Датчик холла что такое: Датчик Холла — Виды, принцип работы, как проверить

Содержание

Датчик Холла — Виды, принцип работы, как проверить

Что такое датчик Холла


Датчики Холла представляют из себя твердотельные радиоэлементы, которые становятся все более популярными в радиолюбительской среде и разработке радиоэлектронных устройств. Они применяются в датчиках измерения положения, скорости или направленного движения. Они все чаще заменяют собой путевые выключатели и герконы. Так как такие датчики являются абсолютно герметичными и представляют из себя простой радиоэлемент, то они не боятся вибрации, пыли и влаги. То есть по сути датчик Холла простыми словами — это радиоэлемент, который реагирует на внешнее магнитное поле.

Интересно, что датчик Холла есть во многих современных смартфонах (пусть и упрощенный его вариант). Он может определять наличие магнитного поля и работает вместе с магнитным сенсором, который отвечает за работу компаса. Также датчик Холла используется в телефонах, для которых которых доступны специальные чехлы с магнитной защелкой — Smart Case. Сенсор определяет, открыта или закрыта крышка чехла, и автоматически включает/отключает дисплей. Чтобы узнать, какие датчики есть в смартфоне, используйте эту инструкцию.

Эффект Холла

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странный эффект. Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я пометил гранями ABCD.

Он пропускал постоянный ток через грани D и B. Потом поднес перпендикулярно пластинке постоянный магнит и обнаружил напряжение на гранях А и C!  Этот эффект и был назван в честь этого великого ученого. Основной физический принцип данного эффекта был основан на силе Лоренца. Поэтому радиоэлементы, основанные на эффекте Холла, стали называть датчиками Холла. 

Но здесь один маленький нюанс. Дело в том, что напряжение Холла даже при самой большой напряженности магнитного поля будет какие-то микровольты. Согласитесь, это очень мало. Поэтому, помимо самой пластинки в датчик Холла устанавливают усилители постоянного тока, логические схемы переключения, регулятор напряжения а также триггер Шмитта. В самом простом переключающем датчике Холла все это выглядит примерно вот так:

где

Supply Voltage — напряжение питания датчика

Ground — земля

Voltage Regulator — регулятор напряжения

А — операционный усилитель

Hall Sensor — собственно сама пластинка Холла

Output transisitor Switch — выходной переключающий транзистор (транзисторный ключ)

Линейные (аналоговые) датчики Холла

В линейных датчиках напряжение Холла (напряжение на гранях А и С) будет зависеть от напряженности магнитного поля. Или простыми словами, чем ближе мы поднесем магнит к датчику, тем больше будет напряжение Холла. Это и есть прямолинейная зависимость.

В линейных датчиках Холла выходное напряжение берется сразу с операционного усилителя. То есть в линейных датчиках вы не увидите триггер Шмитта, а также выходного переключающего транзистора. То есть все это будет выглядеть примерно вот так:

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку.

Теоретически, если подавать ну очень сильный магнитный поток на датчик Холла, то напряжение Холла будет бесконечно большим? Как бы не так). Выходное напряжение будет лимитировано напряжением питания. То есть график будет выглядеть примерно вот так:

Как вы видите, до какого-то момента у нас идет линейная зависимость выходного напряжения датчика от плотности магнитного потока. Дальнейшее увеличение магнитного потока бесполезно, так как оно достигло напряжения насыщения, которое ограничено напряжением питанием самого датчика Холла.

Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого провода, например, токовые клещи.

Существуют также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах, называют линейными, так как напряжение на датчике Холла прямо пропорционально плотности магнитного потока.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Как только наступила  эра цифровой элек троники, в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Самый простой датчик Холла на триггере Шмитта мы уже рассмотрели выше и он выглядит вот так:

По сути такой датчик имеет только два состояние на выходе. Либо сигнал есть (логическая единица), либо его нет (логический ноль). Гистерезис на триггере Шмитта просто устраняет частые переключения, поэтому в цифровых датчиках Холла он используется всегда.

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

Униполярные

Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. К примеру, подносим южный полюс магнита и датчик сработает. На северный магнитный полюс он реагировать не будет.

Биполярные

Подносим магнит одним полюсом — датчик сработает и будет продолжать работать даже тогда, когда мы уберем магнит от датчика. Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Как проверить датчик Холла

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

Судя по даташиту, на первую ножку подаем плюс питания, на вторую — минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

Для этого соберем простейшую схему: светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и сам датчик Холла.

Теперь цепляемся к нашей схеме от блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс питания — на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил красным бумажным ценником один из полюсов магнита. Какой именно — я не знаю, так как не имею компаса, с помощью которого можно было бы узнать, где северный полюс, а где южный.

Как только я поднес магнит «красным» полюсом к датчику холла, то у меня светодиод сразу потух.

Переворачиваю магнит другим полюсом, подношу его к датчику Холла и вуаля!

Если магнит не переворачивать, то есть не менять полюса, то светодиод также останется потухшим, потому что датчик биполярный.

Кстати, читайте про биполярный транзистор.

А вот и видео работы

Как вы видите на видео, мы с помощью магнита управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть — единичка, сигнала нет — ноль. То есть светодиод горит — единичка, светодиод потух — ноль.

Применение датчиков Холла

В настоящее время область применения датчиков Холла очень обширна и с каждым годом становится все шире и шире. Вот основные применения:

Применение линейных датчиков


  • датчики тока
  • тахометры
  • датчики вибрации
  • детекторы ферромагнетиков
  • датчики угла поворота
  • бесконтактные потенциометры
  • бесколлекторные двигатели постоянного тока
  • датчики расхода
  • датчики положения

Применение цифровых датчиков


  • датчики частоты вращения
  • устройства синхронизации
  • датчики систем зажигания автомобилей
  • датчики положения
  • счетчики импульсов
  • датчики положения клапанов
  • блокировка дверей
  • измерители расхода
  • бесконтактные реле
  • детекторы приближения
  • датчики бумаги (в принтерах)

Заключение

Чем же так хороши датчики Холла? Если соблюдать нормальные рабочие значения напряжения и тока, то теоретически датчика хватит на бесконечное число включений-выключений. Они не имеют электромеханического контакта, который бы изнашивался, в отличие от геркона  и электромагнитного реле. В настоящее время они уже почти полностью заменили герконы.

Приобрести датчик эффектов Холла тут.

принцип работы, как проверить своими руками, применение

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т.д.) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя. Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения Uхолла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота). Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.
Внешний вид цифрового датчика Холла

Как правило, большинство датчиков представляет собой компонент с тремя выводами, на два из которых подается двух- или однополярное питание, а третий является сигнальным.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.
https://www.youtube.com/watch?v=fmLs9WsKx3I

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Внешний вид датчика Холла для СБЗ ВАЗ 2110

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива.
    Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.
Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ
  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, – меняем датчик на новый.

Датчик Холла и принцип его работы. Типы датчиков и их особенности.

Главная » Виды датчиков

Содержание

  1. Что такое датчик Холла
  2. Какие бывают типы датчиков Холла
  3. Применение датчиков Холла
  4. Датчик Холла или геркон?

Что такое датчик Холла

Для того чтобы понять, что такое датчик Холла нужно сначала разобраться какие физические свойства он использует. Этот датчик использует внешние магнитные поля и их воздействием на проводники или полупроводники.

В них используется принцип Холла, который заключается в том, что если по проводнику или полупроводнику протекает ток в одном направлении и он проходит перпендикулярно магнитному полю, то можно измерить напряжение, проходящее под прямым углом к движению тока.

датчик Холла

В 19 веке американский физик Эдвин Холл проводил эксперименты с пластиной золота через которую он пропускал электрический ток. Когда он поднес к пластине постоянный магнит, то обнаружил на гранях перпендикулярных протеканию тока разность потенциалов т.е. напряжение. В честь этого ученого и назвали этот эффект.

Датчик Холла является магнитным датчиком т.е. устройством, генерирующим электрические сигналы пропорциональные магнитному полю, которое к нему приложено. Далее сигнал может усиливаться и преобразовываться для дальнейшей обработки.

клещи для измерения тока

Самым простым примером применения эффекта Холла могут служить токоизмерительные клещи, которые применяются для бесконтактного определения силы тока, протекающего по проводнику.

Какие бывают типы датчиков Холла

Датчики Холла подразделяются на два типа:

  1. Аналоговые датчики Холла
    В этом типе датчиков использовано преобразование магнитной индукции напрямую в напряжение. Свое применение аналоговые датчики нашли в измерительных технических устройствах. Это, например, датчики тока, датчики вибрации, датчики угла поворота.
  2. Цифровые датчики Холла
    Цифровой датчик Холла имеет всего два положения, которые показывают наличие или отсутствие магнитного поля. Практически это аналог геркона, но если в герконе присутствует механический контакт, то цифровой датчик Холла бесконтактный.
датчик с эффектом Холла

Подразделяются такие датчики на три вида:

  • Униполярный – когда сила магнитного поля достигает определенной величины датчик срабатывает. Такие датчики откликаются только на один полюс. Если к датчику поднести магнит другим полюсом, то датчик на него не реагирует. Когда сила магнитного поля снижается датчик возвращается в исходное положение.
  • Биполярный – в этом случае имеет значение полярность магнитного поля. Один полюс включает датчик, другой полюс выключает.
  • Омниполярный датчик Холла – реагирует на любой магнитный полюс. Т.е. любой полюс может включать и выключать датчик. Это может быть, как южный, так и северный полюс.

Как правило цифровой датчик Холла имеет три вывода и внешне похож на транзистор.

сенсор Холла с выводами

На два вывода датчика подается питание, которое может быть, как однополярным, так и двуполярным. Третий вывод сигнальный. Такой тип датчиков часто применяется в бесконтактных системах зажигания, как датчик скорости в автомобилях и т.д.

Применение датчиков Холла

Разберем более подробно области применения датчиков Холла.

  • В смартфонах датчик Холла используется в комплекте с магнитным чехлом. Он позволяет определить чехол открыт или закрыт. Если чехол открыт, то смартфон включается, если открыт, то выключается. Также преобразователь Холла ориентирует телефон по горизонту земли и помогает работе компаса. На мобильных телефонах-раскладушках также применяется датчик Холла для определения телефон находится в открытом или закрытом положении.
умный чехол для смартфона
  • В ноутбуках также датчик используется для определения открыта крышка или нет. Сам датчик Холла установлен на материнской плате. На крышке ноутбука установлен магнит. Закрываем крышку – экран гаснет.
  • В стиральных машинах стоит таходачик для подсчета количества оборотов мотора. Электронная система стиральной машинки на основе показаний датчика принимает решение нарастить или уменьшить скорость оборотов и какое количество оборотов нужно для выбранного режима.
  • В автомобилях часто используется эффект Холла в системах зажигания. Находится датчик в трамблере и заменяет собой контактор. Он определяет в какой момент появляется искра и передает данные в блок электроники. Могут применяться униполярные или биполярные данные. Момент создания искры и количество импульсов определяется бесконтактно и теоретически датчики могут работать неограниченное время.
  • В системах сигнализации в бесконтактных выключателях.
  • В системах контроля и управления доступом (СКУД) для чтения магнитных кодов
  • В системах определения уровня жидкости.
  • Для проверки наличия скрытой проводки.
  • Для измерения силы тока.
Arduino с датчиком Холла
  • В робототехнических наборах для изучения эффекта Холла. Это позволяет наглядно показать, как используются магнитные поля в датчиках.

То есть датчики Холла применяются в технических областях там, где требуется бесконтактный способ считывания информации. Недостатком датчиков Холла является их зависимость от электрических помех в электроцепях и как следствие снижение надежности. Но при создании электронных устройств такие факторы учитываются и позволяют снизить эти негативные воздействия.

Датчик Холла или геркон?

Как работают датчики Холла

Как работают датчики Холла — Объясните это

Вы здесь: Домашняя страница > Инструменты, инструменты и измерения > Датчики Холла

  • Дом
  • индекс А-Я
  • Случайная статья
  • Хронология
  • Учебное пособие
  • О нас
  • Конфиденциальность и файлы cookie

Реклама

Измерить электричество очень просто — мы все знакомы с электрическими единицами, такими как вольты, амперы и ватты (и большинство из нас видели счетчики с подвижной катушкой в той или иной форме).

Измерение магнетизма немного сложнее. Спросите большинство люди, как измерить силу магнитного поля (невидимого область магнетизма, простирающаяся вокруг магнита) или единицы в какая напряженность поля измеряется (веберы или тесла, в зависимости от того, как вы измеряете), и они не будут иметь ни малейшего понятия.

Но есть простой способ измерить магнетизм с помощью прибора называется датчиком или зондом на эффекте Холла, который использует хитрую часть наука открыта в 1879 годуамериканский физик Эдвин Х. Холл (1855–1938). Работа Холла была гениальной и опережала свое время на 20 лет. до открытия электрона — и никто не знал, что с ним делать, пока десятилетия спустя не стали лучше понимать полупроводниковые материалы, такие как кремний. В эти дни Эдвин Холл был бы в восторге чтобы найти датчики, названные в его честь, используются во всех виды интересных способов. Давайте посмотрим поближе!

Фото: Магнитное испытательное оборудование для изучения эффекта Холла. Фото предоставлено Брукхейвенской национальной лабораторией и Министерством энергетики США (DOE).

Содержание

  1. Что такое эффект Холла?
  2. Как работает эффект Холла?
  3. Использование эффекта Холла
  4. Для чего используются датчики Холла?
  5. Узнать больше

Что такое эффект Холла?

Работая вместе, электричество и магнетизм могут заставить вещи двигаться: электродвигатели, громкоговорители и наушники — это лишь некоторые из незаменимых современные гаджеты, которые работают таким образом. Отправить колеблющийся электрический ток через катушку медного провода и (хотя его не видно происходит) вы создадите временное магнитное поле вокруг катушки слишком. Поместите катушку рядом с большим постоянным магнитом и временным магнитное поле, создаваемое катушкой, будет либо притягивать, либо отталкивать магнитное поле от постоянного магнита. Если катушка свободна двигаться, он будет двигаться — либо к постоянному магниту, либо от него. В электродвигатель, катушка настроена так, что может вращаться на месте и поверните колесо; в громкоговорителях и наушники, катушка приклеена на кусок бумага, пластик или ткань, которая движется вперед и назад выкачивать звук.

Фото: Вы не можете увидеть магнитное поле, но можете измерить его с помощью эффекта Холла. фото любезно предоставлено Викискладом.

» Если ток электричества в неподвижном проводнике сама притягивается магнитом, ток должен проходить по одной стороне провода… »

Эдвин Холл , 1879

Что, если поместить кусок провода с током в магнитное поле, и провод не можешь двигаться? То, что мы называем электричеством, обычно представляет собой поток заряженные частицы через кристаллические (обычные, твердые) материалы (либо отрицательно заряженные электроны, находящиеся внутри атомов, либо иногда положительно заряженные «дыры» — промежутки там, где должны быть электроны). Вообще говоря, если вы прикрепите пластину проводящего материала к батарее, электроны будут проходить через пластину по прямой линии. Как движущиеся электрические заряды, они также будут создавать магнитное поле. Если поместить плиту между полюса постоянного магнита, электроны будут отклоняться в криволинейный путь, когда они движутся через материал, потому что их собственные магнитное поле будет взаимодействовать с полем постоянного магнита. (Для справки: то, что заставляет их отклоняться, называется сила Лоренца, но нам нет нужды вдаваться здесь во все подробности.) Это означает, что на одну сторону материала будет приходиться больше электронов, чем на другую. другом, поэтому на проводе появится разность потенциалов (напряжение). материала под прямым углом к ​​магнитному полю от постоянный магнит и протекание тока. Это то, что физики называют эффектом Холла. Чем сильнее магнитное поле, тем сильнее отклоняются электроны; чем больше ток, тем больше электронов приходится отклонять. В любом случае, чем больше разность потенциалов (известная как напряжение Холла) будет. В других словами, напряжение Холла пропорционально по величине как электрическому тока и магнитного поля. Все это имеет больше смысла в наша маленькая анимация ниже.

Как работает эффект Холла?

  1. Когда через материал протекает электрический ток, электроны (показанные здесь синими точками) движутся через него практически по прямой линии.
  2. Поместите материал в магнитное поле, и электроны внутри него тоже окажутся в поле. На них действует сила (сила Лоренца), которая заставляет их отклоняться от прямолинейного пути.
  3. Теперь, глядя сверху , электроны в этом примере изгибались бы, как показано: с их точки зрения, слева направо. С большим количеством электронов на правой стороне материала (внизу на этом рисунке), чем на левой (вверху на этом рисунке), между двумя сторонами будет разность потенциалов (напряжение), как показано зеленым цветом. линия со стрелкой. Величина этого напряжения прямо пропорциональна величине электрического тока и напряженности магнитного поля.

Куда они идут?

Как узнать, в какую сторону будут двигаться электроны? Вы можете определить направление силы Лоренца с помощью правила левой руки Флеминга (если вы делаете поправку на обычный ток) или его правила правой руки (если вы этого не делаете).

Работа: на заряженные частицы, движущиеся в магнитном поле, действует сила (сила Лоренца), которая меняет их направление, вызывая эффект Холла. Вы можете использовать правило левой руки Флеминга (моторное правило), чтобы определить направление силы, если вы помните, что это правило применимо к обычному току (поток положительных зарядов) и поле течет с севера на юг. В этом примере, если у нас есть поток электронов на страницу, обычный ток течет из страницы (так что это направление, в котором должен указывать ваш второй палец). Если поле течет слева направо (указательный палец), большой палец говорит нам, что электроны будут двигаться вверх.

Использование эффекта Холла

С помощью эффекта Холла можно обнаруживать и измерять все, что угодно как датчик Холла или пробник. Эти термины иногда используются взаимозаменяемы, но, строго говоря, относятся к разным вещам:

  • Датчики Холла просты, недороги, электронные чипы, которые используются во всех видах широко доступных гаджетов и продуктов.
  • Датчики Холла
  • являются более дорогими и сложными приборами. в научных лабораториях для таких вещей, как измерение напряженности магнитного поля с очень высокой точностью.


Фото: 1) Типовой кремниевый датчик Холла. Это выглядит очень похоже на транзистор — неудивительно, поскольку он сделан аналогичным образом. Фото с сайтаобъяснения.com. 2) Зонд на эффекте Холла, использовавшийся НАСА в середине 1960-х годов. Фото предоставлено Исследовательский центр Гленна НАСА (НАСА-GRC).

Обычно изготавливаются из полупроводников (таких материалов, как кремний и германий), эффект Холла датчики работают, измеряя напряжение Холла на двух своих гранях если поместить их в магнитное поле. Некоторые датчики Холла упакованы в удобные микросхемы со схемами управления и могут быть подключены непосредственно к большим электронным схемам. Самый простой способ использование одного из этих устройств для определения положения чего-либо. За Например, вы можете поместить датчик Холла на дверную раму и магнит. на двери, поэтому датчик определяет, открыта дверь или закрыта от присутствия магнитного поля. Такое устройство называется датчик приближения. Конечно, вы можете сделать ту же работу так же легко с магнитным герконом (нет общего правила относительно того, герконы старого образца или современные датчики Холла лучше. зависит от приложения). В отличие от герконов, которые являются механическими и полагаются на контакты двигаясь в магнитном поле, датчики Холла полностью электронные и не имеют движущихся частей, поэтому (теоретически, по крайней мере) они должны быть более надежными. Одна вещь, которую вы не можете сделать с помощью геркона, — это определение степени «включенности» — силы магнетизма — потому что геркон либо включен, либо выключен. Вот что делает датчик Холла таким полезным.

Рекламные ссылки

Для чего используются датчики Холла?

Датчики Холла дешевы, прочны и надежны, компактны и просты в использовании. так что вы найдете их во множестве различных машин и бытовых устройств, от автомобильных зажиганий до компьютерных клавиатур и заводских роботов до велотренажеров

Вот один очень распространенный пример, который вы можете использовать в своем компьютере прямо сейчас. В бесщеточный двигатель постоянного тока (используемый в таких устройствах, как дисководы для жестких и гибких дисков), вы должны иметь возможность в любой момент точно определить, где находится двигатель. Датчик Холла рядом с ротором (вращающейся частью двигателя) сможет определить его ориентацию очень точно, измеряя изменения в магнитное поле. Подобные датчики также можно использовать для измерения скорости. (например, для подсчета скорости вращения колеса или двигателя автомобиля кулачок или коленчатый вал вращается). Вы часто найдете их в электронных спидометрах и анемометры (измерители скорости ветра), где они могут быть использованы аналогично герконовым переключателям.

Фото: Этот небольшой бесщеточный двигатель постоянного тока от старого дисковода для гибких дисков имеет три датчика Холла. (обозначены красными кружками), расположенные вокруг его края, которые обнаруживают движение ротора двигателя (вращающийся постоянный магнит) над ними (не показано на этой фотографии). На датчики особо не на что смотреть, как вы можете видеть на фото крупным планом справа!

Потребовалось несколько десятилетий, чтобы революционное открытие Эдвина Холла прижилось, но теперь используется в самых разных местах — даже в электромагнитных космических ракетных двигателях. Не будет преувеличением сказать, что новаторская работа Холла произвела настоящий эффект!

Изображение: упаковка типичного датчика Холла. Магнитные поля могут быть очень слабыми, поэтому нам нужно, чтобы наши детекторы были как можно более чувствительными, и вот один из способов добиться этого. Сама микросхема Холла (зеленая, 17) установлена ​​на железной несущей пластине (серая, 16), зажатой между двумя формованными пластиковыми секциями (серые, 11, 12). Микросхема подключается проводами (19) к контактным выводам (синие), с помощью которых она может быть подключена к цепи. Но действительно важными частями являются два «концентратора потока» из мягкого железа (оранжевые, 15, 21), которые делают устройство намного более чувствительным. Когда вы помещаете магнит (22) рядом с датчиком, эти концентраторы позволяют магнитному потоку («плотность» магнетизма, создаваемого магнитным полем), течь по непрерывному контуру через микросхему Холла, создавая либо положительное, либо отрицательное напряжение. Если магнит скользит к другой стороне датчика, он создает противоположное напряжение. Иллюстрация из патента США 3 845 445: Модульное устройство на эффекте Холла, автор Роланд Браун и др., IBM Corporation, 29 октября., 1974 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Узнайте больше

На этом сайте

  • Электричество
  • Магнетизм
  • Электродвигатели
  • Ступичные двигатели
  • Герконы

Статьи

  • Графеновый магнитный датчик в сто раз более чувствительный, чем кремний от Декстера Джонсона. IEEE Spectrum, 26 июня 2015 г. Немецкие исследователи разрабатывают магнитные датчики Холла на основе графена.
  • Как измерить магнитное поле? Ретт Аллен. Wired, 21 января 2014 г. Сравнение традиционных компасов с датчиками Холла в смартфоне.
  • Нобелевская премия по физике 1998 года: дробный квантовый эффект Холла: упрощенное описание физики, за которое Хорст Штормер, Роберт Лафлин и Дэниел Цуй получили премию. Для более подробного описания попробуйте The Quantized Hall Effect by H.L. Stormer and D.C. Tsui, Science, 17 Jun 1983.
История
  • [PDF] Открытие эффекта Холла Г. С. Лидстоуном, Physics Education, Volume 14, 1979. Как Холл открыл свой эффект и понял, что он означает, бросив вызов некоторым из более ранних работ Джеймса Клерка Максвелла. .
Более технический
  • Вертикальное устройство на эффекте Холла, Р. С. Попович, IEEE Electron Device Letters, том 5, № 9, стр. 357–358, сентябрь 1984 г., doi: 10.1109/EDL.1984.25945.
Статьи Эдвина Холла
  • О новом действии магнита на электрические токи автора Эдвин Х. Холл, Американский математический журнал, Vol. 2, № 3 (сентябрь 1879 г.), стр. 287–292. Оригинальная статья Холла.
  • Объяснение феномена Холла Эдвином Х. Холлом, Наука, Том. 3, № 60 (28 марта 1884 г.), стр. 386–387. Собственное описание Холла и объяснение его оригинального эксперимента.
  • Теория эффекта Холла и связанного с ним эффекта для некоторых металлов Эдвина Х. Холла, PNAS USA, Vol. 9, № 2 (15 февраля 1923 г.), стр. 41–46. Одна из более поздних работ Холла.

Книги

  • Датчики на эффекте Холла: теория и приложения Эдварда Рамсдена. Newnes, 2006. Охватывает физику датчиков Холла и способы их включения в практические схемы. Включает датчики приближения, датчики тока и датчики скорости и времени. Также есть удобный глоссарий и список поставщиков.
  • Приборы на эффекте Холла Р. С. Поповича. Институт физики, 2004 г. Несколько большая и более подробная книга, но охватывающая ту же тему со смесью теории, практических схем и повседневных приложений.
  • Эффект Холла и его приложения, К. Чиен (ред.). Plenum Press, 1980/Springer, 2013. Переиздание материалов симпозиума 1979 г. в Университете Джона Хопкинса, 13 ноября 1979 г., посвященного 100-летию открытия Холла.
  • Эффект Холла в металлах и сплавах, Колин Херд. Спрингер 1972/2012. Современное переиздание вступления 1970-х годов.

Практические проекты

  • Светодиодное освещение, активируемое дверью, с использованием датчиков Холла: Woody1189 подключает свой шкаф к датчику Холла, поэтому он автоматически загорается, когда он открывает дверь!
  • Мотор-втулка для электровелосипеда
  • — как заменить датчик Холла: Джереми Нэш объясняет, что делает датчик Холла в бесщеточном двигателе — и как заменить датчик в случае его отказа.
Видео
  • Как сделать магнитную схему обнаружения полярности: Томас Ким показывает нам, как сделать магнитный детектор на основе датчика Холла, извлеченного из вентилятора кулера ноутбука.

Патенты

Еще несколько технических примеров детекторов Холла и их применения:

  • Патент США 3,845,445A: Модульное устройство на эффекте Холла Р. Браун и др., IBM, 29 октября 1974 г. Концентрирующее модульное устройство на эффекте Холла проиллюстрировано выше.
  • Патент США 3,845,445A: Устройство на элементе Холла с защитным барьером области истощения, автор Р. Попович, Siemens, 29 мая., 1990. Элемент Холла, который можно включить в интегральную схему, рассчитанную на долгий срок службы.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты.

Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условия использования.

Подпишитесь на нас

Оцените эту страницу

Пожалуйста, оцените эту страницу или оставьте отзыв, и я сделаю пожертвование WaterAid.

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать о ней своим друзьям:

Цитировать эту страницу

Вудфорд, Крис. (2009/2020) Датчики Холла. Получено с https://www.explainthatstuff.com/hall-effect-sensors.html. [Доступ (вставьте дату здесь)]

Подробнее на нашем веб-сайте…

  • Связь
  • Компьютеры
  • Электричество и электроника
  • Энергия
  • Машиностроение
  • Окружающая среда

  • Гаджеты
  • Домашняя жизнь
  • Материалы
  • Наука
  • Инструменты и инструменты
  • Транспорт

↑ Вернуться к началу

#02 О датчиках Холла | Учебники | Датчики Холла | Продукты

О датчиках Холла

#02 Основные сведения о магнитных датчиках

Среди магнитных датчиков датчик, использующий эффект Холла, называется датчиком Холла. Датчики Холла состоят из нескольких частей. Во-первых, он содержит элемент Холла, который выдает напряжение Холла (HV), созданное за счет эффекта Холла. Во-вторых, он содержит ИС Холла, которая преобразует выход Холла в цифровой выход High/Low из процесса IC. В-третьих, он содержит микросхему линейного датчика Холла, которая усиливает и линеаризует выходной сигнал Холла.

Элементы Холла

Особенности

Поскольку это простой датчик с клеммами, прикрепленными к полупроводнику, элемент Холла можно использовать как для цифровых, так и для аналоговых целей в зависимости от схемотехники последующей ступени. Выходное напряжение может быть получено от нескольких десятков до нескольких сотен милливольт.

Выходные характеристики

Выходное напряжение пропорционально величине магнитного поля, вертикально воздействующего на датчик, и будет выдавать положительное и отрицательное напряжение в соответствии с направлением магнитного поля. Выходное напряжение при отсутствии вертикального магнитного поля равно 0 В (*1).

*1 Напряжение смещения присутствует даже при отсутствии магнитного поля в реальном случае.

Фигура 1. Выходная характеристика элемента Холла

Как использовать

Элемент Холла имеет в общей сложности четыре клеммы, управляющее напряжение (или управляющий ток), две клеммы GND для входа и две клеммы дифференциального выхода. Можно поддерживать либо привод постоянного тока, либо привод постоянного напряжения, если он ниже максимального номинала.

Рис. 2. Принципиальная схема работы (справочная)

Применение

Элементы Холла используются в бесщеточных двигателях постоянного тока и приводах объективов для смартфонов и цифровых фотокамер.

ИС Холла

Характеристики

ИС Холла сравнивает выходной сигнал элемента Холла с определенным пороговым значением и выводит его как высокий или низкий. Поскольку диапазон выходного напряжения регулируется источником питания, к следующему каскаду можно легко подключить микрокомпьютер. Есть тип переключателя, который может определять силу магнитного поля, и тип защелки, который может определять полярность магнитного поля.

Выходные характеристики

Выходное напряжение определяется как высокое или низкое в зависимости от величины магнитного поля, вертикально воздействующего на датчик. Существует три вида результата обнаружения полюса: полюс S, полюс N и биполярный.

Когда величина магнитного поля превышает Bop, выходное напряжение становится низким, а когда оно становится ниже Brp, выходное напряжение становится высоким. В этом случае между Brp и Bop выполняется условие «Brp < Bop (с гистерезисом)».

Рис. 3. Выходные характеристики ИС Холла при обнаружении южного полюса

Как использовать

Линейная ИС Холла имеет две входные клеммы, VCC и GND, и одну выходную клемму. Подключение ИС, как показано на рисунке 4, к элементу Холла реализует ИС Холла. Он управляется постоянным напряжением.

Рис. 4. Принципиальная схема работы (справочная)

Приложения

ИС Холла типа переключателя используются в переключателях открытия/закрытия в бытовой электронике, а ИС Холла типа защелки используются в бесщеточных двигателях или для обнаружения вращения.

Линейная ИС Холла

Особенности

Линейная ИС Холла применяет усиление к выходу элемента Холла, что приводит к линейному выходу (*2).

Поскольку диапазон выходного напряжения регулируется блоком питания, MCU можно легко подключить к следующему каскаду.

*2 Выход Rail-to-Rail.

Выходные характеристики

Выходное напряжение пропорционально величине магнитного поля, приложенного к датчику по вертикали. Он колеблется от 0 В до VCC в зависимости от направления магнитного поля. Выходное напряжение при отсутствии вертикального магнитного поля составляет VCC/2 (*3).

*3 Напряжение смещения присутствует даже при отсутствии магнитного поля в реальном случае

Рис. 5. Выходные характеристики интегральной схемы с линейным датчиком Холла

Как использовать

Линейная ИС Холла имеет две входные клеммы, VCC и GND, и одну выходную клемму. Подключение ИС, как показано на рисунке 6, к элементу Холла реализует линейную ИС Холла. Работает от постоянного напряжения.

Рис. 6. Принципиальная схема работы (справочная)

Применение

Линейные интегральные схемы Холла используются в датчиках уровня жидкости, датчиках тока и угловых датчиках.

Базовые знания о магнитном датчике

СВИТОК

Что такое датчик Холла и как он работает?

Ⅰ Введение

Эффект Холла является наиболее распространенным методом измерения магнитных полей, и датчики Холла широко используются и имеют широкий спектр применения в наше время. Например, они используются в автомобилях в качестве датчиков скорости вращения колес и датчиков положения коленчатого или распределительного вала. Они часто используются в качестве переключателей, компасов MEMS, датчиков приближения и других приложений. Теперь мы рассмотрим некоторые из этих датчиков, чтобы увидеть, как они работают, но сначала давайте определим эффект Холла.

 


Catalog

3

Ⅵ Использование Ⅵ с0002 6.1 Обнаружение в лодках

6.2 Обнаружение боковых путей

Ⅰ Introduction

Ⅱ What is Hall Effect

Ⅲ What is a Hall Effect Sensor

Ⅳ How Does a Hall Effect Sensor Рабочий

Ⅴ Типы датчиков Холла

  5.1 Порог

  5.2 Линейный

ⅶ Применение датчика эффекта зала

7.1.

Ⅷ Как тестировать датчики Холла

Ⅸ Часто задаваемые вопросы

 


0

Ⅱ Что такое эффект Холла

Эксперимент, описывающий эффект Холла , выглядит следующим образом: сторону к другой.

Теперь, если мы приложим магнитное поле к пластине, мы можем нарушить прямолинейный поток носителей заряда благодаря силе, известной как сила Лоренца. Электроны отклонятся к одной стороне пластины, а положительные дырки отклонятся к другой. Это означает, что если мы теперь соединим две другие стороны с измерителем, мы можем получить напряжение, которое можно измерить.

Как упоминалось ранее, эффект получения измеряемого напряжения известен как эффект Холла в честь Эдвина Холла, открывшего его в 1879 году. Датчик воздействия обнаруживает изменения мощности магнитного поля. Этот датчик открывает широкий спектр возможностей для применения в роботизированных датчиках.

Их можно использовать в таких приложениях, как измерение приближения, позиционирования, скорости и тока. Обычно они используются на пневматических цилиндрах, где они используются для передачи положения цилиндра на ПЛК или роботизированный контроллер.

Автомобили, персональная электроника и робототехника — это лишь некоторые из отраслей, в которых используются датчики Холла. В зависимости от области применения они имеют некоторые преимущества перед другими датчиками.

 

Они полностью закрыты, поскольку работают с магнитным полем, что делает их менее уязвимыми к повреждениям из-за грязи или влаги. Они реже, чем механические системы, изнашиваются или искажают показания после большого количества циклов.

 

9Датчики Холла 0002 полезны для широкого спектра применений благодаря их надежности и долговечности, поскольку для правильной работы им не требуется физический контакт. Они могут обеспечить большую воспроизводимость и точность, чем механические устройства, потому что они физически не мешают оборудованию или инструментам.

 

 


Ⅳ Как работает датчик Холла

Лучше всего начать с основ эффекта Холла, чтобы понять принцип работы датчика Холла. Когда ток течет по проводнику в присутствии магнитного поля, электроны отталкиваются магнитным полем к одной стороне проводника.

 

Эффект Холла можно использовать для измерения электрического тока в проводниках, изготовленных с учетом определенных параметров. Напряжение на плоском металлическом проводнике, например, показывает эффект Холла намного лучше, чем напряжение вокруг одного.

Электроны, движущиеся по проводнику, смещаются в одну сторону, когда магнитное поле прикладывается к плоской пластине. Поскольку сумму отклонений можно рассчитать, устройство имеет широкий спектр применения.

 

Плоский проводник используется для расчета магнитной силы в датчике на эффекте Холла. Когда магнит приближается к датчику, датчик обнаруживает это и отправляет информацию на контроллер.

 

Заряд на пластине смещается в одну сторону, пока магнит находится рядом с датчиком, создавая положительный заряд с одной стороны и отрицательный заряд с другой. Определяется разница напряжений между двумя сторонами пластины, и ее можно использовать для расчета магнитной силы или близости датчика.

 

 


Ⅴ Типы датчиков Холла

Датчики Холла бывают двух основных типов:

5.

1 Пороговый

вкл-выкл) выдает постоянное напряжение Холла. Существует несколько различных конфигураций пороговых устройств, таких как фиксирующие устройства, которые включаются, когда положительная напряженность поля достигает порога, но выключаются только тогда, когда отрицательное поле той же силы достигает порога, устройства, которые включаются, когда только положительное поле достигает порога. порог, но выключены в противном случае, и устройства, которые включаются, когда положительное или отрицательное поле достигает порога. Пороги также могут быть запрограммированы на некоторых компьютерах.

 

5.2 Линейный

Линейный (датчик с аналоговым выходом) генерировал напряжение Холла, пропорциональное напряженности магнитного поля вокруг него. Полярность колебаний напряжения определяется направлением окружающего магнитного поля. Когда выразительные движения должны восприниматься как небольшие изменения положения, в музыкальных приложениях чаще используются линейные устройства.

 


Ⅵ Использование датчика Холла

Датчики Холла питаются от магнитного поля, и во многих случаях один постоянный магнит, подключенный к движущемуся валу или устройству, может управлять устройством. Существует множество различных форм движений магнитного датчика, в том числе «Лицом к лицу», «Вбок», «Толкай-тяни» и «Толкай-толкай» и другие. Для обеспечения оптимальной чувствительности магнитные линии потока всегда должны быть перпендикулярны чувствительной области системы и иметь правильную полярность, независимо от конфигурации.

 

Магниты с высокой напряженностью поля со значительным изменением напряженности поля для необходимого движения также необходимы для обеспечения линейности. Существует несколько способов обнаружения магнитного поля, и две из наиболее распространенных конфигураций обнаружения с использованием одного магнита показаны ниже: Обнаружение лобового и бокового обнаружения — это два типа обнаружения.

 

6.

1 Лобовое обнаружение

Магнитное поле должно быть перпендикулярно системе датчиков Холла и приближаться к датчику прямо к активному лицу для «лобового обнаружения», как следует из названия. В некотором смысле, это подход «спереди».

 

Этот прямой подход создает выходной сигнал VH, который в линейных устройствах отражает мощность магнитного поля или плотность магнитного потока в зависимости от расстояния от датчика Холла. Выходное напряжение увеличивается по мере приближения и, следовательно, усиления магнитного поля, и наоборот.

 

Положительные и отрицательные магнитные поля также можно различить линейными приборами. Для индикации позиционного обнаружения могут быть выполнены нелинейные устройства, которые запускают выход «ВКЛ» на предварительно установленном расстоянии воздушного зазора от магнита.

 

6.2 Боковое обнаружение

«Боковое обнаружение» — это вторая конфигурация обнаружения. Это требует перемещения магнита вбок по поверхности элемента с эффектом Холла. Например, подсчет вращающихся магнитов или измерение скорости вращения двигателей, обнаружение бокового или проскальзывания полезно для обнаружения наличия магнитного поля, когда оно проходит по поверхности элемента Холла в пределах фиксированного расстояния воздушного зазора.

 

Линейное выходное напряжение, представляющее как положительный, так и отрицательный выходной сигнал, может генерироваться в зависимости от направления магнитного поля, проходящего через осевую линию датчика с нулевым полем. Это позволяет идентифицировать направленное движение как в вертикальном, так и в горизонтальном направлениях.

 

Датчики Холла имеют широкий спектр применения, особенно в качестве датчиков приближения. Там, где к факторам окружающей среды относятся вода, вибрация, грязь или масло, например, в автомобилестроении, их можно использовать вместо оптических и световых датчиков. Текущее зондирование также может быть выполнено с помощью приборов на эффекте Холла.

Круговое электромагнитное поле формируется вокруг проводника, когда через него проходит ток, как мы узнали из предыдущих уроков. Электрические токи в диапазоне от нескольких миллиампер до тысяч ампер можно рассчитать по наведенному магнитному полю, поместив датчик Холла рядом с проводником без использования больших или дорогих трансформаторов и катушек.

 

Датчики на эффекте Холла могут использоваться для обнаружения ферромагнитных материалов, таких как железо и сталь, в дополнение к обнаружению наличия или отсутствия магнитов и магнитных полей путем размещения небольшого постоянного «смещающего» магнита за активной областью устройства. . Любое смещение или нарушение этого магнитного поля, вызванное введением ферромагнитного материала, может быть обнаружено с чувствительностью всего лишь мВ/Гс.

 

В зависимости от типа устройства, цифрового или линейного, существует множество способов подключения датчиков Холла к электрическим и электронным схемам. Использование светоизлучающего диода, как показано ниже, является очень простым и легким в сборке примером.

 

Датчики Холла можно использовать по-разному из-за различных магнитных перемещений. Как в промышленных, так и в домашних условиях эти инструменты чаще всего применяются для измерения присутствия, положения и близости объектов.

 

Датчики тока, датчики давления и датчики расхода жидкости — все это популярные области применения датчиков Холла в промышленных и производственных процессах. В трансформаторах тока датчики на эффекте Холла представляют собой недорогой бесконтактный способ измерения постоянного магнитного потока.

 

 


Ⅶ Применение датчика Холла

7.1 Датчик Холла в вращающихся устройствах

Датчики скорости работают путем подсчета количества оборотов вала или диска за заданный промежуток времени. Диск, прикрепленный к валу двигателя, вращается рядом с датчиком Холла и имеет магниты по периметру.

 

Состояние датчика меняется по мере прохождения через него магнитов. На основе этих данных датчик рассчитывает обороты. Например, если диск или вал имеют четыре магнита, датчик может переключать состояния четыре раза за один оборот.

Позволяет датчику измерять число оборотов на основе известного параметра, согласно которому на один оборот приходится четыре импульса.

 

Эта технология используется в бесщеточных двигателях постоянного тока для отслеживания скорости и определения положения вала. Это позволяет им работать в определенных диапазонах оборотов, но при этом позволяет им изменять скорость двигателя в любое время.

 

Это значительно упрощает управление двигателями. Это также позволяет им контролировать положение вала на двигателе, что делает их гораздо более гибкими в индустрии робототехники, чем двигатели без датчиков Холла.

 

7.2 Датчики Холла в приложениях сближения

На основе магнитного поля датчики Холла могут обнаруживать приближение. Если напряженность магнитного поля постоянна и определена, можно определить положение датчика по отношению к магниту.

 

Когда магнит перемещается в зону его действия, датчик меняет состояние и оповещает контроллер. Датчики приближения на эффекте Холла можно использовать по-разному. Они используются в роботизированных инструментах, роботизированных захватах, пневматике и множестве других нероботизированных приложений.

7.3 Бесконтактный датчик Холла Использование в робототехнике

Бесконтактные датчики Холла также могут использоваться в робототехнике. Они хороши для определения силы магнитного поля и близости магнита. Датчики Холла могут использоваться для удовлетворения различных требований безопасности. Они часто используются в инструментах для обеспечения подтверждения зажима управляющему устройству.

 

Подтверждение зажима блокирует работу ячейки до тех пор, пока все секции не будут полностью зажаты, что обеспечивает ее безопасную работу. Магниты, встроенные в инструмент, которые попадают в диапазон чувствительности датчика Холла при правильном закреплении, обычно требуют подтверждения детали. Роботизированный контроллер или ПЛК знает, что ячейка безопасна для работы, когда все датчики отображают сигнал.

 

Датчики Холла чрезвычайно полезны в робототехнике. Для обнаружения изменений в ячейке в большинстве роботизированных ячеек используется датчик Холла. Они используются для считывания скорости и положения бесщеточных двигателей постоянного тока. Они используются в пневматических цилиндрах, чтобы определить, выдвинут ли цилиндр или втянут.

 

Их также можно использовать для поддержания здоровья персонала, уведомляя контролирующий орган о подтверждении зажима инструмента. Без датчиков Холла индустрия робототехники будет совсем другой.

 

 


Ⅷ Как проверить датчики Холла

Датчики положения распределительного вала и коленчатого вала представляют собой датчики Холла, которые контролируют положение распределительного вала и коленчатого вала соответственно. Перед датчиком проходит небольшой магнит. Выходное напряжение увеличивается по мере приближения магнита к датчику. Напряжение падает по мере удаления магнита от датчика. Для оценки положения вала электронный блок управления отслеживает выходные сигналы этих датчиков. ECM может поддерживать точное управление двигателем благодаря датчикам положения распределительного и коленчатого валов, а также другим электрическим датчикам, соленоидам и форсункам. Понимание основ работы датчиков Холла поможет вам правильно протестировать сомнительный датчик.

 

• Шаг 1

Снимите датчик с блока цилиндров. Удалите масло, грязь или металлическую стружку с наконечника датчика.

 

• Шаг 2

Проверьте схему двигателя на наличие сигнала датчика распредвала или коленчатого вала, поступающего в ECM. Сигнальный провод от ECM должен быть удален. Подсоедините сигнальный провод к одному концу перемычки. Подсоедините другой конец перемычки к краю оптимистичного зонда. Подсоедините отрицательный щуп к устойчивому заземлению корпуса. Подключите отрицательный щуп к заземлению корпуса с помощью перемычки и зажимов типа «крокодил», если необходимо.

 

Чтобы проверить напряжение постоянного тока, переключите электрический вольтметр. Поверните ключевой переключатель в положение «Вкл.». В идеале напряжение должно быть около 0 вольт. Медленно вращайте магнит перпендикулярно передней части датчика. При приближении магнита к датчику напряжение должно возрастать, а по мере удаления — падать. Проблема с датчиком или соединениями датчика, если напряжение не меняется.

 


Ⅸ Часто задаваемые вопросы

1. Как работает датчик Холла?

Используя полупроводники (например, кремний), датчики на эффекте Холла работают, измеряя изменяющееся напряжение, когда устройство помещается в магнитное поле. Другими словами, как только датчик Холла обнаруживает, что он находится в магнитном поле, он может определять положение объектов.

 

2. Что приводит в действие устройство на эффекте Холла?

Датчики Холла активируются магнитным полем, и во многих случаях устройство может работать от одного постоянного магнита, прикрепленного к движущемуся валу или устройству. Существует множество различных типов движений магнита, таких как «лобовое», «боковое», «тяни-толкай» или «толкай-толкай» и т. д.

 

3. Для чего используется датчик Холла?

Датчики Холла обычно используются для измерения скорости вращения колес и валов, например, для определения угла опережения зажигания двигателя внутреннего сгорания, тахометров и антиблокировочных тормозных систем. Они используются в бесщеточных электродвигателях постоянного тока для определения положения постоянного магнита.

 

4. В чем заключается принцип эффекта Холла?

Принцип эффекта Холла гласит, что когда проводник с током или полупроводник помещается в перпендикулярное магнитное поле, напряжение может быть измерено под прямым углом к ​​пути тока.

 

5. Насколько чувствителен датчик Холла?

Эти ратиометрические устройства имеют чувствительность 5 мВ/Гс и 2,5 мВ/Гс соответственно, диапазон рабочих температур от -40°C до +150°C и температурную компенсацию во всем рабочем диапазоне.

 

6. В чем разница между датчиком Холла и индуктивным датчиком?

Индуктивные датчики обнаруживают металлические объекты, а датчики Холла обнаруживают наличие магнитного поля.

 

7. Каково происхождение эффекта Холла?

История эффекта Холла начинается в 1879 году, когда Эдвин Х. Холл обнаружил, что небольшое поперечное напряжение возникает на тонкой металлической полоске с током в приложенном магнитном поле.

 

8. Как определить, что датчик Холла неисправен?

Потеря мощности, громкий шум и ощущение, что двигатель каким-то образом заблокирован, часто являются признаками того, что либо контроллер вышел из строя, либо что у вас могут быть проблемы с датчиками Холла внутри двигателя.

 

9. Что находится внутри датчика Холла?

Датчик на эффекте Холла представляет собой тонкую полоску полупроводникового материала, точно такую ​​же, как микросхема внутри микроустройства или устройства с оперативной памятью. Он работает по принципу электромагнетизма. Когда вы перемещаете магнит достаточно близко к датчику, генерируется небольшое напряжение. Это идет к усилителю, который повышает напряжение до уровня, достаточного для использования другими электронными устройствами.

 

Лучшим примером является датчик скорости вращения колеса. Небольшой магнит прикреплен к внутренней части автомобильного колеса. Каждый раз, когда магнит проходит мимо датчика, происходит один оборот колеса. Информация передается на блок спидометра и одометра, где она отображается водителю.

 

10. Для чего нужен датчик Холла в автомобиле?

Датчик Холла работает за счет магнитного поля и может также называться датчиком положения кривошипа. Он проверяет положение коленчатого вала двигателя для зажигания свечей зажигания. В противном случае двигатель может заглохнуть и не запуститься без сигнала датчика Холла.

 

Датчики Холла также можно использовать для определения скорости, расстояния или положения коленчатого и распределительного валов двигателя. Все датчики Холла имеют различную внутреннюю электронику с различными программными измерениями и не являются взаимозаменяемыми.

Лучшие продажи диода

Фото Деталь Компания Описание Цена (долл. США)

Альтернативные модели

Часть Сравнить Производители Категория Описание

Заказ и качество

Изображение Произв.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *