0.0 \ (Windows \)) / Тема (Разработка процедур, 100 \ (2015 \) 350-359. Doi: 10.1016 / j.proeng.2015.01.378) / Название (Характеристики давления в цилиндрах дизельных двигателей с турбонаддувом и без наддува) / doi (10.1016 / j.proeng.2015.01.378) / роботы (noindex) >> эндобдж 2 0 obj > транслировать application / pdf10.1016 / j.proeng.2015.01.378

  • Характеристики давления в цилиндре дизельных двигателей с турбонаддувом и без наддува
  • Юри Олт
  • Виллу Микита
  • Корни Юри
  • Альгирдас Ясинскас
  • Двигатели с воспламенением от сжатия
  • характеристики давления в баллоне
  • фаз процесса горения
  • результаты испытаний двигателя
  • Разработка процедур, 100 (2015) 350-359.DOI: 10.1016 / j.proeng.2015.01.378
  • Elsevier B.V.
  • journalProcedia Engineering © 2015 Авторское шоу Опубликовано Elsevier BV Все права защищены. 1877-705810020152015350-35935035910.1016 / j.proeng.2015.01.378 http://dx.doi.org/10.1016/j.proeng.2015.01.3782010-04-23true10 .1016 / j.proeng.2015.01.378
  • elsevier.com
  • sciencedirect.com
  • 6.410.1016 / j.proeng.2015.01.378noindex2010-04-23truesciencedirect.comↂ005B1ↂ005D> elsevier.comↂ005B2ↂ005D>
  • sciencedirect.com
  • elsevier.com
  • Elsevier2015-02-17T12: 55: 07 + 05: 302015-02-17T12: 43: 26 + 05: 302015-02-17T12: 55: 07 + 05: 30TrueAcrobat Distiller 10.0.0 (Windows) uuid: 846e739f-0129- 47e0-98da-277ef3992007uuid: 784f3d5d-2c15-4b52-83ca-481067e8fc84 конечный поток эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 5 0 obj > эндобдж 7 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text / ImageB] / Свойства> / XObject> >> / Повернуть 0 / TrimBox [0 0 544.252 742,677] / Тип / Страница >> эндобдж 8 0 объект > эндобдж 9 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 10 0 obj > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 11 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text / ImageC] / XObject> >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 12 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742,677] / Тип / Страница >> эндобдж 13 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 14 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 15 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text / ImageC] / XObject> >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 16 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text / ImageC / ImageI] / XObject> >> / Повернуть 0 / TrimBox [0 0 544.»L’z`3rF̆,) ɲ: tu & (ӐE,` & _Ԇ = t.! M $: oG4 | pX ٕ R) -k.

    Тестер сжатия

    , манометр цилиндра 8PCS для бензинового газового двигателя: автомобильный

    1.0 из 5 звезд Посмотрите изображение и, пожалуйста, купите товар получше! Не стоит ложного чтения !!!
    Автор SAFARIPOLICE, 27 сентября, 2020

    Очень разочарован этим продуктом.30-дневный период закончился, так что его нелегко вернуть, и он буквально даст вам разные показания для одного и того же цилиндра, независимо от того, сколько раз вы пытаетесь. Он также развалился на соединении манометра, и мне пришлось его снова прикрепить и починить. Я просто не могу поверить, что это продается как точный продукт для кого-то, кто тестирует что-то настолько важное, как двигатель автомобиля или трактора. Я использовал его в качестве запасного датчика компрессии в моем втором магазине, так как у меня нет датчика моей торговой марки в обоих магазинах. К сожалению, на этом этапе он будет отправлен в утиль, если продавец не вернет мне что-нибудь или не примет возврат.

    Пожалуйста, сделайте себе одолжение и купите гораздо более качественный тестер торговой марки, даже если это означает, что вы потратите значительно больше денег. Какой смысл использовать продукт, который может показать вам, что у вас мертвый или умирающий цилиндр, когда на самом деле он в порядке или приемлем и / показывает хороший цилиндр или приемлемые показания на одном, а на самом деле у него есть треснувшие кольца, треснувший поршень или выдолбленные гильзы / bores, (см. прилагаемую картинку) !! Это дало приемлемые показания, что явно невозможно, поэтому датчик не работает.

    Смотрите прикрепленное изображение!
    Этот цилиндр и поршень показали 100 фунтов на квадратный дюйм в пределах приемлемых спецификаций для двигателя Allis Chalmers, над которым я работал. Я понял, что что-то не так, когда все 4 цилиндра показали одинаковые показания. За 30 с лишним лет профессиональной карьеры механика по малым двигателям / сельскому хозяйству и увлечению мне ни разу не случалось, чтобы все 4 цилиндра показывали одно и то же значение, а затем еще одно показание, отличавшееся на 30-50% при следующем тесте. Очень бракованный товар. Если вы видите эту картинку, что поршень и канал ствола должны иметь показания 0 фунтов на квадратный дюйм и не более того, точка!

    , пожалуйста, сочтите мой обзор полезным, если бы это было так: один механик пытается помочь другому.
    Спасибо.

    Давление бензина в цилиндрах в зависимости от оборотов двигателя

    Контекст 1

    … производительность двигателя в отношении давления в цилиндре, скорости тепловыделения, указанной работы, указанной мощности, указанного крутящего момента, IMEP (указанное среднее эффективное давление) , ISFC (указанный удельный расход топлива), объемный КПД, FCE (эффективность преобразования топлива) и выбросы выхлопных газов были исследованы для бензина и топлива CNG при различных установившихся режимах работы и состоянии MBT (максимальный тормозной момент) путем регулирования количества впрыскиваемого топлива.Испытания проводились при лямбда, λ: 0,92–1,20 o o, а искровое зажигание было зафиксировано на уровне 342 CA (18 BTDC) для обоих видов топлива. Время зажигания подробно не исследуется в этой статье из-за ограничивающей способности блока управления двигателем. На рисунках 3 и 4 показаны давления в цилиндрах во время сжатия и тактов мощности двигателя при работе на бензине и КПГ при WOT между 1500 и 5000 об / мин. Результаты показывают, что пиковое давление в цилиндре увеличивалось с частотой вращения двигателя до 3000 об / мин, но затем уменьшалось на более высоких скоростях.Сравнение давления в баллоне бензина и КПГ показано на Рисунке 5 для 1500, 3000 и 4500 об / мин. Снижение пикового давления в цилиндре на 13-17% во время рабочего хода при работе на КПГ было обнаружено во всем диапазоне скоростей. КПГ показывает более низкое пиковое давление в цилиндрах по сравнению с бензином из-за того, что вдыхаемая энергия заряда цилиндра, таким образом, чистая высвобождаемая энергия намного ниже, чем у бензина. В результате производимая мощность также была уменьшена, о чем свидетельствует пиковое давление в цилиндре.Можно обнаружить, что максимальное давление в цилиндре o, достигаемое с помощью бензина и СПГ, составляет 5,0 МПа (364 CA) o и пиковое давление 4,3 МПа (367 CA) соответственно при 3000 об / мин, где самый высокий крутящий момент достигается как для топлива. Положение пикового давления относительно угла поворота коленчатого вала для обоих видов топлива имеет тенденцию быть примерно одинаковым, показывая, что наилучшее время для пикового давления o должно приходиться на 4-7 CA ATDC. Площади, ограниченные кривой давления на графиках P-V, были использованы для определения указанной работы. На рисунке 6 показана указанная работа бензина и КПГ при 3500 об / мин.На рисунке показано, что цилиндр работает в течение одного цикла, что представляет собой положительную работу за счет сгорания во время рабочего такта и отрицательную работу во время сжатия. Результаты показывают, что тенденция и ценность указанной работы для обоих видов топлива довольно сопоставимы, но бензин лучше с немного более высокой положительной работой. Максимально допустимая работа на бензине и КПГ составляет 0,54 Дж и 0,51 Дж для обоих при o 28 CA ATDC. Скорость тепловыделения как для бензина, так и для КПГ при 1500-5000 об / мин и сравнение задержки воспламенения с моментом зажигания при 1500 об / мин для обоих видов топлива представлены на рисунках 7 и 8.Скорость тепловыделения означает, насколько быстро может быть завершено сгорание топлива и впоследствии передано возвратно-поступательному движению поршня. Как показано на Рисунке 9, результат показывает, что при 3000 об / мин бензин показывает максимальную скорость тепловыделения при o 3 o 354 CA (51 кДж / м / град) по сравнению с CNG при 358 CA 3 (33 кДж / м / град). . Пиковые точки скорости тепловыделения и задержки воспламенения (ΔΘ ig) для каждого топлива и скорости двигателя были перерисованы на рисунках 10 и 11. Очевидно, что скорости сгорания СПГ ниже, чем у бензина, на всех оборотах двигателя.В среднем это показывает, что КПГ дает на 33% меньшую скорость тепловыделения по сравнению с бензином.

    Добавить комментарий

    Ваш адрес email не будет опубликован.