Принцип работы газового генератора на дровах: Принцип работы газового генератора | Строительный портал

Содержание

Принцип работы газового генератора | Строительный портал

В поисках альтернативного источника энергии пришло понимание, что не обязательно добывать газ в шахтах, чтобы затем сжигать его в котлах и двигателях внутреннего сгорания, горючий газ можно добывать из отходов производства и древесины. Газогенератор или как его еще называют генератор газов путем сжигания местного топлива – дров, торфа, древесного угля, опилок и других отходов древесины, а также иногда других органических остатков способны выделять/генерировать горючие газы, такие как СО, СН4, Н2 и другие. Вариантов использования полученного газа несколько, но в любом случае в основу каждого устройства положен принцип газогенератора. О том, как работает газогенератор, из каких элементов он состоит, а также какие процессы проходят внутри него, мы расскажем в данной статье. Также рассмотрим варианты дальнейшего использования полученного газа и места, где можно устанавливать подобные агрегаты.

  1. Преимущества и недостатки генераторов газа
  2. Принцип работы газового генератора – газогенератора
  3. Типы газогенераторов
  4. Место установки газового генератора
  5. Дровяной газовый генератор своими руками

Итак, какие же существуют варианты использования газа, полученного в газогенераторе?

Первый – горючий газ направляется к газовой плите на кухне и используется для приготовления пищи. Второй – горючий газ сжигается сразу же в пиролизном котле отопления с газогенератором, соответственно, используется для отопления дома или теплиц. Кстати, подобные котлы могут называться газовым котлом на дровах, твердотопливным пиролизным котлом, газогенераторным котлом на дровах. Все они могут использоваться как для бытовых нужд, так и для отопления огромных производств и цехов или предприятий. Третий – горючий газ может направляться в двигатель внутреннего сгорания, который служит приводом насосной станции или генератора электроэнергии. Газовый генератор на дровах позволяет получать электроэнергию в тех регионах, где нет возможности провести линии электропередач, выполнить прокладку газопровода и затруднен подвоз газа в баллонах. Помимо автономности у газогенераторов есть и другие преимущества, которые мы раскроем ниже.

 

Преимущества и недостатки генераторов газа

В качестве примера рассмотрим преимущества и недостатки газогенераторных котлов отопления. Пиролизные котлы относятся к категории твердотопливных, но существенно отличаются от обычных печей на дровах или угле, где происходит обычный процесс сгорания топлива.

Преимущества газогенераторных котлов:

  • КПД газогенераторных котлов находится в диапазоне 80 – 95 %, в то время как КПД обычного твердотопливного котла редко превышает 60 %.
  • Регулируемый процесс горения в газогенераторном котле – одна закладка дров может гореть от 8 до 12 часов, для сравнения в обычном котле горение длится 3 – 5 часов. В газогенераторных котлах с верхним горением сгорание дров длится до 25 часов, а уголь может гореть 5 – 8 дней.
  • Топливо сгорает полностью, поэтому чистить зольник и газоход приходится не часто.
  • Благодаря тому, что процесс горения можно регулировать (мощность регулируется в диапазоне 30 – 100 %), работу котла можно автоматизировать, как например, газового или жидкотопливного.
  • Выброс вредных веществ в атмосферу из газогенератора минимален.
  • Газогенераторные котлы экономнее обычных.
  • Топливо для газогенераторов не обязательно должно быть подсушено до 20 % влажности, существуют модели котлов, в которых можно использовать древесину до 50 % влажности и даже свежесрубленную.
  • Возможность загрузки в котел неколотых поленьев до 1 м длиной и даже больше.

  • Помимо дров и отходов древесной промышленности в пиролизных котлах можно утилизировать резину, пластмассу и другие полимеры.
  • Высокая безопасность котла по сравнению с обычным твердотопливным котлом обеспечивается автоматикой и материалами, из которых изготовлен агрегат, а в особенности камеры сгорания.

Если говорить о газогенераторах, которые используются для производства электроэнергии, то они обладают точно такими же достоинствами, такими как экологичность, экономичность, высокий КПД, высокое октановое число 110 – 140, универсальность в плане используемого топлива и большая эффективность в зимнее время.

Недостатки газогенераторных котлов:

  • На газовый генератор цена в 1,5 – 2 раза выше, чем на обычный твердотопливный котел.
  • В большинстве своем газогенераторы энергозависимы, так как для подсоса воздуха используется вентилятор, но также существуют модели, которые могут работать и без электричества.
  • Если использовать газогенераторный котел на мощности ниже 50 %, то наблюдается нестабильное горение – как результат выпадение в осадок дёгтя, который скапливается в газоходе.
  • Температура обратки отопления не должна быть ниже 60 °С, иначе в газоходе будет выпадать конденсат.
  • Обычно газогенераторы требовательны к влажности топлива, но как уже писалось выше, есть модели, в которых можно сжигать даже свежесрубленную древесину.

Других существенных недостатков газогенераторов не выявлено.

Кстати, газогенераторы – не такое уж и новое изобретение. Еще в середине прошлого века, когда большая часть нефтяных ресурсов Германии шла на вооружение, в качестве топлива для автомобилей использовались дрова. Даже на грузовые автомобили устанавливались газогенераторы. Современные агрегаты не слишком далеко ушли в своей конструкции, но, тем не менее, основательно усовершенствованы.

 

Принцип работы газового генератора – газогенератора

 

В генераторе газов или газогенераторе из твердого топлива добывается горючий газ. Основной секрет заключается в том, что в камеру сгорания подается воздух, объема которого недостаточно для полного сгорания топлива, при этом соблюдается высокая температура порядка 1100 – 1400 °С. Полученный газ охлаждается и направляется к потребителю или двигателю внутреннего сгорания, если, например, планируется добывать электричество. Более детально принцип работы газогенератора рассмотрим ниже, уточнив какой процесс в каком элементе агрегата происходит.

 

Устройство газового генератора на древесине

 

Рассмотрим устройство газогенератора бытового назначения. Сразу хотелось бы отметить, что пиролизные котлы с газогенератором отличаются от предложенной схемы, так как сгорание газа происходит внутри котла во второй камере сгорания. Мы же рассмотрим лишь сам газогенератор, на выходе из которого получается горючий газ.

Схема газогенератора:

Корпус газогенератора изготовлен из листовой стали и имеет сварные швы. Самая распространенная форма корпуса – цилиндрическая, но она вполне может быть и прямоугольной. К нижней части корпуса приварено днище и ножки, на которых будет стоять газогенератор.

Бункер или

камера заполнения служит для загрузки внутрь газогенератора топлива. Он также имеет цилиндрическую форму и изготовлен из малоуглеродистой стали. Бункер установлен внутри корпуса газогенератора и закреплен болтами. На крышке люка, ведущего в бункер, на кромках использован асбестовый уплотнитель или прокладка. Так как асбест запрещен для использования в жилых помещениях, то существуют модели газогенераторов, уплотнители крышки которой изготовлены из другого материала.

Камера сгорания находится в нижней части бункера и изготовлена из жаропрочной стали, иногда внутренняя поверхность камеры сгорания отделывается керамикой. В камере сгорания происходит горение топлива. В нижней ее части происходит крекинг смол, для чего там установлена горловина, изготовленная из жаропрочной хромистой стали. Между корпусом и горловиной находится прокладка – уплотнительный асбестовый шнур. В средней части камеры сгорания находятся фурмы для подачи воздуха

. Фурмы представляют собой калиброванные отверстия, которые соединяются с воздухораспределительной коробкой, связанной с атмосферой. Фурмы и распределительная коробка также изготавливаются из жаропрочной стали. На выходе из воздухораспределительной коробки установлен обратный клапан, который препятствует выходу горючего газа из газогенератора. Чтобы повысить мощность двигателя или иметь возможность использовать дрова повышенной влажности (более 50 %), перед воздухораспределительной коробкой можно установить вентилятор, который будет нагнетать внутрь воздух.

Колосниковая решетка служит для того, чтобы поддерживать раскаленные угли. Она располагается в нижней части газогенератора. Через отверстия решетки зола от сгоревших углей проваливается в зольник. Чтобы колосниковую решетку можно было очищать от шлака, ее средняя часть сделана подвижной. Для поворота чугунных колосников предусмотрен специальный рычаг.

Загрузочные люки

оснащены герметично закрывающимися крышками. Например, верхний загрузочный люк откидывается горизонтально и уплотнен асбестовым шнуром. В креплении крышки есть специальный амортизатор – рессора, которая приподнимает крышку в случае избыточного давления внутри камеры. Сбоку корпуса есть также два загрузочных люка: один сверху – для добавления топлива в зону восстановления, второй снизу – для удаления золы. Отбор газа производится в зоне восстановления, поэтому чаще всего в верхней части газогенератора, но также возможно отведение газа и из нижней части агрегата. Отбор газа производится через патрубок, к которому приварены трубы газопровода. Не обязательно сразу же выводить газ за пределы корпуса газогенератора, пока он горячий, его можно использовать для подогрева и подсушивания дров или другого топлива в камере загрузки. Для этого отводящий газопровод проводится по кольцевой вокруг камеры, между корпусом газогенератора и бункером.

Фильтр «Циклон» и

фильтр тонкой очистки располагаются за корпусом газогенератора. Они изготовлены из труб, наполненных фильтрующими элементами.

Прежде чем поступить в фильтр тонкой очистки, газ проходит через охладитель. А после фильтра тонкой очистки очищенный газ поступает в смеситель, где смешивается с воздухом. И только затем газо-воздушная смесь поступает в двигатель внутреннего сгорания.

Более наглядно последовательность движения горючего газа, после того как он вышел из газогенератора, показана на схеме ниже.

Дрова или другое топливо горит в камере сгорания, окисляясь воздухом, поступающим в камеру сгорания через фурмы из воздухораспределительной коробки. Полученный горючий газ поступает в фильтр Циклон, где очищается. Затем охлаждается в фильтре грубой очистки. Затем уже охлажденный газ поступает в фильтр тонкой очистки, а затем в смеситель. Из смесителя полученная смесь поступает в двигатель.

 

Процесс превращения топлива в газ

 

И все же: как из твердого топлива получается газ? Внутри газогенератора происходит некий процесс превращения, который разбит на несколько этапов, происходящих в разных зонах:

Зона подсушки находится в верхней части бункера. Здесь температура порядка 150 – 200 °С. Топливо подсушивается горячим газом, который движется по кольцевому трубопроводу, как было описано выше.

Зона сухой перегонки расположена в средней части бункера. Здесь без доступа воздуха и при температуре 300 – 500 °С топливо обугливается. Из древесины выделяются кислоты, смолы и другие элементы сухой перегонки.

Зона горения находится внизу камеры сгорания в зоне, где расположены фурмы, через которые поступает воздух. Здесь при подаче воздуха и температуре 1100 – 1300 °С обугленное топливо и элементы сухой перегонки сгорают, в результате чего образуются газы СО и СО2.

Зона восстановления находится выше зоны горения между колосниковой решеткой и зоной горения. Здесь газ СО2 поднимается вверх, проходит через раскаленный уголь, взаимодействует с углеродом (С) угля и на выходе образуется газ СО – окись углерода. В данном процессе также участвует влага из топлива, поэтому помимо СО образуется СО2 и Н2.

Зоны горения и восстановления называются зоной активной газификации. В результате генераторный газ состоит из нескольких компонентов:

  • Горючие газы: СО (оксид углерода), Н2 (водород), СН4 (метан) и СnНm (непредельные углеводороды без смол).
  • Балласт: СО2 (углекислый газ), О2 (кислород), N2 (азот), Н2О (вода).

Полученный газ охлаждается до температуры окружающей среды, затем очищается от муравьиной и уксусной кислоты, золы, взвешенных частиц и смешивается с воздухом.

 

Типы газогенераторов

 

Различают три типа газогенераторов: прямого процесса газогенерации, обратного и горизонтального.

Газогенераторы прямого процесса могут сжигать уголь полукокс и антрацит – топливо небитуминозное. Конструктивное отличие данного типа агрегатов в том, что воздух поступает через колосниковую решетку снизу, а забор газа производится сверху. В газогенераторах прямого процесса влага из топлива не попадает в зону горения, поэтому ее подводят специально. Обогащение генераторного газа водородом из воды повышает мощность генератора.

Газогенераторы опрокинутого или обращенного процесса предназначены для сжигания смолистого топлива – дров, древесного угля и отходов. Их конструктивное отличие в том, что воздух подается в среднюю часть – в зону горения, а забор газа производится ниже зоны горения – в зольнике. Обычно в агрегатах такого типа отобранный горячий газ используется для подогрева топлива в бункере.

Газогенераторы горизонтального или поперечного процесса газификации отличаются тем, что воздух в них подводится сбоку – в нижней части корпуса, причем подается он с высокой скоростью дутья через фурмы. Отбор газа производится  напротив фурмы через газоотборную решетку. Активная зона газификации в газогенераторе горизонтального процесса очень мала и сосредоточена между концом фурмы и газоотборной решеткой. Время пуска такого генератора намного меньше, также он легко приспосабливается к смене режимов работы.

 

Место установки газового генератора

Газогенераторы и газогенераторные котлы отопления можно устанавливать как внутри жилых помещений, например, в подвалах и цокольных этажах, так и на улице.

Так называемые пеллетные котлы чаще всего устанавливают в доме, так как их загрузка не сопряжена с большим количеством мусора, а также мешки с пеллетами весят немного и могут храниться где-то рядом с котлом.

Газогенераторы на дровах, а в особенности на дровах большой длины, имеет смысл устанавливать на улице недалеко от места хранения дров. Так можно будет подвезти дрова на тачке непосредственно к котлу или газогенератору и не спускать их в подвал дома. Стоящий на улице котел избавляет от грязи и золы в подвале. Особенно это актуально для деревянных домов, где повышенные нормы пожаробезопасности. Внешний корпус котла изготавливается из нержавеющей стали, которая не подвержена коррозии. Также котлы теплоизолированы насыпной теплоизоляцией, чтобы температура окружающей среды минимально влияла на процесс газификации и скорость пуска котла. Система регулирования размещается в стальном кожухе под крышкой, чтобы на нее не попадали осадки. Дымовая труба имеет двойные стенки. Если вас интересует, как подключить газовый генератор, если он стоит на улице, то ответ прост – трубы прокладываются в земле, чтобы они минимально охлаждались, если это котел отопления. Трубы отопления подходят к котлу снизу, а сам котел устанавливается так, чтобы при длительных перерывах в использовании он не замерзал.

Кстати, как уже отмечалось, длительность процесса горения топлива в котле может быть от 12 часов и достигать 25 часов. В зависимости от мощности котла и площади отапливаемого помещения, его придется топить раз в два дня, а иногда и раз в неделю. Чтобы сохранить вырабатываемое котлом тепло на столь длительный период, используется теплоаккумулятор.

 

Дровяной газовый генератор своими руками

В том чтобы изготовить газогенератор своими руками, нет ничего сверхсложного. Многие используют такой агрегат для бытовых нужд или устанавливают на автомобиль. Перед тем как начать изготавливать газогенератор самостоятельно, необходимо ознакомиться с принципом его действия и выбрать подходящую для себя схему работы.

Понадобятся – бочка, трубы или старая батарея радиаторов, фильтры тонкой и грубой очистки газа, вентилятор. С другой стороны набор элементов может быть самым разным, все зависит от фантазии исполнителя.

Ниже посмотрите видео пример газогенератора самостоятельного изготовления.

Схема газогенратора:

В интернете можно найти как фото, так и чертежи по монтажу газовых генераторов и пиролизных котлов. Есть даже умельцы, которые берут за основу готовый проверенный котел и полностью повторяют его в домашних условиях. Получается дешевле намного.

Схема газогенераторного котла:

Отличие пиролизного котла от обычного газогенератора в том, что он состоит из двух камер сгорания: в одной сгорает топливо и образуется газ, а в другой – сгорает газ и находится теплообменник. Устройство и принцип работы газогенератора мы уже рассмотрели, добавьте в него только вторую камеру сгорания, которая должна располагаться вверху, и теплообменник сверху. Иногда теплообменник располагают сбоку. Также не забудьте о разных типах газогенераторов, так что вторая камера сгорания может находиться не только сверху.

При сборе дымохода постарайтесь собирать его в последовательности, обратной движению дыма, так на его стенках будет меньше оседать всякой гадости. Сам дымоход лучше сделать легкоразбираемым, чтобы его можно было легко и быстро чистить. Пространство вокруг котла отопления должно быть свободным, так как он нагревается в процессе работы.  После монтажа котла придется изучить его «повадки» и подобрать оптимальный для себя режим работы, при котором сгорают все смолы.

Хотелось бы отметить, что газогенератор может рассматриваться не только как сжигатель полезной древесины, но и как утилизатор отходов. В нем можно сжигать остатки линолеума, пакетов, мешков, резины, пластиковых бутылок и другого бытового мусора.

описание процесса и советы мастеров

Газогенератор на дровах является установкой, которая предназначена для получения горючего газа с использованием пиролиза отходов древесины. Пиролизом называется процесс разложения органических и некоторых неорганических веществ под воздействием высокой температуры при пониженном содержании кислорода.

Для нормального протекания процесса должна присутствовать одна треть объема кислорода, необходимого для обычного горения. В таблице 1 показаны продукты пиролиза древесины, выделяющиеся на разных его стадиях.

Выделяемый в результате пиролиза газ может быть использован как топливо для котлов отопления, водонагревателей и даже автомобильных двигателей внутреннего сгорания.

Устройство

Основной корпус газогенератора (рис.1) представляет собой вертикальную металлическую колонну, имеющую цилиндрическую или прямоугольную форму. В нижней части, в районе топки, колонна сужается. В этой области генератора расположены патрубки забора наружного воздуха, ниже располагается зольное отделение, оборудованное лючком для удаления золы, либо специальным механизмом золоудаления. Также имеется лючок для осуществления розжига генератора.

Верхняя часть колонны оборудована крышкой, через которую осуществляется загрузка дров или деревянных отходов. Чуть ниже находится патрубок для отвода продукта пиролиза — горючего газа. Проходя через фильтр грубой очистки, где происходит осаждение крупных частиц сажи и дегтя, газ попадает в охладитель, который обычно выполняется в форме змеевика или радиатора.

Фильтр грубой очистки представляет собой стальную емкость, имеющую овальное сечение (показано на рисунке). Внутри емкость оборудована специальными перегородками для более надежного улавливания крупных частиц сажи. Содержащийся в газе водяной пар конденсируется, образовавшаяся при этом влага скапливается на дне фильтра. После охлаждения в радиаторе, газ поступает в фильтр тонкой очистки, где осуществляется отделение мелких механических примесей.

После тонкой очистки установлено устройство для подготовки топливной смеси и ее подачи в цилиндры двигателя внутреннего сгорания. На этом этапе происходит дозированное смешивание газа с атмосферным воздухом.

На этапе розжига и выхода генератора на рабочий режим, желательно использовать принудительную подачу воздуха. После запуска двигателя внутреннего сгорания, дутье следует отключить, так как разрежение в цилиндрах двигателя обеспечит необходимое движение воздуха.

Принцип работы

Несмотря на сложность химических процессов, сопровождающих пиролиз, принцип работы газового генератора на дровах достаточно прост.

Начинается все с загрузки бункера генератора дровами, опилками, щепой. Верхняя крышка бункера герметически закрывается. Для этого она оборудуется специальным запорным устройством. Это очень важно, потому что через неплотно закрытую крышку будет происходить утечка образовывающегося газа.

После этого производится розжиг через специальный лючок внизу генератора. Таким образом, осуществляется активация зоны горения генератора. В этой зоне идут процессы полного сгорания топлива, сопровождающиеся выделением углекислого газа СО2, а также частичного, образующего оксид углерода СО.

Под воздействием раскаленных газов происходит также газификация части топлива, не находящегося в зоне горения, но располагающаяся в непосредственной близости от очага горения. В реакции участвует также часть влаги, содержащаяся в топливе. В результате образуются углекислый газ СО2, водород Н2, а также оксид углерода СО, являющийся горючим газом.

Зона генератора, непосредственно примыкающая к очагу горения, называется зоной восстановления. Вместе эти участки установки образуют зону активной газификации.

В результате протекания вышеупомянутых процессов, на выходе генераторной колонки образуется многокомпонентный газ, в состав которого входят горючие компоненты – СО, Н2, СН4, CnHm, а также балластная часть – CO2, O2, N2, H2O.

Генераторный газ имеет высокое октановое число, но очень низкую теплоту сгорания, вследствие чего, двигатель внутреннего сгорания, переведенный на такой вид топлива, может потерять до 40% мощности.

Какие газогенераторы применяются для домашних нужд, по каким критериям делать их выбор, и какие популярные модели есть в продаже — читайте тут.

Экономичными и удобными для использования в домашних нуждах являются генераторы от магистрального газа. Читайте по вышеуказанной ссылке про их преимущества, особенности и критерии выбора.

Процесс изготовления

Как сделать газогенератор своими руками? Ниже описывается один из возможных вариантов. Берем газовый баллон на 40 литров и вырезаем круг в верхней его части, как показано на фото 1.

В этом резервуаре будет располагаться зона загрузки и топка.

Метровый кусок трубы наружным диаметром около 50 мм будет служить для подачи воздуха (фото 2).

Дно и крышку корпуса можно изготовить из листовой стали толщиной 5 мм. Для фильтров грубой и тонкой очистки подойдут корпуса от огнетушителей. Колосниковая решетка может быть сварена из арматуры (фото 3).

Лучше конечно подыскать для колосниковой решетки чугунные прутья или найти готовое изделие подходящих размеров.

Для изготовления запора для крышки генераторной колонки подойдет старая автомобильная рессора (фото 4). При повышении давления внутри генератора такой запор сработает, как клапан в кастрюле – скороварке.

Основой крепления деталей крышки может послужить кусок прямоугольной трубы (фото 5)

Соединение основных деталей корпуса осуществляется электросваркой, при монтаже деталей крышки используется болтовое соединение.

Таким образом, практически все детали, необходимые для того, чтобы сделать газогенератор своими руками, можно найти в металлоломе.

Дизельные генераторы являются хорошей альтернативой газовым аппаратам, когда нужна повышенная мощность. О дизельных электростанциях читайте в статье по ссылке: https://voltobzor.ru/dizelnye-elektrostancii-princip-raboty-remont-i-obsluzhivanie.

А про мощные дизельные генераторы на 100 кВт, принцип их выбора, использования и обслуживания вы узнаете в этой подробной статье.

Советы мастеров

Тому, кто решил изготовить газогенератор на дровах своими руками, полезно прислушаться к советам специалистов и тех домашних мастеров, кто уже прошел этот путь. Остановимся на некоторых моментах, которые следует учесть при изготовлении газового генератора.

Выбор материала, из которого решено изготовить газовый генератор, должен быть продуманным. Элементы топочной камеры лучше всего изготовить из низкоуглеродистой стали. Это обусловлено жесткими температурными условиями работы этой части конструкции вкупе с воздействием выделяющегося конденсата.

Верхняя крышка генераторной колонки кроме запорного устройства должна быть укомплектована уплотнителем, обеспечивающим герметичность. Уплотнитель можно изготовить из асбестовой полосы или использовать шнур из того же материала. Выполнение этого условия воспрепятствует неконтролируемому проникновению воздуха внутрь генератора и утечке пиролизного газа.

Очень удобно для изготовления корпуса генератора использовать пустой газовый баллон. Следует соблюдать осторожность при резке и сварке баллона, так как даже незначительное количество оставшегося газа может воспламениться. Во избежание этого, многие рекомендуют при выполнении работ, заполнить пустой баллон водой.

Еще один совет касается необходимости установки обратного клапана, чтобы избежать выхода газа.

Колосники камеры сгорания должны быть изготовлены из чугуна. Поскольку эта часть конструкции нуждается в постоянной очистке, лучше сделать ее выдвижной.

Для подачи воздуха можно предусмотреть вентилятор.

Конструкция загрузочного люка должна быть такой, чтобы в случае переизбытка топлива и газа было удобно выбросить часть балласта.

Что касается выбора конструкции, лучше найти схему промышленного или реально изготовленного действующего изделия. Так как, не имея чертеж газогенератора на дровах, своими руками сделать его будет очень трудно.

Относительно применения газогенератора на дровах, многие мастера, испытавшие эти устройства в работе, подчеркивают, что использование их на автомобильном транспорте сегодня вряд ли может иметь перспективы. В этом качестве они чересчур громоздки и неэффективны. Гораздо более интересным является использование таких генераторов для питания стационарных двигателей внутреннего сгорания электрических генераторных агрегатов. В этом варианте можно получить источник дешевой электрической энергии, вырабатываемой из древесных отходов.

Газовые генераторы фирмы Generac пользуются большой популярностью среди покупателей. Почему они пользуются высоким спросом и какие особенности имеют, узнайте в статье https://voltobzor.ru/gazovye-generatory-generac-sfery-primeneniya-osobennosti-i-primery.

Читайте подробную и исчерпывающую статью о том, как выбрать газовый генератор для дома.

В заключение хочется добавить, что сама по себе идея получения газообразного топлива из древесины не нова. Еще в годы Великой Отечественной войны, в условиях дефицита жидкого углеводородного топлива, дровяными газогенераторами комплектовались небольшие грузовики – полуторки.

Сам процесс пиролиза применяется сегодня в распространенных моделях котлов длительного горения, производимых очень известными фирмами. Использование пиролиза в отопительных системах позволяет получить максимальное количество теплоты от сгорания топлива, при этом редко осуществляя его загрузку.

Для тех, кто хочет больше узнать о возможностях генераторов, использующих процесс пиролиза, увидеть, как изготавливают газогенераторы на дровах своими руками, видео ролики, выложенные в сети, окажут в этом помощь.

Газогенератор своими руками: как сделать самодельный агрегат

Газогенератор – аппарат для выработки газа из угля, дров, отходов деревообработки и других материалов. Генерируемое горючее способно заменить традиционное углеводородное топливо – природный газ для отопления жилья и бензин для автомобиля.

Основная идея использования такого агрегата – экономия на топливных расходах. Постоянное удорожание бензина, пропана и метана заставляет домашних умельцев подыскивать альтернативные способы получения топлива.

Чтобы сделать газогенератор своими руками, необходимо понять его устройство и принцип работы.

Мы объясним, как происходит преобразование твердого топлива в горючий газ, обозначим конструктивные особенности агрегата и приведем примеры самостоятельной сборки простых приборов. Для лучшего усвоения информации, мы дополнили статью наглядными схемами, фотографиями и видео-роликами.

Содержание статьи:

Газогенератор: устройство и принцип работы

Газогенератором называется устройство, преобразующее жидкое либо твердое горючее в газообразное состояние для дальнейшего сжигания его с целью получения тепла.

Варианты топлива для генерирующей установки

Работающие на мазуте или отработке агрегаты имеют более сложную конструкцию, нежели модели, использующие различные виды угля или дрова.

Поэтому чаще всего встречаются именно твердотопливные генераторы газа – благо, топлива для них доступно и дешево.

Галерея изображений

Фото из

Поставка газа в котел для отопления дома

Выработка газа для транспортных средств

Производство газа для с/х техники

Газовые светильники и обогреватели

В качестве твердого топлива в газовом генераторе используют:

  • древесный, бурый и каменный уголь;
  • топливные пеллеты из древесных отходов;
  • солому, и дрова;
  • торфяные брикеты, кокс;
  • лузгу семечек.

Особо бережливые хозяева собственноручно заготавливают .

Генерация газа возможна из всех этих видов горючего. Выделение энергии зависит от .

Причем тепла от сжигания сырья в газогенераторе получается больше, нежели от использования твердого топлива в котлах. Если КПД обычного  варьируется в пределах 60–70%, то у газогенераторного комплекса показатель достигает 95%.

Но здесь надо учесть один нюанс. Котел сжигает топливо для нагрева воды, а генератор газа только производит горючее. Без нагревателя, печки или ДВС толку от самодельного газогенератора будет ноль.

Получаемый газ сразу должен использоваться – накапливать его в какой-либо емкости экономически невыгодно. Для этого придется монтировать дополнительное оборудование, зависящее от электропитания.

В советское время газогенераторы использовали даже для эксплуатации грузовиков, производимого газа вполне хватает для работы двигателя внутреннего сгорания

Что происходит внутри газогенератора

В основе работы генератора газа лежит пиролиз твердого топлива, происходящий при высоких температурах и низком содержании кислорода в топке. Внутри газогенерирующего устройства одновременно протекает несколько химических реакций.

Схема промышленного газового генератора представляет собою достаточно сложную установку с множеством отдельных устройств, в каждом из которых протекает своя операция (+)

Технологически процесс генерации горючего газа делится на три последовательно совершающихся  этапа:

  1. Термическое разложение топлива. Процесс протекает в условиях дефицита кислорода, которого в реактор подается всего треть от необходимого для обычного горения.
  2. Очистка полученного газа. В циклоне (сухом вихревом фильтре) осуществляется фильтрация газового облака от летучих частиц золы.
  3. Охлаждение. Полученная газовая смесь охлаждается и подвергается дополнительной очистки от примесей.

Фактически, в блоке как такового газогенератора происходит именно первый процесс – пиролиз. Все остальное – это подготовка газовой смеси для дальнейшего сжигания.

Пиролизная камера самодельного газогенератора делится на бункер с твердым топливом (1), топливник (2) и зольник (3)

На выходе из газогенерирующей установки получается горючая смесь из оксида углерода, водорода, метана и иных углеводородов.

Также, в зависимости от используемого при пиролизе топлива, к ним прибавляются в различных количествах вода в виде пара, кислород, углекислый газ и азот. По описанному принципу функционируют и , демонстрирующие высокий КПД.

Особенности работы различных преобразователей

Газогенераторы по устройству и технологии внутренних процессов бывают:

  • прямыми;
  • обращенными;
  • горизонтальными.

Различаются они точками подачи воздуха и выхода сгенерированного газа.

Прямой процесс протекает при нагнетании воздушной массы снизу и выходом горючей смеси вверху конструкции.

Обращенный вариант подразумевает подачу кислорода напрямую в зону окисления. При этом она в газогенерирующем устройстве является самой горячей.

Самостоятельно сделать в нее впрыск достаточно сложно, поэтому такой принцип работы применяется только в промышленных установках.

При прямом газогенераторном процессе на выходе образуется большой объем смол и влаги, обращенный слишком сложен в реализации своими руками, а у горизонтального – пониженная производительность, но предельно простая конструкция (+)

В горизонтальном газогенераторе выходной патрубок с газом расположен сразу над колосником в зоне совмещения реакций окисления и восстановления. Эта конструкция самая простая в самостоятельном исполнении.

Достоинства и недостатки газовых генераторов

Обойдется бытовой газогенератор заводского изготовления в 1,5–2 раза дороже обычного твердотопливного котла. Стоит ли тратиться на эту «чудо-технику»?

Среди плюсов использования газовых генераторов числится:

  • полное прогорание топлива, загруженного в топку, и минимальный объем золы;
  • сравнительно высокий КПД при совместной работе с ДВС либо ;
  • широкий выбор твердого топлива;
  • простота эксплуатации и отсутствие необходимости непрерывно следить за работой агрегата;
  • временной интервал между перезагрузками топки – до суток на дровах и до недели на угле;
  • возможность использования непросушенной древесины – влажное сырье можно применять только в некоторых моделях газогенераторов;
  • экологичность устройства – выхлопной трубы у этого устройства нет, весь сгенерированный газ прямым потоком идет в камеру сгорания двигателя или котла.

При использовании влажных дров генератор работать будет, но выработка газа при этом сократится на 20–25%. Падение производительности происходит из-за испарения естественной влаги из древесины.

Это приводит к понижению температуры в топке, что замедляет процесс пиролиза. Лучше всего поленья перед загрузкой в пиролизную камеру тщательно просушивать. Промышленные устройства полностью автоматизированы, подача топлива в них производится шнеком из рядом расположенного контейнера.

Сделанный своими руками газогенератор не радует подобной автономностью, но и он достаточно прост в эксплуатации. Надо лишь время от времени загружать его топливом под завязку.

Рабочие температуры в газогенераторе достигают значений в 1200–1500°C, его корпус должен выполняться из выдерживающих подобные нагрузки материалов

Недостатков у газогенератора меньше, но они есть:

  • слабая регулируемость объемов генерируемого газа – при снижении температуры в топке пиролиз прекращается и вместо горючей газовой смеси на выходе образуется месиво из смол;
  • громоздкость установки – даже самодельный газогенератор средней мощности в 10–15 кВт занимает достаточно большое пространство;
  • длительность растопки – прежде чем реактор произведет первый газ пройдет 20–30 минут.

После “разогрева” генератор стабильно выдает определенный объем газовой смеси, которую необходимо сжигать либо выбрасывать в воздух. Чтобы сделать этот агрегат своими руками потребуются прочные газовые баллоны или толстая сталь, а это немалые деньги. Но все это окупается экономичностью генератора и дешевизной исходного топлива.

Часть моделей газогенераторов оснащается вентилятором надува воздуха, а другие нет. Первый вариант позволяет повысить мощность установки, но привязывает ее электросети. Если нужен небольшой генератор для готовки еды на природе, то можно обойтись компактным без воздушного нагнетателя агрегатом.

Большинство самостоятельно сделанных газогенерирующих установок работает за счет естественной тяги.

Переносной газогенератор мощностью в 2,4 кВт, работающий на дровах, позволяет без проблем готовить обед за городом вдали от цивилизации (+)

Для обогрева частного дома нужна будет уже более мощное и энергозависимое устройство. Однако в этом случае стоит позаботиться о резервном электрогенераторе, чтобы в одночасье при аварии на сети не остаться как без электроснабжения, так и без отопления.

Рабочие узлы самодельного агрегата

Чтобы разобраться, как можно своими руками, необходимо четко себе представлять его конструкцию. У каждого из элементов свое предназначение, даже отсутствие одного из них недопустимо.

Внутри корпуса самодельного газового генератора должен присутствовать:

  • бункер для твердого топлива вверху агрегата;
  • камера пиролиза, где происходит процесс тления;
  • воздухораспределительное устройство с обратным клапаном;
  • колосники с зольником;
  • выводной патрубок для производимого газа;
  • фильтры очистки.

В самодельном генераторе на дровах образуется достаточно высокая температура, поэтому к каждому его элементу предъявляются жесткие требования. Для корпуса используется прочная листовая сталь, а все детали внутрь подбираются максимально жаропрочные.

Чтобы обеспечить герметичность люка загрузки топлива в закрытом состоянии, крышке понадобится уплотнитель. Самый дешевый материал для этого – асбест. Однако он не отличается безвредностью для здоровья людей, лучше подыскать в магазине специальные жаропрочные прокладки на основе силиконов или силикатов.

Сгенерированные в камере сгорания газы сначала смешиваются с воздухом и охлаждаются, а потом проходят очистку в фильтре из керамзита или опилок (+)

Корпус может быть как цилиндрической формы, так и прямоугольной. Нередко для упрощения работ берется пара баллонов для природного газа или железных бочек. Один из колосников внизу топки приваривают “намертво”, а второй встраивают таким образом, чтобы его можно было пошевелить. Это необходимо для очистки их от шлака и золы.

Воздухораспределительный узел находится снаружи корпуса. Он обеспечивает поступление в топку необходимых объемов кислорода, но при этом благодаря обратному клапану не выпускает из нее горючие газы.

Технологии изготовления газогенератора

Самостоятельно сделать газогенерирующую установку можно несколькими способами. Выбор здесь зависит от наличия материалов и дальнейшего использования получаемого газа.

Вариант #1: Пример сооружения аппарата на угле

Рассмотрим пример изготовления полезной самоделки из металлического ведра с крышкой. Сначала подготовим агрегат, который будет перерабатывать полученный из установки газ в электроэнергию.

Галерея изображений

Фото из

Переделка топливной системы электрогенератора

Модернизация воздушного фильтра агрегата

Замена пластиковых труб металлическими аналогами

Усовершенствование выхлопной трубы устройства

После подготовки потребителя к предстоящей эксплуатации можно заняться сооружением непосредственно газогенератора.

Галерея изображений

Фото из

Металлическая пластина для укрепления входа

Сверление отверстий в металлической пластине

Сверление отверстий в заготовке газогенератора

Установка входной трубки в стенку ведра

Крепление входящей трубки сварочным аппаратом

Обработка силиконовым герметиком

Специфика установки патрубка в крышке ведра

Укрепление выходной трубы вверху газогенератора

Патрубок, отводящий газ из установки, необходимо снабдить фильтром, т.к. в процессе сгорания уголь выделяет много мелкой взвеси и пыли.

Галерея изображений

Фото из

Материалы для изготовления фильтра

Формирование отверстий в банке

Внутри банки укладывается поролон

Установка фильтра для вырабатываемого газа

Завершив процесс сооружения самодельного газогенератора, надо проверить его на работоспособность.

Галерея изображений

Фото из

Подключение к электрогенератору

Загрузка топлива в топку агрегата

Проверка на утечки газоанализатором

Установка заглушки на входной патрубок

Вариант #2: Газогенератор из двухсотлитровых бочек

Для бочкового самодельного газогенератора потребуется пара емкостей в 200 л. Одну из них вставляют в другую на две трети.

Образованное внизу пространство, будет использоваться в качестве камеры сгорания, а верхняя часть идеально подойдет под бункер для дров или пеллет.

Внутри корпуса из бочки будет происходить тление с генерацией газа, а снаружи в цилиндре из старого огнетушителя в фильтре очистки он будет очищаться от негорючих примесей

Сбоку, на уровне секции пиролиза, вваривают трубу сечением в 50 мм для нагнетания воздуха, а ближе к крышке – газоотводящий патрубок. В дне внутренней бочки вырезают отверстие для поступления топлива в камеру сгорания, а к днищу внешней приделывают дверцу поддувала.

Остается только сделать фильтры очистки газовой смеси перед передачей ее в водогрейный котел. Для этого понадобятся использованные огнетушители или отрезки трубы аналогичного размера.

Сверху их наглухо закрывают, а снизу приваривают конусную насадку, на конце которой имеется штуцер для удаления золы. Затем сбоку врезают патрубок для подачи газовой смеси на очистку, а в крышку – отвод для уже отфильтрованного газа.

Первичное очищение газа от частиц сажи и золы происходит за счет центробежных сил в наружном фильтре для грубой очистки (+)

Далее, для понижения температуры горючего газа делают радиатор охлаждения из нескольких труб диаметром в 10 см. Между собой их соединяют небольшими патрубками.

Для окончательного очищения газа устанавливают еще один фильтр с керамзитом, небольшими шайбами из металла или опилками внутри. Применять последний материал допустимо только при условии, что поступающий газ уже охладился, иначе дело может дойти до пожара.

Из газового баллона получится сделать “буржуйку”. Инструкция по созданию примитивной печи приведена в .

Вариант #3: Самодельная модель для ДВС

Для машины или мотоцикла самодельный газогенератор делают по аналогичной схеме. Только здесь придется уменьшить размеры установки до минимума. Возить с собой тяжелый агрегат накладно, да и выглядит это не очень эстетично.

Чтобы облегчить себе работу, для автомобильной версии генератора лучше всего взять баллоны из-под бытового газа. Главное – перед сваркой убедиться, что и намека на присутствие в емкости пропана уже нет, иначе может произойти небольшой взрыв. Для этого необходимо открутить баллонный клапан и заполнить емкость под завязку водой.

Для охлаждения горючей смеси на выходе из установки можно приспособить обычный радиатор отопления

Изначально автомобильный газогенератор производит слишком горячие газы. Их в обязательном порядке необходимо охлаждать. Иначе при контакте с раскаленными частями двигателя они могут самопроизвольно воспламениться. Кроме того, разогретое газообразное горючее имеет малую плотность, из-за чего его поджечь в цилиндрах будет попросту проблематично.

Газогенератор самодельного исполнения для автомобиля можно смонтировать в багажнике либо на прицепе.

Второй способ предпочтительней благодаря:

  • простоте ремонта;
  • возможности оставить газогенерирующий агрегат в гараже;
  • наличию свободного места в багажнике;
  • возможности использования установки для иных нужд помимо подачи топлива в ДВС.

Не стоит опасаться дорожных ухабов. При подпрыгивании на кочках твердое топливо в камере сгорания будет встряхиваться, что только поспособствуют его лучшему перемешиванию и горению.

Нюансы работы и эксплуатации газогенераторов

Важно помнить, что вырабатываемый установкой газ, не имеет запаха и ядовит. Если при сваривании своими руками металлических деталей газогенератора будут допущены ошибки, то беды не избежать.

Для естественного притока воздуха в камере сгорания можно насверлить по окружности корпуса отверстий в 5 мм. Все монтажные работы и проверку работоспособности следует производить в хорошо проветриваемой мастерской либо на улице.

Растопка твердотопливного газогенератора не отличается от розжига дровяной печки. Внутрь накладывают дрова или иной вариант топлива, а затем их поджигают лучиной

После возгорания заслонку прикрывают, чтобы ограничить поступление кислорода в камеру горения. Чтобы генерирующая газ самоделка работала исправно, следует грамотно отрегулировать отвод получаемой газовой смеси и подачу кислорода.

Прежде чем начинать мастерить газогенератор следует произвести инженерные расчеты, в которых надо учесть площадь сгорания и тип топлива, а также требуемую выходную мощность и предполагаемый режим работы.

Выводы и полезное видео по теме

Как использовать газогенератор, перерабатывающий древесный уголь, в качестве поставщика топлива для малолитражного автомобиля:

Простой газогенератор из пропановых баллонов:

Устройство дровяного генератора газа:

Вышеприведенными способы подходят для самостоятельного изготовления эффективного газогенератора. Но моделей этого устройства существует гораздо больше. Одни из них сделать проще, другие сложнее.

Главное при сборке агрегата уделить максимум внимания качеству сварных швов, иначе могут произойти утечки газа и взрыв. Если все выполнено правильно, то газогенератор исправно прослужит 10–15 лет. А потом металл корпуса начнет прогорать, и придется все делать заново.

У вас есть практические навыки сборки или опыт использования самодельного газогенератора? Пожалуйста, делитесь накопленными знаниями и задавайте вопросы по теме статьи в комментариях ниже.

Автомобиль на дровах: как он работает?

Это похоже на анекдот. Но тем, кто работал на лесоповале в тайге в 30-х, было не до смеха. Нет бензина — ехали на дровах. Да и по сей день эта технология до сих пор используется. Как устроены такие авто? Разбираем в деталях.

Оговоримся сразу: если автомобиль ездит на дровах, это не значит, что он — паровоз без рельсов. Низкий КПД паровой машины с ее отдельной топкой, котлом и цилиндрами двойного-тройного расширения оставил паровые автомобили в числе забытой экзотики. А сегодня мы поговорим о «дровяном» транспорте с привычными нам ДВС, моторами, сжигающими топливо внутри себя.

Разумеется, затолкать дрова (или нечто подобное) в карбюратор вместо бензина пока еще никому не удавалось, а вот идея прямо на борту авто получать из древесины горючий газ и подавать его в цилиндры как топливо прижилась на долгие годы. Речь идет о газогенераторных автомобилях, машинах, чей классический ДВС работает на генераторном газе, который получают из древесины, органических брикетов, или угля. От привычного жидкого топлива, кстати, такие машины тоже не отказываются — они способны работать и на бензине.

Автомобиль с газогенераторной установкой. Фото wikipedia.org


Святая простота

Генераторный газ — это смесь газов, состоящая в основном из окиси углерода СО и водорода Н2. Получить такой газ можно, сжигая размещенную толстым слоем древесину в условиях ограниченного количества воздуха. На этом несложном принципе работает и автомобильный газогенератор, простой по сути агрегат, но громоздкий и конструктивно осложненный дополнительными системами.

Также, помимо собственно производства генераторного газа, автомобильная газогенераторная установка охлаждает его, очищает и смешивает с воздухом. Соответственно, конструктивно классическая установка включает в себя сам газогенератор, фильтры грубой и тонкой очистки, охладители, электровентилятор для ускорения процесса розжига и трубопроводы.



НПЗ вожу с собой

Простейший газогенератор имеет вид вертикального цилиндра, в который почти доверху загружается топливо — дрова, уголь, торф, прессованные пеллеты и т.п. Зона горения расположена внизу, именно здесь, в нижнем слое горящего топлива создается высокая температура (до 1 500 градусов по Цельсию), необходимая для выделения из более верхних слоев будущих компонентов топливной смеси — окиси углерода СО и водорода Н2. Далее горячая смесь этих газов поступает в охладитель, который снижает температуру, повышая таким образом удельную калорийность газа. Этот довольно крупный узел обычно приходилось помещать под кузовом машины. Расположенный следом по ходу газа фильтр-очиститель избавляет будущую топливную смесь от примесей и золы. Далее газ направляется в смеситель, где соединяется с воздухом, и окончательно приготовленная смесь направляется в камеру сгорания двигателя автомобиля.


Схема автомобиля ЗИС-21 с газогенератором


Как видите, система производства топлива прямо на борту грузовика или легковушки занимала довольно много места и немало весила. Но игра стоила свеч. Благодаря собственному — и к тому же дармовому — топливу свой автономный транспорт могли себе позволить предприятия, расположенные за сотни и тысячи километров от баз снабжения ГСМ. Это достоинство долго не могло затмить все недостатки газогенераторных автомобилей, а их было немало:

— существенное сокращение пробега на одной заправке;
— снижение грузоподъемности автомобиля на 150-400 кг;
— уменьшение полезного объема кузова;
— хлопотный процесс «дозаправки» газового генератора;
— дополнительный комплекс регламентных сервисных работ;
— запуск генератора занимает от 10-15 минут;
— существенное снижение мощности двигателя.


ЗиС 150УМ, опытная модель с газогенераторной установкой НАМИ 015УМ


В тайге заправок нет

Древесина всегда являлась основным топливом для газогенераторных автомобилей. В первую очередь, конечно, там, где дров в избытке, — на лесозаготовках, в мебельном и строительном производстве. Традиционные технологии лесопереработки при промышленном использовании древесины в эпоху расцвета «газгенов» около 30% от массы леса отпускали в отходы. Их и использовали как автомобильное топливо. Интересно, что правилами эксплуатации отечественных «газгенов» строжайше запрещалось использование деловой древесины, так как и отходов лесной промышленности было с избытком. Для газогенераторов годились как мягкие, так и твердые породы дерева.

Единственное требование — отсутствие на чурках гнили. Как показали многочисленные исследования, проведенные в 30-е годы в Научном автотракторном институте СССР, лучше всего в качестве топлива подходят дуб, бук, ясень и береза. Чурки, которыми заправлялись котлы газогенераторов, чаще всего имели прямоугольную форму со стороной 5-6 сантиметров. Сельскохозяйственные отходы (солома, лузга, опилки, кора, шишки и пр.) прессовали в специальные брикеты и также «заправляли» ими газогенераторы.



Главным недостатком «газгенов», как мы уже говорили, можно считать малый пробег на одной заправке. Так, одной загрузки древесными чурками советским грузовикам (см. ниже) хватало не более чем на 80-85 км пробега. Учитывая, что «заправляться» руководство по эксплуатации рекомендует при опустошении бака на 50-60%, то и вовсе пробег между заправками сокращается до 40-50 км. Во-вторых, сама установка, вырабатывающая генераторный газ, весит несколько сотен килограммов. К тому же двигатели, работающие на таком газе, выдают на 30-35% меньше мощности, чем их бензиновые аналоги.

Доработка автомобилей под дрова

Для работы на генератором газе автомобили приходилось приспосабливать, но изменения не были серьезными и порой были доступны даже вне заводских условий. Во-первых, в моторах повышали степень сжатия, чтобы не так существенна была потеря мощности. В некоторых случаях для улучшения наполнения цилиндров двигателя применялся даже турбонаддув. На многие «газифицированные» авто устанавливался генератор электрооборудования с повышенной отдачей, поскольку для вдувания воздуха в топку использовался достаточно мощный электровентилятор.


ЗИС-13


Для сохранения тяговых характеристик, в особенности это касалось грузовиков, при снизившейся мощности двигателя передаточные числа трансмиссии делали более высокими. Скорость движения падала, но для автомобилей, использующихся в лесной глуши и прочих пустынных и отдаленных районах это не имело решающего значения. Чтобы компенсировать изменившуюся из-за тяжелого газогенератора развесовку, в некоторых машинах усиливали подвеску.

Помимо того, из-за громоздкости «газового» оборудования отчасти приходилось перекомпоновывать автомобиль: менять, сдвигать грузовую платформу или урезать кабину грузовика, отказываться от багажника, переносить выхлопную систему.

Золотая эра «газгена» в СССР и за границей

Эра расцвета газогенераторных автомобилей пришлась на 30-40-е года прошлого века. Одновременно в нескольких странах с большими потребностями в автомобилях и малыми разведанными запасами нефти (СССР, Германия, Швеция) инженеры крупных предприятий и научных институтов взялись за разработку автотранспорта на дровах. Советские специалисты больше преуспели в создании грузовых автомобилей.


ГАЗ-42


С 1935 года и до самого начала Великой Отечественной войны на разных предприятиях Министерства лесной промышленности и ГУЛАГа (Главное Управление ЛАГерей, увы, реалии той поры) «полуторки» ГАЗ-АА и «трехтонки» ЗИС-5, а также автобусы на их базе переделывались для работы на дровах. Также отдельными партиями газогенераторные версии грузовиков производились самими заводами-изготовителями машин. Например, советские автоисторики приводят цифру 33 840 — столько было выпущено газогенераторных «полуторок» ГАЗ-42. Газогенераторных ЗИСов моделей ЗИС-13 и ЗИС-21 в Москве выпущено более 16 тыс. единиц.


ЗИС-21


За довоенное время советскими инженерами было создано более 300 различных вариантов газогенераторных установок, из которых 10 дошли до серийного производства. Во время войны серийными заводами были подготовлены чертежи упрощенных установок, которые могли изготавливаться на местах в автомастерских без применения сложного оборудования. По воспоминаниям жителей северных и северо-восточных регионов СССР, грузовики на дровах можно было встретить в глубинке вплоть до 70-х годов ХХ века.

В Германии во время Второй Мировой войны наблюдался острый дефицит бензина. КБ двух компаний (Volkswagen и Mercedes-Benz) получили задание разработать газогенераторные версии своих популярных компактных машин. Обе фирмы в довольно сжатые сроки справились с поставленной задачей. На конвейер встали Volkswagen Beetle и Mercedes-Benz 230. Интересно, что у серийных авто дополнительное оборудование даже не выступало за стандартные габариты «легковушек». В Volkswagen пошли еще дальше и создали опытный образец «дровяного» армейского Volkswagen Тур 82 («кюбельваген»).


Volkswagen Тур 82


Дровяные машины сегодня

К счастью, главное достоинство газогенераторных автомобилей — независимость от сети АЗС, сегодня стало малоактуальным. Однако в свете современных экологических веяний на первый план вышло другое достоинство автомобилей на дровах — работа на возобновляемом топливе без какой-либо его химической подготовки, без дополнительной траты энергии на производство топлива. Как показывают теоретические расчеты и практические испытания, мотор на дровах меньше вредит атмосфере своими выбросами, чем аналогичных двигатель, но уже работающий на бензине или солярке. Содержание выхлопных газов очень схоже с выбросами ДВС, работающих на природном газе.

И тем не менее тема с автомобилями на дровах утратила свою былую популярность. Забыть о газогенераторах не дают в основном инженеры-энтузиасты, которые ради экономии на топливе или в качестве эксперимента переоборудуют свои личные машины для работы на генераторном газе. На постсоветском пространстве есть удачные примеры «газгенов» на базе легковушек АЗЛК-2141 и ГАЗ-24, грузовика ГАЗ-52, микроавтобуса РАФ-2203 и пр. По словам конструкторов, их творения могут проезжать на одной заправке до 120 км со скоростью 80-90 км/ч.


ГАЗ-52


К примеру, переведенный житомирскими инженерами в 2009 году на дрова ГАЗ-52 расходует около 50 кг древесных чурок на 100 км пробега. По словам конструкторов, подкидывать дровишки нужно каждые 75-80 км. Газогенераторная установка традиционно для грузовиков расположилась между кабиной и кузовом. После розжига топки должно пройти около 20 минут, прежде чем ГАЗ-52 сможет начинать движение (в первые минуты работы генератора выработанный им газ не имеет нужных горючих свойств). По расчетам разработчиков, 1 км на дровах обходится в 3-4 раза дешевле, чем на дизельном топливе или бензине.


Газогенераторная установка ГАЗ-52


Единственная на сегодняшний день страна, в которой массово используются автомобили на дровах, — это Северная Корея. В связи с тотальной мировой изоляцией там наблюдается определенный дефицит жидкого топлива. И дрова снова приходят на выручку тем, кто оказался в нелегком положении.


Читайте также:


Принцип работы газогенераторного двигателя на дровах

Газогенераторные двигатели имеют один неоспоримый плюс — возобновляемое топливо, которое не проходит предварительной обработки. История использования машин с таким оборудованием достаточно длительная. Сейчас они не так популярны, как раньше, но понемногу все же возвращаются в строй.

Основные особенности

Газогенераторный двигатель имеет несколько неоспоримых положительных особенностей. Во-первых, топливо для устройства очень дешевое. Во-вторых, во время эксплуатации прибора появляется зола, которую можно использовать в качестве удобрения, к примеру. В-третьих, автомобилю не потребуется установка мощных химических аккумуляторов.

Газогенераторные двигатели доказали свое право на существование уже очень давно. На сегодняшний день их показатели, конечно же, сильно уступают новым моделям, работающим на бензине. Однако для большинства рядовых автолюбителей вполне могут подойти. Газогенераторная установка позволит развить скорость до 100 км/ч, приблизительный максимальный пробег составит около 100 км. Чтобы повысить этот параметр, придется возить на заднем сиденье дополнительные мешки с дровами и периодически вручную добавлять «топливо» в бак.

Как работает устройство

Принцип работы газогенератора — синтез газа. Это процесс, в ходе которого, горючий газ будет образовываться при сгорании органического материала. Для того чтобы запустить такой процесс, необходимо достичь нужной температуры. Синтез газа начинается при достижении показателя в 1400 градусов по Цельсию. В качестве топлива для газогенераторного двигателя могут использоваться торф, брикеты с углем и некоторые другие материалы. Однако, как показала практика, наиболее распространенным и удобным материалом в качестве топлива выступает древесина. Хотя здесь стоит отметить, что дрова обладают одним недостатком — уменьшение заряда рабочей смеси. Вследствие этого несколько понижается и мощность установки.

Можно добавить, что двигатель на дровах такого типа обычно используется с уже установленным ДВС.

Технические показатели

Если стоит выбор, к примеру, между покупкой автомобиля с традиционным двигателем или с газогенератором, то нужно подробно остановиться на рассмотрении технических данных второго варианта.

Масса двигателя на дровах достаточно большая, из-за чего теряется некоторая часть маневренности. Этот недостаток становится опасным, если развивать большую скорость. По этой причине доводить автомобиль даже до 100 км/ч не слишком разумное решение — придется ездить медленнее. Есть еще несколько важных технических данных такого оборудования.

Газовый двигатель, работающий на дровах, обладает большей степенью сжатия, чем грузовые бензиновые двигатели. Что касается мощности, то газогенератор, естественно, проигрывает бензиновому мотору.

Последнее отличие не в пользу газовой модели — это грузоподъемность, в которой он также проигрывает автомобилю с бензиновым двигателем.

Здесь еще важно отметить, что древесный газ характеризуется низкой энергетической ценностью, если сравнивать его с природным. Авто на дровах будет неизбежно терять в динамических свойствах, что также следует учитывать водителю такого транспортного средства.

Некоторые предпочитают установку объемного газогенератора осуществлять на прицеп, а не на сам автомобиль. В таком случае и быстро разогнаться не получится, и маневрировать особо не выйдет. Прицеп будет являться своеобразным ограничителем.

Плюсы газогенераторов

Если говорить о плюсах автомобилей с газогенераторными двигателями, то на первый план сразу же выдвигается возможность использования возобновляемого топлива без предварительной обработки. К примеру, чтобы преобразовать биомассу в пригодное топливо, допустим в этанол или биодизель, расходуется энергия, в том числе и энергия СО2. Причем в некоторых случаях для преобразования расходуется больше энергии, чем содержит изначальное вещество. Что же касается газогенераторного двигателя на дровах, то он не требует затрат энергии для производства своего топлива. Разве что нужно порезать и нарубить саму древесину для удобства загрузки.

Если сравнивать авто с генератором газа и электромобилем, то можно выделить такое преимущество: отсутствие необходимости в мощном химическом источнике энергии — аккумуляторе. Недостаток таких химических аккумуляторов в том, что у них есть свойство саморазрядки, а потому перед эксплуатацией такого авто его нужно не забывать заряжать. Если говорить об устройствах, генерирующих газ, то они сами по себе являются «натуральными» аккумуляторами.

При правильной сборке генератора газа и его работе в автомобиле, он будет значительно меньше засорять окружающую среду, чем любой бензиновый или дизельный двигатель. Конечно, если сравнивать с электромобилем, который вовсе не создает выбросов в атмосферу, газогенератор проигрывает. Однако для зарядки электрических авто требуется много энергии, а она все еще добывается традиционными способами, сильно загрязняющими воздух.

Минусы газогенераторов

Несмотря на определенные преимущества таких установок, их монтаж все еще остается очень индивидуальным решением и не самым оптимальным. Сама по себе установка, генерирующая газ, занимает много места, а весит она несколько сотен килограммов. При этом всю эту громоздкую конструкцию придется перевозить с собой. Большие габариты газовой установки обусловлены тем, что древесный газ характеризуется низким коэффициентом удельной энергии. Для примера можно сравнить удельную энергетическую ценность древесного газа, которая составляет 5,7 МДж/кг, с энергией, выделяющейся при сгорании бензина — 44 МДж/кг, или 56 МДж/кг — результатом сгорания природного газа.

Работа автомобиля на газогенераторе

При эксплуатации такого газового двигателя не получится достичь скорости и ускорения, возможных при использовании бензинового аналога. Проблема заключается в составе древесного газа. Он на 50 % состоит из азота, на 20 % из окиси углерода; оставшиеся 18 % — водород, 8 % — двуокись углерода, 4 % — метан. Азот, который занимает половину удельной массы газа, вовсе не способен поддерживать горение, а соединения на основе углерода снижают эффективность горения. Большое количества азота уменьшает общую мощность такого генератора примерно на 30-50 процентов. Углерод снижает скорость горения газа, из-за чего не удается достичь высоких оборотов. Как следствие этого, понижаются динамические показатели автомобиля.

Применение генератора газа

Следует отметить еще одну небольшую проблему газогенераторных автомобилей, которая связана конкретно с их применением. Она связана с тем, что установке необходимо выйти на рабочую температуру, и только потом можно ехать. Время, требуемое для выхода на такую температуру, примерно 10 минут. Кроме этого, перед следующей загрузкой дров необходимо каждый раз лопаткой вычищать золу. Еще одна проблема в обслуживании — образование смол. Сейчас она стоит уже не так остро, как раньше, но все равно приходится очищать фильтры от загрязнений. Все это приводит к необходимости частого обслуживания генератора.

Если говорить в общем об уходе за таким устройством, то можно сказать так: появляется много хлопот с обслуживанием, которые полностью отсутствуют у бензиновых двигателей.

Генераторная установка для ЗИС-21

Как уже говорилось, основной принцип работы генератора — превращение твердого топлива в газ, поступающего в цилиндры. Газогенераторный ЗИС-21 в основном работал на таком топливе, как дуб и береза. Иногда использовался бурый вид угля, так как он был наименее гигроскопичным и давал больше всего газа на выходе.

Что касается конструкции типового генератора газа для ЗИС-21, то состоял он из следующих элементов: непосредственно самого газогенератора, охладителя-очистителя, тонкого очистителя, смесителя и электрического вентилятора.

Работа установки на ЗИС

В верхней части генератора располагался бункер, в который загружалось твердое топливо. Непосредственно под самим бункером располагался топливник. Здесь осуществлялось сжигание древесины. По мере того как сгорало старое топливо, осуществлялась «автоматическая подача» новой древесины. На деле же она просто падала из бункера в топливник под собственным весом, когда освобождалось место. Сама газогенерирующая установка располагалась с левого борта автомобиля.

В этом же топливнике происходило и образование окиси углерода из-за протягивания воздуха сквозь горящее топливо. Просасывание кислорода происходило либо за счет разрежения в цилиндрах, либо за счет работы электрического вентилятора. Эти методы являлись принудительными, но были установки и с естественной тягой воздуха. Однако в таком случае на подготовку к запуску могло уйти до часа времени.

Под топливником располагался зольник, как в любой обычной печи. Здесь скапливались продукты сгорания. Каждые 80-100 км было необходимо очищать его от золы. Однако здесь справедливо будет отметить, что этот факт доставлял проблемы лишь водителю транспортного средства.

Путь газа в установке и очистка

Весь полученный в процессе сгорания дров газ поступал в рубашку, которая окружала бункер. Таким образом достигался подогрев этого отсека. Это было необходимо, чтобы предварительно просушить всю древесину, подготовленную для сжигания. Далее стоит отметить, что после выхода из генератора газ имел температуру примерно 110-140 градусов. Поэтому он должен был проходить через секции радиатора. Там он не только понижал свою температуру, но и попутно очищался от тяжелых химических примесей.

Что касается очистки, то она происходила таким образом. Секции очистителя-теплообменника представляли собой внутренние перфорированные трубы. Эта конструкция была схожа с нынешними выхлопными системами. Горячий газ сильно расширялся, из-за чего терял скорость течения. Проходя через лабиринты труб, он еще сильнее замедлялся. Примеси отсеивались от него и оставались на внутренних стенках наружных труб обменников тепла. После этого следовал тонкий очиститель.

Вывод

В конце можно подвести следующий итог. Характеристики газогенераторных двигателей достаточно слабые, если сравнивать их с бензиновыми. Установка имеет некоторые преимущества, однако она достаточно неудобна в эксплуатации, требует постоянного и тщательного ухода. Кроме того, она не позволяет развивать большую скорость и снижает маневренность. По этим причинам автомобили с такими газовыми генераторами не пользуются практически большой популярностью.

В поисках альтернативного источника энергии пришло понимание, что не обязательно добывать газ в шахтах, чтобы затем сжигать его в котлах и двигателях внутреннего сгорания, горючий газ можно добывать из отходов производства и древесины. Газогенератор или как его еще называют генератор газов путем сжигания местного топлива – дров, торфа, древесного угля, опилок и других отходов древесины, а также иногда других органических остатков способны выделять/генерировать горючие газы, такие как СО, СН4, Н2 и другие. Вариантов использования полученного газа несколько, но в любом случае в основу каждого устройства положен принцип газогенератора. О том, как работает газогенератор, из каких элементов он состоит, а также какие процессы проходят внутри него, мы расскажем в данной статье. Также рассмотрим варианты дальнейшего использования полученного газа и места, где можно устанавливать подобные агрегаты.

Итак, какие же существуют варианты использования газа, полученного в газогенераторе?

Первый – горючий газ направляется к газовой плите на кухне и используется для приготовления пищи. Второй – горючий газ сжигается сразу же в пиролизном котле отопления с газогенератором, соответственно, используется для отопления дома или теплиц. Кстати, подобные котлы могут называться газовым котлом на дровах, твердотопливным пиролизным котлом, газогенераторным котлом на дровах. Все они могут использоваться как для бытовых нужд, так и для отопления огромных производств и цехов или предприятий. Третий – горючий газ может направляться в двигатель внутреннего сгорания, который служит приводом насосной станции или генератора электроэнергии. Газовый генератор на дровах позволяет получать электроэнергию в тех регионах, где нет возможности провести линии электропередач, выполнить прокладку газопровода и затруднен подвоз газа в баллонах. Помимо автономности у газогенераторов есть и другие преимущества, которые мы раскроем ниже.

Преимущества и недостатки генераторов газа

В качестве примера рассмотрим преимущества и недостатки газогенераторных котлов отопления. Пиролизные котлы относятся к категории твердотопливных, но существенно отличаются от обычных печей на дровах или угле, где происходит обычный процесс сгорания топлива.

Преимущества газогенераторных котлов:

  • КПД газогенераторных котлов находится в диапазоне 80 – 95 %, в то время как КПД обычного твердотопливного котла редко превышает 60 %.
  • Регулируемый процесс горения в газогенераторном котле – одна закладка дров может гореть от 8 до 12 часов, для сравнения в обычном котле горение длится 3 – 5 часов. В газогенераторных котлах с верхним горением сгорание дров длится до 25 часов, а уголь может гореть 5 – 8 дней.
  • Топливо сгорает полностью, поэтому чистить зольник и газоход приходится не часто.
  • Благодаря тому, что процесс горения можно регулировать (мощность регулируется в диапазоне 30 – 100 %), работу котла можно автоматизировать, как например, газового или жидкотопливного.
  • Выброс вредных веществ в атмосферу из газогенератора минимален.
  • Газогенераторные котлы экономнее обычных.
  • Топливо для газогенераторов не обязательно должно быть подсушено до 20 % влажности, существуют модели котлов, в которых можно использовать древесину до 50 % влажности и даже свежесрубленную.
  • Возможность загрузки в котел неколотых поленьев до 1 м длиной и даже больше.

  • Помимо дров и отходов древесной промышленности в пиролизных котлах можно утилизировать резину, пластмассу и другие полимеры.
  • Высокая безопасность котла по сравнению с обычным твердотопливным котлом обеспечивается автоматикой и материалами, из которых изготовлен агрегат, а в особенности камеры сгорания.

Если говорить о газогенераторах, которые используются для производства электроэнергии, то они обладают точно такими же достоинствами, такими как экологичность, экономичность, высокий КПД, высокое октановое число 110 – 140, универсальность в плане используемого топлива и большая эффективность в зимнее время.

Недостатки газогенераторных котлов:

  • На газовый генератор цена в 1,5 – 2 раза выше, чем на обычный твердотопливный котел.
  • В большинстве своем газогенераторы энергозависимы, так как для подсоса воздуха используется вентилятор, но также существуют модели, которые могут работать и без электричества.
  • Если использовать газогенераторный котел на мощности ниже 50 %, то наблюдается нестабильное горение – как результат выпадение в осадок дёгтя, который скапливается в газоходе.
  • Температура обратки отопления не должна быть ниже 60 °С, иначе в газоходе будет выпадать конденсат.
  • Обычно газогенераторы требовательны к влажности топлива, но как уже писалось выше, есть модели, в которых можно сжигать даже свежесрубленную древесину.

Других существенных недостатков газогенераторов не выявлено.

Кстати, газогенераторы – не такое уж и новое изобретение. Еще в середине прошлого века, когда большая часть нефтяных ресурсов Германии шла на вооружение, в качестве топлива для автомобилей использовались дрова. Даже на грузовые автомобили устанавливались газогенераторы. Современные агрегаты не слишком далеко ушли в своей конструкции, но, тем не менее, основательно усовершенствованы.

Принцип работы газового генератора – газогенератора

В генераторе газов или газогенераторе из твердого топлива добывается горючий газ. Основной секрет заключается в том, что в камеру сгорания подается воздух, объема которого недостаточно для полного сгорания топлива, при этом соблюдается высокая температура порядка 1100 – 1400 °С. Полученный газ охлаждается и направляется к потребителю или двигателю внутреннего сгорания, если, например, планируется добывать электричество. Более детально принцип работы газогенератора рассмотрим ниже, уточнив какой процесс в каком элементе агрегата происходит.

Устройство газового генератора на древесине

Рассмотрим устройство газогенератора бытового назначения. Сразу хотелось бы отметить, что пиролизные котлы с газогенератором отличаются от предложенной схемы, так как сгорание газа происходит внутри котла во второй камере сгорания. Мы же рассмотрим лишь сам газогенератор, на выходе из которого получается горючий газ.

Схема газогенератора:

Корпус газогенератора изготовлен из листовой стали и имеет сварные швы. Самая распространенная форма корпуса – цилиндрическая, но она вполне может быть и прямоугольной. К нижней части корпуса приварено днище и ножки, на которых будет стоять газогенератор.

Бункер или камера заполнения служит для загрузки внутрь газогенератора топлива. Он также имеет цилиндрическую форму и изготовлен из малоуглеродистой стали. Бункер установлен внутри корпуса газогенератора и закреплен болтами. На крышке люка, ведущего в бункер, на кромках использован асбестовый уплотнитель или прокладка. Так как асбест запрещен для использования в жилых помещениях, то существуют модели газогенераторов, уплотнители крышки которой изготовлены из другого материала.

Камера сгорания находится в нижней части бункера и изготовлена из жаропрочной стали, иногда внутренняя поверхность камеры сгорания отделывается керамикой. В камере сгорания происходит горение топлива. В нижней ее части происходит крекинг смол, для чего там установлена горловина, изготовленная из жаропрочной хромистой стали. Между корпусом и горловиной находится прокладка – уплотнительный асбестовый шнур. В средней части камеры сгорания находятся фурмы для подачи воздуха. Фурмы представляют собой калиброванные отверстия, которые соединяются с воздухораспределительной коробкой, связанной с атмосферой. Фурмы и распределительная коробка также изготавливаются из жаропрочной стали. На выходе из воздухораспределительной коробки установлен обратный клапан, который препятствует выходу горючего газа из газогенератора. Чтобы повысить мощность двигателя или иметь возможность использовать дрова повышенной влажности (более 50 %), перед воздухораспределительной коробкой можно установить вентилятор, который будет нагнетать внутрь воздух.

Колосниковая решетка служит для того, чтобы поддерживать раскаленные угли. Она располагается в нижней части газогенератора. Через отверстия решетки зола от сгоревших углей проваливается в зольник. Чтобы колосниковую решетку можно было очищать от шлака, ее средняя часть сделана подвижной. Для поворота чугунных колосников предусмотрен специальный рычаг.

Загрузочные люки оснащены герметично закрывающимися крышками. Например, верхний загрузочный люк откидывается горизонтально и уплотнен асбестовым шнуром. В креплении крышки есть специальный амортизатор – рессора, которая приподнимает крышку в случае избыточного давления внутри камеры. Сбоку корпуса есть также два загрузочных люка: один сверху – для добавления топлива в зону восстановления, второй снизу – для удаления золы. Отбор газа производится в зоне восстановления, поэтому чаще всего в верхней части газогенератора, но также возможно отведение газа и из нижней части агрегата. Отбор газа производится через патрубок, к которому приварены трубы газопровода. Не обязательно сразу же выводить газ за пределы корпуса газогенератора, пока он горячий, его можно использовать для подогрева и подсушивания дров или другого топлива в камере загрузки. Для этого отводящий газопровод проводится по кольцевой вокруг камеры, между корпусом газогенератора и бункером.

Фильтр «Циклон» и фильтр тонкой очистки располагаются за корпусом газогенератора. Они изготовлены из труб, наполненных фильтрующими элементами.

Прежде чем поступить в фильтр тонкой очистки, газ проходит через охладитель. А после фильтра тонкой очистки очищенный газ поступает в смеситель, где смешивается с воздухом. И только затем газо-воздушная смесь поступает в двигатель внутреннего сгорания.

Более наглядно последовательность движения горючего газа, после того как он вышел из газогенератора, показана на схеме ниже.

Дрова или другое топливо горит в камере сгорания, окисляясь воздухом, поступающим в камеру сгорания через фурмы из воздухораспределительной коробки. Полученный горючий газ поступает в фильтр Циклон, где очищается. Затем охлаждается в фильтре грубой очистки. Затем уже охлажденный газ поступает в фильтр тонкой очистки, а затем в смеситель. Из смесителя полученная смесь поступает в двигатель.

Процесс превращения топлива в газ

И все же: как из твердого топлива получается газ? Внутри газогенератора происходит некий процесс превращения, который разбит на несколько этапов, происходящих в разных зонах:

Зона подсушки находится в верхней части бункера. Здесь температура порядка 150 – 200 °С. Топливо подсушивается горячим газом, который движется по кольцевому трубопроводу, как было описано выше.

Зона сухой перегонки расположена в средней части бункера. Здесь без доступа воздуха и при температуре 300 – 500 °С топливо обугливается. Из древесины выделяются кислоты, смолы и другие элементы сухой перегонки.

Зона горения находится внизу камеры сгорания в зоне, где расположены фурмы, через которые поступает воздух. Здесь при подаче воздуха и температуре 1100 – 1300 °С обугленное топливо и элементы сухой перегонки сгорают, в результате чего образуются газы СО и СО2.

Зона восстановления находится выше зоны горения между колосниковой решеткой и зоной горения. Здесь газ СО2 поднимается вверх, проходит через раскаленный уголь, взаимодействует с углеродом (С) угля и на выходе образуется газ СО – окись углерода. В данном процессе также участвует влага из топлива, поэтому помимо СО образуется СО2 и Н2.

Зоны горения и восстановления называются зоной активной газификации. В результате генераторный газ состоит из нескольких компонентов:

  • Горючие газы: СО (оксид углерода), Н2 (водород), СН4 (метан) и СnНm (непредельные углеводороды без смол).
  • Балласт: СО2 (углекислый газ), О2 (кислород), N2 (азот), Н2О (вода).

Полученный газ охлаждается до температуры окружающей среды, затем очищается от муравьиной и уксусной кислоты, золы, взвешенных частиц и смешивается с воздухом.

Типы газогенераторов

Различают три типа газогенераторов: прямого процесса газогенерации, обратного и горизонтального.

Газогенераторы прямого процесса могут сжигать уголь полукокс и антрацит – топливо небитуминозное. Конструктивное отличие данного типа агрегатов в том, что воздух поступает через колосниковую решетку снизу, а забор газа производится сверху. В газогенераторах прямого процесса влага из топлива не попадает в зону горения, поэтому ее подводят специально. Обогащение генераторного газа водородом из воды повышает мощность генератора.

Газогенераторы опрокинутого или обращенного процесса предназначены для сжигания смолистого топлива – дров, древесного угля и отходов. Их конструктивное отличие в том, что воздух подается в среднюю часть – в зону горения, а забор газа производится ниже зоны горения – в зольнике. Обычно в агрегатах такого типа отобранный горячий газ используется для подогрева топлива в бункере.

Газогенераторы горизонтального или поперечного процесса газификации отличаются тем, что воздух в них подводится сбоку – в нижней части корпуса, причем подается он с высокой скоростью дутья через фурмы. Отбор газа производится напротив фурмы через газоотборную решетку. Активная зона газификации в газогенераторе горизонтального процесса очень мала и сосредоточена между концом фурмы и газоотборной решеткой. Время пуска такого генератора намного меньше, также он легко приспосабливается к смене режимов работы.

Место установки газового генератора

Газогенераторы и газогенераторные котлы отопления можно устанавливать как внутри жилых помещений, например, в подвалах и цокольных этажах, так и на улице.

Так называемые пеллетные котлы чаще всего устанавливают в доме, так как их загрузка не сопряжена с большим количеством мусора, а также мешки с пеллетами весят немного и могут храниться где-то рядом с котлом.

Газогенераторы на дровах, а в особенности на дровах большой длины, имеет смысл устанавливать на улице недалеко от места хранения дров. Так можно будет подвезти дрова на тачке непосредственно к котлу или газогенератору и не спускать их в подвал дома. Стоящий на улице котел избавляет от грязи и золы в подвале. Особенно это актуально для деревянных домов, где повышенные нормы пожаробезопасности. Внешний корпус котла изготавливается из нержавеющей стали, которая не подвержена коррозии. Также котлы теплоизолированы насыпной теплоизоляцией, чтобы температура окружающей среды минимально влияла на процесс газификации и скорость пуска котла. Система регулирования размещается в стальном кожухе под крышкой, чтобы на нее не попадали осадки. Дымовая труба имеет двойные стенки. Если вас интересует, как подключить газовый генератор, если он стоит на улице, то ответ прост – трубы прокладываются в земле, чтобы они минимально охлаждались, если это котел отопления. Трубы отопления подходят к котлу снизу, а сам котел устанавливается так, чтобы при длительных перерывах в использовании он не замерзал.

Кстати, как уже отмечалось, длительность процесса горения топлива в котле может быть от 12 часов и достигать 25 часов. В зависимости от мощности котла и площади отапливаемого помещения, его придется топить раз в два дня, а иногда и раз в неделю. Чтобы сохранить вырабатываемое котлом тепло на столь длительный период, используется теплоаккумулятор.

Дровяной газовый генератор своими руками

В том чтобы изготовить газогенератор своими руками, нет ничего сверхсложного. Многие используют такой агрегат для бытовых нужд или устанавливают на автомобиль. Перед тем как начать изготавливать газогенератор самостоятельно, необходимо ознакомиться с принципом его действия и выбрать подходящую для себя схему работы.

Понадобятся – бочка, трубы или старая батарея радиаторов, фильтры тонкой и грубой очистки газа, вентилятор. С другой стороны набор элементов может быть самым разным, все зависит от фантазии исполнителя.

Ниже посмотрите видео пример газогенератора самостоятельного изготовления.

Схема газогенратора:

В интернете можно найти как фото, так и чертежи по монтажу газовых генераторов и пиролизных котлов. Есть даже умельцы, которые берут за основу готовый проверенный котел и полностью повторяют его в домашних условиях. Получается дешевле намного.

Схема газогенераторного котла:

Отличие пиролизного котла от обычного газогенератора в том, что он состоит из двух камер сгорания: в одной сгорает топливо и образуется газ, а в другой – сгорает газ и находится теплообменник. Устройство и принцип работы газогенератора мы уже рассмотрели, добавьте в него только вторую камеру сгорания, которая должна располагаться вверху, и теплообменник сверху. Иногда теплообменник располагают сбоку. Также не забудьте о разных типах газогенераторов, так что вторая камера сгорания может находиться не только сверху.

При сборе дымохода постарайтесь собирать его в последовательности, обратной движению дыма, так на его стенках будет меньше оседать всякой гадости. Сам дымоход лучше сделать легкоразбираемым, чтобы его можно было легко и быстро чистить. Пространство вокруг котла отопления должно быть свободным, так как он нагревается в процессе работы. После монтажа котла придется изучить его «повадки» и подобрать оптимальный для себя режим работы, при котором сгорают все смолы.

Хотелось бы отметить, что газогенератор может рассматриваться не только как сжигатель полезной древесины, но и как утилизатор отходов. В нем можно сжигать остатки линолеума, пакетов, мешков, резины, пластиковых бутылок и другого бытового мусора.

Оговоримся сразу: если автомобиль ездит на дровах, это не значит, что он — паровоз без рельсов. Низкий КПД паровой машины с ее отдельной топкой, котлом и цилиндрами двойного-тройного расширения оставил паровые автомобили в числе забытой экзотики. А сегодня мы поговорим о «дровяном» транспорте с привычными нам ДВС, моторами, сжигающими топливо внутри себя.

Разумеется, затолкать дрова (или нечто подобное) в карбюратор вместо бензина пока еще никому не удавалось, а вот идея прямо на борту авто получать из древесины горючий газ и подавать его в цилиндры как топливо прижилась на долгие годы. Речь идет о газогенераторных автомобилях, машинах, чей классический ДВС работает на генераторном газе, который получают из древесины, органических брикетов, или угля. От привычного жидкого топлива, кстати, такие машины тоже не отказываются — они способны работать и на бензине.

Автомобиль с газогенераторной установкой. Фото wikipedia.org

Святая простота

Генераторный газ — это смесь газов, состоящая в основном из окиси углерода СО и водорода Н2. Получить такой газ можно, сжигая размещенную толстым слоем древесину в условиях ограниченного количества воздуха. На этом несложном принципе работает и автомобильный газогенератор, простой по сути агрегат, но громоздкий и конструктивно осложненный дополнительными системами.

Также, помимо собственно производства генераторного газа, автомобильная газогенераторная установка охлаждает его, очищает и смешивает с воздухом. Соответственно, конструктивно классическая установка включает в себя сам газогенератор, фильтры грубой и тонкой очистки, охладители, электровентилятор для ускорения процесса розжига и трубопроводы.

НПЗ вожу с собой

Простейший газогенератор имеет вид вертикального цилиндра, в который почти доверху загружается топливо — дрова, уголь, торф, прессованные пеллеты и т.п. Зона горения расположена внизу, именно здесь, в нижнем слое горящего топлива создается высокая температура (до 1 500 градусов по Цельсию), необходимая для выделения из более верхних слоев будущих компонентов топливной смеси — окиси углерода СО и водорода Н2. Далее горячая смесь этих газов поступает в охладитель, который снижает температуру, повышая таким образом удельную калорийность газа. Этот довольно крупный узел обычно приходилось помещать под кузовом машины. Расположенный следом по ходу газа фильтр-очиститель избавляет будущую топливную смесь от примесей и золы. Далее газ направляется в смеситель, где соединяется с воздухом, и окончательно приготовленная смесь направляется в камеру сгорания двигателя автомобиля.

Схема автомобиля ЗИС-21 с газогенератором

Как видите, система производства топлива прямо на борту грузовика или легковушки занимала довольно много места и немало весила. Но игра стоила свеч. Благодаря собственному — и к тому же дармовому — топливу свой автономный транспорт могли себе позволить предприятия, расположенные за сотни и тысячи километров от баз снабжения ГСМ. Это достоинство долго не могло затмить все недостатки газогенераторных автомобилей, а их было немало:

— существенное сокращение пробега на одной заправке;
— снижение грузоподъемности автомобиля на 150-400 кг;
— уменьшение полезного объема кузова;
— хлопотный процесс «дозаправки» газового генератора;
— дополнительный комплекс регламентных сервисных работ;
— запуск генератора занимает от 10-15 минут;
— существенное снижение мощности двигателя.

ЗиС 150УМ, опытная модель с газогенераторной установкой НАМИ 015УМ

В тайге заправок нет

Древесина всегда являлась основным топливом для газогенераторных автомобилей. В первую очередь, конечно, там, где дров в избытке, — на лесозаготовках, в мебельном и строительном производстве. Традиционные технологии лесопереработки при промышленном использовании древесины в эпоху расцвета «газгенов» около 30% от массы леса отпускали в отходы. Их и использовали как автомобильное топливо. Интересно, что правилами эксплуатации отечественных «газгенов» строжайше запрещалось использование деловой древесины, так как и отходов лесной промышленности было с избытком. Для газогенераторов годились как мягкие, так и твердые породы дерева.

Единственное требование — отсутствие на чурках гнили. Как показали многочисленные исследования, проведенные в 30-е годы в Научном автотракторном институте СССР, лучше всего в качестве топлива подходят дуб, бук, ясень и береза. Чурки, которыми заправлялись котлы газогенераторов, чаще всего имели прямоугольную форму со стороной 5-6 сантиметров. Сельскохозяйственные отходы (солома, лузга, опилки, кора, шишки и пр.) прессовали в специальные брикеты и также «заправляли» ими газогенераторы.

Главным недостатком «газгенов», как мы уже говорили, можно считать малый пробег на одной заправке. Так, одной загрузки древесными чурками советским грузовикам (см. ниже) хватало не более чем на 80-85 км пробега. Учитывая, что «заправляться» руководство по эксплуатации рекомендует при опустошении бака на 50-60%, то и вовсе пробег между заправками сокращается до 40-50 км. Во-вторых, сама установка, вырабатывающая генераторный газ, весит несколько сотен килограммов. К тому же двигатели, работающие на таком газе, выдают на 30-35% меньше мощности, чем их бензиновые аналоги.

Доработка автомобилей под дрова

Для работы на генератором газе автомобили приходилось приспосабливать, но изменения не были серьезными и порой были доступны даже вне заводских условий. Во-первых, в моторах повышали степень сжатия, чтобы не так существенна была потеря мощности. В некоторых случаях для улучшения наполнения цилиндров двигателя применялся даже турбонаддув. На многие «газифицированные» авто устанавливался генератор электрооборудования с повышенной отдачей, поскольку для вдувания воздуха в топку использовался достаточно мощный электровентилятор.

Для сохранения тяговых характеристик, в особенности это касалось грузовиков, при снизившейся мощности двигателя передаточные числа трансмиссии делали более высокими. Скорость движения падала, но для автомобилей, использующихся в лесной глуши и прочих пустынных и отдаленных районах это не имело решающего значения. Чтобы компенсировать изменившуюся из-за тяжелого газогенератора развесовку, в некоторых машинах усиливали подвеску.

Помимо того, из-за громоздкости «газового» оборудования отчасти приходилось перекомпоновывать автомобиль: менять, сдвигать грузовую платформу или урезать кабину грузовика, отказываться от багажника, переносить выхлопную систему.

Золотая эра «газгена» в СССР и за границей

Эра расцвета газогенераторных автомобилей пришлась на 30-40-е года прошлого века. Одновременно в нескольких странах с большими потребностями в автомобилях и малыми разведанными запасами нефти (СССР, Германия, Швеция) инженеры крупных предприятий и научных институтов взялись за разработку автотранспорта на дровах. Советские специалисты больше преуспели в создании грузовых автомобилей.

С 1935 года и до самого начала Великой Отечественной войны на разных предприятиях Министерства лесной промышленности и ГУЛАГа (Главное Управление ЛАГерей, увы, реалии той поры) «полуторки» ГАЗ-АА и «трехтонки» ЗИС-5, а также автобусы на их базе переделывались для работы на дровах. Также отдельными партиями газогенераторные версии грузовиков производились самими заводами-изготовителями машин. Например, советские автоисторики приводят цифру 33 840 — столько было выпущено газогенераторных «полуторок» ГАЗ-42. Газогенераторных ЗИСов моделей ЗИС-13 и ЗИС-21 в Москве выпущено более 16 тыс. единиц.

За довоенное время советскими инженерами было создано более 300 различных вариантов газогенераторных установок, из которых 10 дошли до серийного производства. Во время войны серийными заводами были подготовлены чертежи упрощенных установок, которые могли изготавливаться на местах в автомастерских без применения сложного оборудования. По воспоминаниям жителей северных и северо-восточных регионов СССР, грузовики на дровах можно было встретить в глубинке вплоть до 70-х годов ХХ века.

В Германии во время Второй Мировой войны наблюдался острый дефицит бензина. КБ двух компаний (Volkswagen и Mercedes-Benz) получили задание разработать газогенераторные версии своих популярных компактных машин. Обе фирмы в довольно сжатые сроки справились с поставленной задачей. На конвейер встали Volkswagen Beetle и Mercedes-Benz 230. Интересно, что у серийных авто дополнительное оборудование даже не выступало за стандартные габариты «легковушек». В Volkswagen пошли еще дальше и создали опытный образец «дровяного» армейского Volkswagen Тур 82 («кюбельваген»).

Volkswagen Тур 82

Дровяные машины сегодня

К счастью, главное достоинство газогенераторных автомобилей — независимость от сети АЗС, сегодня стало малоактуальным. Однако в свете современных экологических веяний на первый план вышло другое достоинство автомобилей на дровах — работа на возобновляемом топливе без какой-либо его химической подготовки, без дополнительной траты энергии на производство топлива. Как показывают теоретические расчеты и практические испытания, мотор на дровах меньше вредит атмосфере своими выбросами, чем аналогичных двигатель, но уже работающий на бензине или солярке. Содержание выхлопных газов очень схоже с выбросами ДВС, работающих на природном газе.

И тем не менее тема с автомобилями на дровах утратила свою былую популярность. Забыть о газогенераторах не дают в основном инженеры-энтузиасты, которые ради экономии на топливе или в качестве эксперимента переоборудуют свои личные машины для работы на генераторном газе. На постсоветском пространстве есть удачные примеры «газгенов» на базе легковушек АЗЛК-2141 и ГАЗ-24, грузовика ГАЗ-52, микроавтобуса РАФ-2203 и пр. По словам конструкторов, их творения могут проезжать на одной заправке до 120 км со скоростью 80-90 км/ч.

К примеру, переведенный житомирскими инженерами в 2009 году на дрова ГАЗ-52 расходует около 50 кг древесных чурок на 100 км пробега. По словам конструкторов, подкидывать дровишки нужно каждые 75-80 км. Газогенераторная установка традиционно для грузовиков расположилась между кабиной и кузовом. После розжига топки должно пройти около 20 минут, прежде чем ГАЗ-52 сможет начинать движение (в первые минуты работы генератора выработанный им газ не имеет нужных горючих свойств). По расчетам разработчиков, 1 км на дровах обходится в 3-4 раза дешевле, чем на дизельном топливе или бензине.

Газогенераторная установка ГАЗ-52

Единственная на сегодняшний день страна, в которой массово используются автомобили на дровах, — это Северная Корея. В связи с тотальной мировой изоляцией там наблюдается определенный дефицит жидкого топлива. И дрова снова приходят на выручку тем, кто оказался в нелегком положении.

Принцип работы газогенератора на дровах для автомобиля

Если вы хотите узнать когда выйдет очень подробный видеокурс как самому сделать чтобы автомобиль ехал на дровах (древесине) который я сейчас готовлю — оставляйте в комментариях емаилы — я вас оповещу. Или напишите мне сюда [email protected]

В 1990-х годах водород рассматривали в качестве альтернативного топлива будущего. Затем большие надежды возлагались на биотопливо. Позже большое внимание привлекло развитие электрических технологий в автомобилестроении. Если и эта технология не получит дальнейшего продолжения (тому есть объективные предпосылки), тогда наше внимание вновь сможет переключиться на газогенераторные автомобили.

Несмотря на высокое развитие промышленных технологий, использование древесного газа в автомобилях, представляет интерес с экологической точки зрения, по сравнению с другими альтернативными видами топлива. Газификация древесины несколько более эффективна, по сравнения с обычным сжиганием древесины, так как при обычном сжигании теряется до 25 процентов содержащейся энергии. При использовании газогенератора в автомобиле возрастает потребление энергии в 1,5 раза по сравнению с автомобилем работающем на бензиновом топливе (включая потери на предварительный нагрев системы и увеличение веса самой машины). Если принять к сведению, что необходимая для нужд энергия транспортируется, а затем вырабатывается из нефти то и газификация древесины остается эффективна по сравнению с бензином. Так же следует учитывать, что древесина является возобновляемым источником энергии, а бензин нет.

Преимущества газогенераторных автомобилей

Самое главное преимущество газогенераторных автомобилей заключается в том, что в нем используется возобновляемое топливо без какой-либо предварительной обработки. А на преобразование биомассы в жидкое топливо, такое как этанол или биодизель, может расходоваться энергии (в том числе и СО2) больше, чем содержится в изначальном сырье. В газогенераторном автомобиле для производства топлива энергия не используется, за исключением порезки и рубки древесины.

Газогенераторный автомобиль не нуждается в мощных химических аккумуляторных батареях и это является преимуществом перед электромобилем. Химические аккумуляторы имеют свойство саморазряжаться и нужно не забывать их заряжать перед эксплуатацией. Устройства, вырабатывающие древесный газ являются, как бы, натуральными аккумуляторами. Отсутствует необходимость в высокотехнологичной обработке отработавших и неисправных химических аккумуляторных батарей. Отходами работы газогенераторной установки является зола, которая может быть использована в качестве удобрения.

Правильно сконструированный автомобильный газогенератор значительно меньше засоряет воздушное пространство, чем бензиновый или дизельный автомобиль.

Газификация древесины значительно чище, чем непосредственное сжигание древесины: выбросы в атмосферу сопоставимы с выбросами при сжигании природного газа. При эксплуатации электромобиль не засоряет атмосферу, но позже, для зарядки аккумуляторов нужно приложить энергию, которая, пока что добывается традиционным путем.

Недостатки газогенераторных автомобилей

Несмотря на многие преимущества в эксплуатации газогенераторных автомобилей, следует понимать, что это не самое оптимальное решение. Установка, производящая газ, занимает много места и весит несколько сотен килограммов – и весь этот «завод» приходится возить с собой и на себе. Газовое оборудование имеет большой размер из-за того, что древесный газ имеет низкую удельную энергию. Энергетическая ценность древесного газа составляет около 5,7 МДж / кг, по сравнению с 44 МДж / кг у бензина и 56 МДж / кг у природного газа.

При работе на газогенераторном газе не удается достигнуть скорости и ускорения, как на бензине. Так происходит потому, что древесный газ состоит примерно из 50 процентов азота, 20 процентов окиси углерода, 18 процентов водорода, 8 процентов двуокиси углерода и 4 процента метана. Азот не поддерживает горение, а углеродные соединения снижают горение газа. Из-за высокого содержания азота двигатель получает меньше топлива, что приводит к снижению мощности на 30-50 процентов. Из-за медленного горения газа практически не используются высокие обороты, и снижаются динамические характеристики автомобиля.

Автомобили с небольшим объемом двигателя тоже можно оборудовать генераторами древесного газа (например, Opel Kadett на рисунке выше), но все же лучше оснащать газогенераторами большие автомобили с мощными двигателями. На маломощных двигателях, в некоторых ситуациях, наблюдается сильная нехватка мощности и динамики двигателя.

Сама газогенераторная установка может быть изготовлена и меньшего размера для небольшого автомобиля, но это уменьшение не будет пропорциональным размеру автомобиля. Были сконструированы газогенераторы и для мотоциклов, но их габаритные размеры сопоставимы с мотоциклетной коляской. Хотя этот размер значительно меньше, чем устройства для автобуса, грузовика, поезда или корабля.

Удобство использования газогенераторного автомобиля

Еще одна известная проблема газогенераторных автомобилей заключается в том, что они не очень удобны в использовании (хотя и значительно улучшились по сравнению с технологиями, используемыми во время войны). Тем не менее, несмотря на улучшения, современному газогенератору требуется около 10 минут, чтобы выйти на рабочую температуру, поэтому не получится сесть в автомобиль и немедленно уехать.

Кроме того, перед каждой последующей заправкой необходимо извлечь лопаткой золу – отработку предыдущего горения. Образование смол уже не так проблематично, чем это было 70 лет назад, но и сейчас это очень ответственный момент, так как фильтры должны очищаться регулярно и качественно, что требует дополнительного частого обслуживания. В общем, газогенераторный автомобиль требует дополнительных хлопот, полностью отсутствующих в работе бензинового автомобиля.

Высокая концентрация смертельного угарного газа требует дополнительных мер предосторожности и контроля от возможной протечки в трубопроводе. Если установка находится в багажнике, то не следует экономить на датчике СО в салоне автомобиля. Нельзя запускать газогенераторную систему в помещении (гараже), так как при запуске и выходе на рабочий режим должно быть открытое пламя (рисунок слева).

Все транспортные средств, описанные выше, построены инженерами любителями. Можно предположить, если бы было решено выпускать газогенераторные автомобили профессионально в заводских условиях, то, скорее всего, многие недостатки были бы устранены, а преимуществ стало бы больше. Такие автомобили могли бы выглядеть более привлекательно.

Например, в автомобилях Volkswagen, выпускаемых в заводских условиях во время Второй мировой войны, весь газогенераторный механизм был скрыт под капотом. С передней стороны в капоте находился только люк для загрузки дров. Все остальные части установки не были видны.

Еще один вариант газогенераторного автомобиля выпускаемого в заводских условиях – Mercedes-Benz. Как видно на фотографии ниже, весь механизм газогенератора скрыт под капотом багажника.

К сожалению, увеличение использования древесного газа и биотоплива может привести к образованию новой проблемы. И массовое производство газогенераторных автомобилей может усугубить эту проблему. Если начать значительно увеличивать количество автомобилей, использующих древесный газ или биотопливо, то в таком же количестве начнут снижаться запасы деревьев, а сельскохозяйственные земли будут принесены в жертву для выращивания культур, перерабатываемых на биотопливо, а это может привести к образованию голода. Использование газогенераторной техники во Франции во время Второй мировой войны стало причиной резкого уменьшения лесных запасов. Так же и другие технологии производства биотоплива приводят к уменьшению выращивания полезных для человека растений.

Хотя, наличие газогенераторного автомобиля может привести к более умеренному его использованию:
прогревать в течении 10 минут газогенератор или использовать велосипед для перемещения в магазин за продуктами – скорее всего выбор будет сделан в пользу последнего;
рубить в течении 3-х часов дрова для поездки на пляж или воспользоваться поездом – вероятно выбор будет в пользу последнего.

Как бы там ни было, газогенераторные автомобили не могут равняться с бензиновыми и дизельными автомобилями. Только глобальная нехватка нефти или очень большое удорожание ее сможет заставить нас пересесть на газогенераторный автомобиль.

Газогенера́торный автомоби́ль — автомобиль, двигатель внутреннего сгорания которого получает в качестве топливной смеси газ, вырабатываемый газогенератором.

Содержание

Технологический процесс [ править | править код ]

В качестве топлива могут использоваться дрова, угольные брикеты, торф и т. п. Принцип работы газогенератора основан на неполном сгорании углерода. Углерод при сгорании может присоединить один атом кислорода или два, с образованием соответственно монооксида (угарный газ) и диоксида (углекислый газ). При неполном сгорании углерода выделяется практически треть энергии от величины полного сгорания. Таким образом, полученный газ обладает гораздо меньшей теплотой сгорания, чем исходное твёрдое топливо. Кроме того, в газогенераторе при газификации древесины, а также при газификации угля с добавлением воды (как правило в виде пара) идёт эндотермическая реакция между образующимся монооксидом углерода и водой с образованием водорода и углекислого газа. Эта реакция снижает температуру полученного газа и повышает КПД процесса до величины 75-80 %. В случае же если нет необходимости перед использованием охлаждать газ, то КПД газификации составит 100 % [ источник не указан 703 дня ] . То есть фактически будет осуществлено двухстадийное полное сжигание твёрдого топлива.

Калорийность полученного газа достаточно низкая вследствие разбавления его азотом. Но поскольку для его сгорания требуется значительно меньше воздуха, чем для сгорания углеводородов, то калорийность рабочей смеси (газ + воздух) лишь незначительно ниже чем у традиционных топливовоздушных смесей. Основной причиной снижения мощности транспортных двигателей используемых для работы на газе без переделки является уменьшение величины заряда рабочей смеси, поскольку добиться удовлетворительного охлаждения газа на подвижной технике затруднительно. Но эта проблема не имеет существенного значения для стационарных двигателей, где масса и габариты охладителя мало ограничены. На двигателях, специально изменённых или специально разработанных для работы на генераторном газе, посредством повышения степени сжатия и незначительного наддува газогенератора, достигаются равные с бензиновыми двигателями литровые мощности.

Газогенератор обычно применяется при наличии уже имеющихся ДВС (как бензиновых, так и дизельных) и отсутствии основного жидкого (бензин, солярка) топлива для них.

История [ править | править код ]

В 1799 году французский инженер Филипп Лебон открыл светильный газ и получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. В 1801 году Лебон взял патент на конструкцию газового двигателя, однако в 1804 году он был убит, не успев воплотить в жизнь своё изобретение.

В 1860 г. бельгийский официант и, по совместительству, инженер-любитель Этьен Ленуар создал и запатентовал двигатель внутреннего сгорания, работающий на светильном газе.

В 1862—1863 гг. газогенераторная силовая установка мощностью до 4 л.с. была установлена на восьмиместный открытый омнибус. КПД двухтактного двигателя Ленуара достигал всего 5 %. Разбогатев, Ленуар перестал работать над усовершенствованием своей машины, поэтому, когда на Парижской всемирной выставке 1878 г. публике был продемонстрирован четырёхтактный газовый двигатель немецкого инженера Николаса Отто с КПД 16 %, слава пионера газогенераторного двигателестроения, к сожалению, быстро померкла.

В 1883 г. английский инженер Э. Даусон впервые сформулировал концепцию сочетания газогенератора и двигателя внутреннего сгорания в едином блоке, который целиком мог быть установлен на транспортной или иной машине. Значение этой работы было настоль велико, что в течение некоторого времени полуводяной газогенератор повсеместно назывался «газом Даусона». Первый классический газогенераторный автомобиль, использующий в качестве топлива древесные чурки и древесный уголь, был построен Тейлором в 1900 г. во Франции (патент в России выдан в 1901 г.).

В 1891 году отставной лейтенант Российского флота Евгений Яковлев построил завод газовых и керосиновых двигателей в Санкт-Петербурге на Большой Спасской улице, однако конкуренцию с нефтяными и бензиновыми двигателями его продукция не выдержала.

В 1916 г. начались регулярные рейсы газогенераторного автобуса между Парижем и Руаном (протяжённость маршрута по разным данным составляла от 125 до 140 км).

В 1919 г. французский инженер Георг Имберт создал газогенератор прямоточного (обращённого) типа, в котором топливо и газифицирующий агент при газификации движутся в одном направлении. В 1921 был создан автомобиль с газогенератором на этом принципе. При этом древесина пиролизуется не в цилиндрах (как у Форда, Круппа или Порше), а в котле, где древесина «сжигалась» при недостатке кислорода (частичнозамещённый пиролиз), что являлось большим шагом вперед по сравнению с полукоксованием от Круппа. Это позволило настолько улучшить качество газогенераторов, что газогенераторные двигатели снова стали реальными конкурентами бензиновых и дизельных двигателей.

В Германии во время войны стали делать газогенераторы не только дровяные, но и на брикетах из буроугольной крошки и пыли, так как этого топлива там было достаточно много. Грузовики с газогенераторами ездили не быстро — 20 км в час — на низкокалорийном газе, в который превращались в газогенераторе дрова. В некоторых странах мира и в настоящее время используют такие автомобили (в очень небольших количествах), довольно много их в сельской местности Северной Кореи [1] .

В 1938 г. в Европе насчитывалось около 9 тыс. автомашин, работавших на газогенераторном горючем. К 1941 г. это количество увеличилось почти в 50 раз. В том числе в Германии их число достигло 300 тыс.

Первое в СССР испытание автомобиля на шасси ФИАТ-15 с газогенераторной установкой В. С. Наумова состоялось в 1928 году. В 1934 году проведён первый испытательный пробег газогенераторных автомобилей по маршруту Москва — Ленинград — Москва, в котором участвовали ГАЗ-АА и ЗИС-5 с установками, спроектированными в НАТИ [2] .

В СССР в 1936 г. было принято постановление СНК СССР о производстве газогенераторных автомобилей и тракторов.
В 1936 году выпущена первая партия газогенераторных грузовиков ЗИС-13, а затем — ЗИС-21 и на Горьковском заводе — ГАЗ-42. В начале 1941 года выпускались работавшие на древесных чурках газогенераторные установки для автомобилей ЗИС, тракторов ЧТЗ и ХТЗ. Они имели существенные недостатки: небольшую мощность, быстрый износ металла, заводские дефекты, приводившие к большим простоям. Однако газогенераторные автомобили и трактора стали большим плюсом во время Великой Отечественной войны — они активно использовались в тылу.

В трудные годы войны все машины Колымы были переведены на газогенераторное топливо, или, проще говоря, на обыкновенную деревянную чурку. Были специальные комбинаты по заготовке и сушке «чурочки» — так ласково называли её шофёры. Уходя в рейс, водитель брал шесть-восемь мешков чурки, которые по мере необходимости засыпал в специальный бункер. Дерево сгорало, образовавшийся газ «двигал» машину.

Ясное дело, что «газген» появился не от хорошей жизни — не хватало бензина. Первая конструкция газогенераторного устройства была неудачной… Рационализаторы Аткинской автобазы решили заставить «газген» работать лучше. И они добились своего: сделали надёжным «газген» на трассе, грузоподъёмность его повысили до семи тонн. А опытные шофёры на такую машину брали прицепы до восьми тонн. На ВДНХ в 1945 году колымские «газгены» заняли первое место.

В поисках альтернативного источника энергии пришло понимание, что не обязательно добывать газ в шахтах, чтобы затем сжигать его в котлах и двигателях внутреннего сгорания, горючий газ можно добывать из отходов производства и древесины. Газогенератор или как его еще называют генератор газов путем сжигания местного топлива – дров, торфа, древесного угля, опилок и других отходов древесины, а также иногда других органических остатков способны выделять/генерировать горючие газы, такие как СО, СН4, Н2 и другие. Вариантов использования полученного газа несколько, но в любом случае в основу каждого устройства положен принцип газогенератора. О том, как работает газогенератор, из каких элементов он состоит, а также какие процессы проходят внутри него, мы расскажем в данной статье. Также рассмотрим варианты дальнейшего использования полученного газа и места, где можно устанавливать подобные агрегаты.

Итак, какие же существуют варианты использования газа, полученного в газогенераторе?

Первый – горючий газ направляется к газовой плите на кухне и используется для приготовления пищи. Второй – горючий газ сжигается сразу же в пиролизном котле отопления с газогенератором, соответственно, используется для отопления дома или теплиц. Кстати, подобные котлы могут называться газовым котлом на дровах, твердотопливным пиролизным котлом, газогенераторным котлом на дровах. Все они могут использоваться как для бытовых нужд, так и для отопления огромных производств и цехов или предприятий. Третий – горючий газ может направляться в двигатель внутреннего сгорания, который служит приводом насосной станции или генератора электроэнергии. Газовый генератор на дровах позволяет получать электроэнергию в тех регионах, где нет возможности провести линии электропередач, выполнить прокладку газопровода и затруднен подвоз газа в баллонах. Помимо автономности у газогенераторов есть и другие преимущества, которые мы раскроем ниже.

Преимущества и недостатки генераторов газа

В качестве примера рассмотрим преимущества и недостатки газогенераторных котлов отопления. Пиролизные котлы относятся к категории твердотопливных, но существенно отличаются от обычных печей на дровах или угле, где происходит обычный процесс сгорания топлива.

Преимущества газогенераторных котлов:

  • КПД газогенераторных котлов находится в диапазоне 80 – 95 %, в то время как КПД обычного твердотопливного котла редко превышает 60 %.
  • Регулируемый процесс горения в газогенераторном котле – одна закладка дров может гореть от 8 до 12 часов, для сравнения в обычном котле горение длится 3 – 5 часов. В газогенераторных котлах с верхним горением сгорание дров длится до 25 часов, а уголь может гореть 5 – 8 дней.
  • Топливо сгорает полностью, поэтому чистить зольник и газоход приходится не часто.
  • Благодаря тому, что процесс горения можно регулировать (мощность регулируется в диапазоне 30 – 100 %), работу котла можно автоматизировать, как например, газового или жидкотопливного.
  • Выброс вредных веществ в атмосферу из газогенератора минимален.
  • Газогенераторные котлы экономнее обычных.
  • Топливо для газогенераторов не обязательно должно быть подсушено до 20 % влажности, существуют модели котлов, в которых можно использовать древесину до 50 % влажности и даже свежесрубленную.
  • Возможность загрузки в котел неколотых поленьев до 1 м длиной и даже больше.

  • Помимо дров и отходов древесной промышленности в пиролизных котлах можно утилизировать резину, пластмассу и другие полимеры.
  • Высокая безопасность котла по сравнению с обычным твердотопливным котлом обеспечивается автоматикой и материалами, из которых изготовлен агрегат, а в особенности камеры сгорания.

Если говорить о газогенераторах, которые используются для производства электроэнергии, то они обладают точно такими же достоинствами, такими как экологичность, экономичность, высокий КПД, высокое октановое число 110 – 140, универсальность в плане используемого топлива и большая эффективность в зимнее время.

Недостатки газогенераторных котлов:

  • На газовый генератор цена в 1,5 – 2 раза выше, чем на обычный твердотопливный котел.
  • В большинстве своем газогенераторы энергозависимы, так как для подсоса воздуха используется вентилятор, но также существуют модели, которые могут работать и без электричества.
  • Если использовать газогенераторный котел на мощности ниже 50 %, то наблюдается нестабильное горение – как результат выпадение в осадок дёгтя, который скапливается в газоходе.
  • Температура обратки отопления не должна быть ниже 60 °С, иначе в газоходе будет выпадать конденсат.
  • Обычно газогенераторы требовательны к влажности топлива, но как уже писалось выше, есть модели, в которых можно сжигать даже свежесрубленную древесину.

Других существенных недостатков газогенераторов не выявлено.

Кстати, газогенераторы – не такое уж и новое изобретение. Еще в середине прошлого века, когда большая часть нефтяных ресурсов Германии шла на вооружение, в качестве топлива для автомобилей использовались дрова. Даже на грузовые автомобили устанавливались газогенераторы. Современные агрегаты не слишком далеко ушли в своей конструкции, но, тем не менее, основательно усовершенствованы.

Принцип работы газового генератора – газогенератора

В генераторе газов или газогенераторе из твердого топлива добывается горючий газ. Основной секрет заключается в том, что в камеру сгорания подается воздух, объема которого недостаточно для полного сгорания топлива, при этом соблюдается высокая температура порядка 1100 – 1400 °С. Полученный газ охлаждается и направляется к потребителю или двигателю внутреннего сгорания, если, например, планируется добывать электричество. Более детально принцип работы газогенератора рассмотрим ниже, уточнив какой процесс в каком элементе агрегата происходит.

Устройство газового генератора на древесине

Рассмотрим устройство газогенератора бытового назначения. Сразу хотелось бы отметить, что пиролизные котлы с газогенератором отличаются от предложенной схемы, так как сгорание газа происходит внутри котла во второй камере сгорания. Мы же рассмотрим лишь сам газогенератор, на выходе из которого получается горючий газ.

Схема газогенератора:

Корпус газогенератора изготовлен из листовой стали и имеет сварные швы. Самая распространенная форма корпуса – цилиндрическая, но она вполне может быть и прямоугольной. К нижней части корпуса приварено днище и ножки, на которых будет стоять газогенератор.

Бункер или камера заполнения служит для загрузки внутрь газогенератора топлива. Он также имеет цилиндрическую форму и изготовлен из малоуглеродистой стали. Бункер установлен внутри корпуса газогенератора и закреплен болтами. На крышке люка, ведущего в бункер, на кромках использован асбестовый уплотнитель или прокладка. Так как асбест запрещен для использования в жилых помещениях, то существуют модели газогенераторов, уплотнители крышки которой изготовлены из другого материала.

Камера сгорания находится в нижней части бункера и изготовлена из жаропрочной стали, иногда внутренняя поверхность камеры сгорания отделывается керамикой. В камере сгорания происходит горение топлива. В нижней ее части происходит крекинг смол, для чего там установлена горловина, изготовленная из жаропрочной хромистой стали. Между корпусом и горловиной находится прокладка – уплотнительный асбестовый шнур. В средней части камеры сгорания находятся фурмы для подачи воздуха. Фурмы представляют собой калиброванные отверстия, которые соединяются с воздухораспределительной коробкой, связанной с атмосферой. Фурмы и распределительная коробка также изготавливаются из жаропрочной стали. На выходе из воздухораспределительной коробки установлен обратный клапан, который препятствует выходу горючего газа из газогенератора. Чтобы повысить мощность двигателя или иметь возможность использовать дрова повышенной влажности (более 50 %), перед воздухораспределительной коробкой можно установить вентилятор, который будет нагнетать внутрь воздух.

Колосниковая решетка служит для того, чтобы поддерживать раскаленные угли. Она располагается в нижней части газогенератора. Через отверстия решетки зола от сгоревших углей проваливается в зольник. Чтобы колосниковую решетку можно было очищать от шлака, ее средняя часть сделана подвижной. Для поворота чугунных колосников предусмотрен специальный рычаг.

Загрузочные люки оснащены герметично закрывающимися крышками. Например, верхний загрузочный люк откидывается горизонтально и уплотнен асбестовым шнуром. В креплении крышки есть специальный амортизатор – рессора, которая приподнимает крышку в случае избыточного давления внутри камеры. Сбоку корпуса есть также два загрузочных люка: один сверху – для добавления топлива в зону восстановления, второй снизу – для удаления золы. Отбор газа производится в зоне восстановления, поэтому чаще всего в верхней части газогенератора, но также возможно отведение газа и из нижней части агрегата. Отбор газа производится через патрубок, к которому приварены трубы газопровода. Не обязательно сразу же выводить газ за пределы корпуса газогенератора, пока он горячий, его можно использовать для подогрева и подсушивания дров или другого топлива в камере загрузки. Для этого отводящий газопровод проводится по кольцевой вокруг камеры, между корпусом газогенератора и бункером.

Фильтр «Циклон» и фильтр тонкой очистки располагаются за корпусом газогенератора. Они изготовлены из труб, наполненных фильтрующими элементами.

Прежде чем поступить в фильтр тонкой очистки, газ проходит через охладитель. А после фильтра тонкой очистки очищенный газ поступает в смеситель, где смешивается с воздухом. И только затем газо-воздушная смесь поступает в двигатель внутреннего сгорания.

Более наглядно последовательность движения горючего газа, после того как он вышел из газогенератора, показана на схеме ниже.

Дрова или другое топливо горит в камере сгорания, окисляясь воздухом, поступающим в камеру сгорания через фурмы из воздухораспределительной коробки. Полученный горючий газ поступает в фильтр Циклон, где очищается. Затем охлаждается в фильтре грубой очистки. Затем уже охлажденный газ поступает в фильтр тонкой очистки, а затем в смеситель. Из смесителя полученная смесь поступает в двигатель.

Процесс превращения топлива в газ

И все же: как из твердого топлива получается газ? Внутри газогенератора происходит некий процесс превращения, который разбит на несколько этапов, происходящих в разных зонах:

Зона подсушки находится в верхней части бункера. Здесь температура порядка 150 – 200 °С. Топливо подсушивается горячим газом, который движется по кольцевому трубопроводу, как было описано выше.

Зона сухой перегонки расположена в средней части бункера. Здесь без доступа воздуха и при температуре 300 – 500 °С топливо обугливается. Из древесины выделяются кислоты, смолы и другие элементы сухой перегонки.

Зона горения находится внизу камеры сгорания в зоне, где расположены фурмы, через которые поступает воздух. Здесь при подаче воздуха и температуре 1100 – 1300 °С обугленное топливо и элементы сухой перегонки сгорают, в результате чего образуются газы СО и СО2.

Зона восстановления находится выше зоны горения между колосниковой решеткой и зоной горения. Здесь газ СО2 поднимается вверх, проходит через раскаленный уголь, взаимодействует с углеродом (С) угля и на выходе образуется газ СО – окись углерода. В данном процессе также участвует влага из топлива, поэтому помимо СО образуется СО2 и Н2.

Зоны горения и восстановления называются зоной активной газификации. В результате генераторный газ состоит из нескольких компонентов:

  • Горючие газы: СО (оксид углерода), Н2 (водород), СН4 (метан) и СnНm (непредельные углеводороды без смол).
  • Балласт: СО2 (углекислый газ), О2 (кислород), N2 (азот), Н2О (вода).

Полученный газ охлаждается до температуры окружающей среды, затем очищается от муравьиной и уксусной кислоты, золы, взвешенных частиц и смешивается с воздухом.

Типы газогенераторов

Различают три типа газогенераторов: прямого процесса газогенерации, обратного и горизонтального.

Газогенераторы прямого процесса могут сжигать уголь полукокс и антрацит – топливо небитуминозное. Конструктивное отличие данного типа агрегатов в том, что воздух поступает через колосниковую решетку снизу, а забор газа производится сверху. В газогенераторах прямого процесса влага из топлива не попадает в зону горения, поэтому ее подводят специально. Обогащение генераторного газа водородом из воды повышает мощность генератора.

Газогенераторы опрокинутого или обращенного процесса предназначены для сжигания смолистого топлива – дров, древесного угля и отходов. Их конструктивное отличие в том, что воздух подается в среднюю часть – в зону горения, а забор газа производится ниже зоны горения – в зольнике. Обычно в агрегатах такого типа отобранный горячий газ используется для подогрева топлива в бункере.

Газогенераторы горизонтального или поперечного процесса газификации отличаются тем, что воздух в них подводится сбоку – в нижней части корпуса, причем подается он с высокой скоростью дутья через фурмы. Отбор газа производится напротив фурмы через газоотборную решетку. Активная зона газификации в газогенераторе горизонтального процесса очень мала и сосредоточена между концом фурмы и газоотборной решеткой. Время пуска такого генератора намного меньше, также он легко приспосабливается к смене режимов работы.

Место установки газового генератора

Газогенераторы и газогенераторные котлы отопления можно устанавливать как внутри жилых помещений, например, в подвалах и цокольных этажах, так и на улице.

Так называемые пеллетные котлы чаще всего устанавливают в доме, так как их загрузка не сопряжена с большим количеством мусора, а также мешки с пеллетами весят немного и могут храниться где-то рядом с котлом.

Газогенераторы на дровах, а в особенности на дровах большой длины, имеет смысл устанавливать на улице недалеко от места хранения дров. Так можно будет подвезти дрова на тачке непосредственно к котлу или газогенератору и не спускать их в подвал дома. Стоящий на улице котел избавляет от грязи и золы в подвале. Особенно это актуально для деревянных домов, где повышенные нормы пожаробезопасности. Внешний корпус котла изготавливается из нержавеющей стали, которая не подвержена коррозии. Также котлы теплоизолированы насыпной теплоизоляцией, чтобы температура окружающей среды минимально влияла на процесс газификации и скорость пуска котла. Система регулирования размещается в стальном кожухе под крышкой, чтобы на нее не попадали осадки. Дымовая труба имеет двойные стенки. Если вас интересует, как подключить газовый генератор, если он стоит на улице, то ответ прост – трубы прокладываются в земле, чтобы они минимально охлаждались, если это котел отопления. Трубы отопления подходят к котлу снизу, а сам котел устанавливается так, чтобы при длительных перерывах в использовании он не замерзал.

Кстати, как уже отмечалось, длительность процесса горения топлива в котле может быть от 12 часов и достигать 25 часов. В зависимости от мощности котла и площади отапливаемого помещения, его придется топить раз в два дня, а иногда и раз в неделю. Чтобы сохранить вырабатываемое котлом тепло на столь длительный период, используется теплоаккумулятор.

Дровяной газовый генератор своими руками

В том чтобы изготовить газогенератор своими руками, нет ничего сверхсложного. Многие используют такой агрегат для бытовых нужд или устанавливают на автомобиль. Перед тем как начать изготавливать газогенератор самостоятельно, необходимо ознакомиться с принципом его действия и выбрать подходящую для себя схему работы.

Понадобятся – бочка, трубы или старая батарея радиаторов, фильтры тонкой и грубой очистки газа, вентилятор. С другой стороны набор элементов может быть самым разным, все зависит от фантазии исполнителя.

Ниже посмотрите видео пример газогенератора самостоятельного изготовления.

Схема газогенратора:

В интернете можно найти как фото, так и чертежи по монтажу газовых генераторов и пиролизных котлов. Есть даже умельцы, которые берут за основу готовый проверенный котел и полностью повторяют его в домашних условиях. Получается дешевле намного.

Схема газогенераторного котла:

Отличие пиролизного котла от обычного газогенератора в том, что он состоит из двух камер сгорания: в одной сгорает топливо и образуется газ, а в другой – сгорает газ и находится теплообменник. Устройство и принцип работы газогенератора мы уже рассмотрели, добавьте в него только вторую камеру сгорания, которая должна располагаться вверху, и теплообменник сверху. Иногда теплообменник располагают сбоку. Также не забудьте о разных типах газогенераторов, так что вторая камера сгорания может находиться не только сверху.

При сборе дымохода постарайтесь собирать его в последовательности, обратной движению дыма, так на его стенках будет меньше оседать всякой гадости. Сам дымоход лучше сделать легкоразбираемым, чтобы его можно было легко и быстро чистить. Пространство вокруг котла отопления должно быть свободным, так как он нагревается в процессе работы. После монтажа котла придется изучить его «повадки» и подобрать оптимальный для себя режим работы, при котором сгорают все смолы.

Хотелось бы отметить, что газогенератор может рассматриваться не только как сжигатель полезной древесины, но и как утилизатор отходов. В нем можно сжигать остатки линолеума, пакетов, мешков, резины, пластиковых бутылок и другого бытового мусора.

Как сделать дешевый газогенератор своими руками, дельные советы

Желание сделать жизнь максимально комфортной заставляет искать способы добиться полной автономии своего жилья. В первую очередь подразумевается подключение к электросети. К сожалению, еще очень часто подача энергии осуществляется не на должном уровне, с перебоями и тогда приходится либо сидеть в темноте, либо искать альтернативные источники электричества.

Одним из вариантов является газогенератор, своими руками собрать его доступно не каждому, но вот купить модель промышленного производства могут все. Однако стоит такое оборудование отнюдь не дешево, что заставляет задуматься над идеей создания собственного агрегата. Постараемся убедиться в том, что это действительно выгодно.

Что же представляет собой данный агрегат

То, что оборудование этого класса привлекает все большее количество потребителей объясняется в первую очередь наиболее низкой ценой на топливо, если сравнивать с бензином и дизелем. Кроме того, работающие на газе генераторы являются одними из наиболее экологически чистых, что вполне соответствует требованиям современного покупателя.

Газогенератор

Есть отличия у этого агрегата и в конструктивном плане. Он состоит из следующих блоков:

  • Двигателя;
  • Альтернатора;
  • Технологической обвязки.

Наличие последнего узла, включающего в себя устройства управления и обслуживания, позволило добиться стабильной работы оборудования в соответствии с запросами потребителя. Многие модели имеют стабилизаторы выходного тока и микропроцессорные узлы, что гарантирует не только высокое качество вырабатываемой электроэнергии, но и возможность мониторинга работы двигателя. На сегодняшний день некоторые из газовых генераторов способны одновременно производить энергию и тепло. Именно они более всего интересуют современного потребителя.

Устройство и принцип работы генератора

Агрегаты этого класса обычно оснащаются обычным двигателем внутреннего сгорания. В нем происходит воспламенение и сжигание газовой смеси. При этом образуются газы, которые приводят в движение поршни двигателя и коленчатый вал, с которого вращение передается на устройство, вырабатывающее электричество.

Принцип работы прибора

Однако к газогенераторам для дома относятся и модели, работающие на твердом топливе. В конструктивном плане они состоят из двух основных блоков:

  • Корпуса;
  • Бункера сжигания.

Как сделать газовый генератор своими руками будет рассказано ниже. Естественно, что и принцип работы такого устройства будет отличаться. Чтобы понять, как функционирует этот агрегат, рассмотрим назначение каждого блока. Корпус обычно выполняется из стального листа и имеет форму цилиндра, хотя допускается и прямоугольная.

Нижний отсек– это приваренное днище с ножками для удобства монтажа. Внутри располагается камера заполнения в которую помещается топлива.

Она также выполняется из стали и по форме соответствует корпусу, к которому прикрепляется при помощи болтов. Сверху агрегат закрывается крышкой с асбестовым уплотнителем по краю. Если предполагается установка газогенератора, собранного своими руками, в помещении, то прокладка может быть выполнена из экологически безопасного материала.

В нижней части происходит сжигание топлива. Для ее изготовления применяется жаропрочная сталь. Она имеет горловину, используемую для крекинга смол. Она отделена от корпуса асбестовой прокладкой.

Средняя часть оснащена фурмами или калибровочными отверстиями. Через них осуществляется подача кислорода необходимого для поддержания процесса горения. Все детали камеры выполняются из жаропрочной стали.

Схема газового агрегата

Выход газа из пиролизного газогенератора, собранного своими руками, ограничивает специальный обратный клапан, который располагают на выходе. Перед ней допускается установка вентилятора, что позволит повысить мощность двигателя.

В нижней части устройства находится колосниковая решетка, где помещают раскаленные угли. Сгорая они превращаются в золу, которая ссыпается в зольник.

Загрузка топлива осуществляется через специальный люк, который также уплотнен и имеет амортизатор в креплении крышки. Он необходим для регулировки давления внутри камеры.

Но чтобы мотор самодельного газогенератора работал без сбоев газ, поступающий в него, проходит очистку и смешивается с воздухом. Для этого используются фильтры, установленные за корпусом агрегата. Они представляют собой трубу, со специальными элементами.

Виды газовых установок

Современный рынок силовых установок предлагает оборудование, работающее на газе трех основных типов:

  1. Прямого способа генерации;
  2. Обратного;
  3. Горизонтального.

Первые подходят для сжигания угля и полукокса. В таких агрегатах кислород поступает снизу, а забор газа выполняется сверху агрегата. Но так как в этих моделях влага из топлива не поступает в зону горения, то ее приходится подводить специально. Это позволяет повысить мощность устройства.

Агрегаты обращенного процесса – это идеальный вариант для сжигания отходов из древесины. В них подача воздуха осуществляется непосредственно в зону горения, а газ отбирается снизу.

Устройства поперечного способа отличаются высокоскоростной подачей воздуха черед фурмы в нижней части корпуса. Причем здесь же, только с противоположной стороны производится и отбор газа. Эти агрегаты отличаются минимальным временем пуска и хорошей приспосабливаемостью к смене режимов.

Схема силовой установки – для народных умельцев

Собрать такой агрегат собственноручно не так уж и сложно. Однако, прежде чем приступить к изготовлению газогенератора своими руками нужно ознакомиться с принципом действия агрегата, а также подобрать наиболее подходящую под ваши условия схему.

Конструкция установки и схема подключения

Для простейшего прибора вполне сгодятся предметы, которые несложно найти в каждом доме:

  • Бочка;
  • Трубы;
  • Радиатор;
  • Фильтры;
  • Вентилятор.

Этот набор может быть дополнен и другими элементами. Что и в какой последовательности собирать можно найти в интернете. Причем это не обязательно чертежи и фото, а чаще всего видео, на котором подробно показано и доступно объяснено, как собрать газогенератор своими силами на навозе, дровах и другом топливе. Если схема выбрана, то можно приступать непосредственно к сборке.

Инструкция по созданию

Любой агрегат состоит из корпуса, внутри которого располагаются основные узлы и механизмы. Не чуждо это и для газогенератора, собранного своими руками. Он также имеет корпус, в который помещены:

  • Бункер;
  • Отсек сгорания;
  • Воздухораспределительная часть;
  • Колосниковая решетка;
  • Патрубок;
  • Фильтры.

Корпус агрегата обычно выполняется из листового металла. Для удобства установки ко дну привариваются ножки. По форме конструкция может быть, как овальной, так и прямоугольной.

Делаем самостоятельно, этапы работ:

Бункер изготавливается из малоуглеродистой стали и крепится внутри агрегата. Он оснащается крышкой с уплотнителем из асбеста или другого материала. Низ устройства занимает камера сгорания. Для ее изготовления выбирают специальные марки стали, наиболее устойчивые к высоким температурам. К камере присоединяется горловина, которую от корпуса также отделяют изоляционным материалом.

Специалисты, которым не один раз приходилось собирать газогенераторы своими руками предлагают камеру сгорания выполнять из газового баллона.

Воздухораспределительная камера обычно располагается вне корпуса прибора. Причем на выходе из нее устанавливается обратный клапан, предназначенный для недопущения выхода газа через это отверстие. Перед коробкой располагают вентилятор.

Газовый генератор такой конструкции рассчитан на работу на дровах и отходах от отработки древесины, причем в качестве топлива могут использоваться даже свежесрубленные ветки.

Колосниковая решетка в газовом генераторе, собранном своими руками выполняется из чугуна, при этом средняя часть должна быть подвижной для упрощения процесса обслуживания. Но недостаточно только собрать генератор, нужно еще и правильно отрегулировать подачу воздуха в него, а также отвод газов.

Устанавливать такое оборудование можно как на улице, так и в цокольном помещении, обеспечив его хорошую вентиляцию.

«

машин, которые бегают по деревьям» Джона Гудмана (журнал Works That Work)

автор: Джона Гудман (3044 слова)

Машины, работающие на дровах, могут показаться фантастикой в ​​стиле стимпанк или одержимостью на заднем дворе какого-то сумасшедшего мастерицы, но в какой-то момент они были обычным явлением во многих частях Европы, и технология, на которой они построены, все еще находит практическое применение сегодня.

Фото на обложке: Иоганн Линелл на Volvo, который он и двое друзей установили на газогенератор.За 20 дней 2007 года они проехали 5420 километров по Швеции на энергии, вырабатываемой семью кубометрами древесины. (Фотография любезно предоставлена ​​Иоганном Линеллом.)

В глубине лесов континентальной Швеции Йохан Линелл останавливается, его двигатель не работает. Он и двое друзей выходят из машины и идут веером через деревья, возвращаясь с руками, полными еловых шишек и мертвого дерева. В задней части машины Линелл снимает с петель верх высокого стального ящика, который возвышается над отверстием в багажнике. Дым поднимается, и пламя следует за ним, когда он сбрасывает добытые дрова внутрь.Из нижней части заляпанной смолой стопки толстые сварные трубы карабкаются по кузову автомобиля и змейкой уходят в передний бампер, где они входят в двигатель, как трубки для кормления пациента. В считанные минуты машина оживает, плавно движется по массивной древесине.

На короткое время, 70 лет назад, почти все гражданские автомобили в Европе работали таким образом. По мере того как Вторая мировая война затягивалась, а бензина становилось все меньше, древесина стала основным альтернативным топливом для транспортных средств. К 1945 году около миллиона европейских автомобилей работали на газификации древесины с использованием модификаций, аналогичных модификациям Volvo Линелла.Принцип работы удивительно прост: сжигая бочку из дерева или угля до тех пор, пока она не разовьется до внутренней температуры от 900 ° до 1200 ° C (от 1650 ° до 2200 ° F), а затем ограничивая подачу воздуха в огонь, газификаторы производят горючий углерод. монооксид, который можно охлаждать, фильтровать и направлять непосредственно в двигатель обычного автомобиля.

Автомобиль с приводом от дерева был изобретен в 1905 году английской автомобильной компанией Thornycroft, но прошло еще 20 лет до того, как французский химик Жорж Имбер сделал практическую возможность путешествовать на древесном газе.Благодаря переработанной камере сгорания, в которой использовалось всасывание от двигателя для втягивания газа вниз через горячую сердцевину горящих поленьев, его модель могла создавать намного больше угарного газа, чем предыдущие версии. Это также обеспечивало устойчивое горение, так как гравитация и вибрация транспортного средства вытряхивали пепел из кучи, оседая на месте новое топливо. К 1930-м годам четыре европейских правительства активно исследовали газификаторы Имберта с целью их использования в общественном транспорте: политически нейтральные Швеция и Финляндия стремились достичь топливной автономии в нестабильном регионе; Италия Муссолини, находящаяся под торговым эмбарго Лиги Наций после вторжения в Эфиопию, искала источник топлива, альтернативный нефти; а нацистская Германия готовилась к войне.

Даже автомобили, работающие на древесном газе, нуждаются в инфраструктуре снабжения: в 1945 году в Финляндии было 70 деревообрабатывающих заводов, а в Германии были тысячи складов древесины, специально предназначенных для автомобильного топлива. Из 17 мест, где Линелл и его друзья останавливались за дровами во время поездки, только в четырех были готовые к употреблению, предварительно порубленные дрова.

Падение Германии в пропасть сюрреалистично задокументировано в сохранившихся экземплярах спонсируемого государством автомобильного журнала Motor Schau . И пронацистское пропагандистское, и банальное автомобильное издание, в его выпусках 1939 года представлены автогонщики с символикой СС, мотоциклы, тестирующие Вермахт, и украшенные свастикой митинги, посвященные автомобилю Kraft durch Freude или Volkswagen Beetle.В 1940 году, когда каждый ежемесячный выпуск объявляет о падении еще одной европейской столицы, начинают появляться статьи о транспортных средствах на древесном газе, рекламируя технологию как топливо национальной гордости, которое освободит Германию от зависимости от иностранных поставщиков. В период с 1941 по 1942 год, когда потребности военных привели к сокращению поставок нефти для гражданского населения Германии более чем на 50%, страницы Motor Schau заполнены растущей рекламой газификаторов, а также крепких алкогольных напитков.

«Древесный газ дешев, экономичен и избавляет вас от зависимости от бензина, сырой нефти и нефти.Так читает объявление Motor Schau , автомобильного журнала нацистской эпохи. Транспорт, работающий на древесном газе, особенно привлекает тоталитарных режимов, стремящихся к независимости от мировой торговли, и до сих пор используется в Северной Корее. (Из журнала Motor Schau , 1941 г.)

К 1943 году характерные высокие цилиндрические печи были обязательными на большинстве транспортных средств в странах, оккупированных нацистами, поскольку ресурсы жидкого топлива направлялись прямо в вооруженные силы, особенно в Люфтваффе.В 2013 году греческий механик Александрос Топалоглоу сказал исследователю Алексии Папазафейропулу, что, несмотря на ограничения военного времени, греки поддерживали активный рынок бензина на черном рынке, обманывая чиновников, зажигая газификаторы на своих автомобилях непосредственно перед приближением к немецким контрольно-пропускным пунктам. Когда Германия начала терять территорию в 1944 году, по крайней мере, пятьдесят танков Tiger были дооснащены древесно-газовыми установками, и наказания за езду на бензине без письменного разрешения регионального генерала — даже для военных — стали жесткими.

Адольф Гитлер осматривает автомобиль, работающий на древесном газе. Изначально опубликованное в выпуске журнала Motor Schau за 1941 год, изображение вышло над цитатой из нацистского лидера: «Эти автомобили по-прежнему будут иметь особое значение после войны, потому что рост автомобилизации будет означать, что у нас никогда не будет достаточно масла, что оставляет нас. зависит от импорта. Это родное топливо полезно для экономики страны ». (Из журнала« Motor Schau », 1941 г.)

Личные взгляды Гитлера на автомобили, работающие на древесном газе, можно прочесть в номере журнала Motor Schau за 1941 год, рядом с веселыми фотографиями Дер Фюрера на демонстрации газификаторов Mercedes-Benz.«Это автомобили, которые будут иметь особое значение после войны», — сказал он. «Нефть поступает из-за границы, но это топливо нашей родины». Четыре катастрофических года спустя автомобили-газификаторы Берлина действительно приобрели мрачный символизм. Жестокой зимой 1946 года они бесполезно ржавели на улицах, когда берлинцы крушили мебель и выкорчевывали деревья, отчаянно ища дрова в развалинах немецкой столицы.

Кажется, вам нравятся хорошие истории.

Подпишитесь на нашу нечастую рассылку, чтобы получать больше историй прямо на свой почтовый ящик.

В начале 2000-х, когда Линелл решил сделать свой собственный автомобиль на дровах и газе, он видел только один раз. Транспортные средства на древесном газе в Европе являются исключительной прерогативой любителей, и его единственным источником запчастей и информации было местное радио-шоу под названием Serk I Fin , или «Найди и найди». В эфире Линелл изложил свой план, и его сравнили с Инге Найман, пожилой слушательницей, которая пережила Вторую мировую войну и все еще имела элементы газогенератора, оставшиеся с того периода. Это был прорыв, поскольку, как это ни удивительно, в наличии было немного другого, хотя в 1945 году в Швеции было более 60 000 транспортных средств, работающих на дровах, включая лодки, автобусы, тракторы и четверть мотоциклов страны.

(Фото любезно предоставлено Иоганном Линеллом)

Сегодня любители делятся советами в Интернете, а современные технологии позволяют «лесорубам» во всем мире извлекать выгоду из опыта таких авторитетов, как финский Веса Микконен и голландский псевдоним «Голландец Джон» из Нидерландов. Однако создаваемые ими газификаторы по-прежнему имеют много общего со своими предшественниками времен Второй мировой войны и отличаются особой привередливостью, требующей глубокого знания их конструкции, причуд и темперамента.По словам Датча Джона, «единственный человек, который может водить машину, работающую на древесном газе, — это человек, который ее сделал».

Даже серийно выпускаемые версии 1940-х годов, такие как немецкий 3TO Opel Blitz Lastwagen 1943 года, поставлялись с толстыми иллюстрированными руководствами по эксплуатации, в которых подробно описывается, как каждую неделю Lastwagen необходимо очищать и тщательно промывать, а также каждый месяц его неплотный пробковый газовый фильтр. необходимо удалить, почистить и переустановить. Запуск двигателя, хотя и занимает 20 минут, в основном включает в себя поднесение спички к дровам, но контроль потоков газа и воздуха вокруг двигателя, что имеет решающее значение для таких задач, как движение в гору, пересечение долины или остановка более чем на три часа. , требует освоения сочетания четырех рычагов и ручки.Газификация производит значительные количества азота, инертного газа, который разбавляет топливную смесь, в результате чего автомобили, работающие на древесном газе, имеют малую мощность, и выжимать из них лучшее — путем разумной регулировки клапанов и вентиляционных отверстий — это такое же искусство как наука.

«Когда вы едете медленно, вы видите больше», — говорит Линелл. «Это похоже на то, как будто страна преображается в зависимости от вашей машины. Я почувствовал то же самое годом ранее, когда проехал 500 км (311 миль) на мопеде, который я переоборудовал для работы на этаноле.Вы видите совершенно новый мир ».

Однако нет причин, по которым технология газификации должна оставаться в прошлом веке. Именно поэтому финский энтузиаст работы с древесным газом Юха Сипиля построил самый передовой в мире автомобиль, работающий на древесном газе, El Kamina, модифицированный грузовик с полностью автоматизированным двигателем. система газификации, управляемая компьютером, встроенным в ее приборную панель. Хотя это всего лишь прототип, это автомобиль на древесном газе, которым может управлять кто угодно. Сипиля — больше, чем просто любитель; он твердо верит в возобновляемые источники энергии и в то, что люди могут жить «вне сети».Он также является основателем Volter Oy, энергетической компании, занимающейся исследованиями газификации древесины, а также создателем десятиэтажного экологического поселка Кемпеле, а с мая 2015 года — премьер-министром Финляндии.

В 2010 году финское общество провело бурную общественную дискуссию о возможном возвращении к заменителям топлива военного времени, особенно к газификации древесины. В 1945 году 80% автомобилей в Финляндии — 46 000 — работали на газификаторах, и только в 1944 году было потреблено более 2 000 000 м 3 (70 630 000 футов 3) древесины.Полный переход на систему транспортировки древесины произошел всего за два года. Теперь такие инновации, как El Kamina, показывают, что многие недостатки процесса можно преодолеть с помощью новых технологий. Что самое убедительное, Финляндия — одна из немногих стран в мире, где деревья могут быть действительно устойчивым источником топлива, с 23 миллионами гектаров (88 800 квадратных метров) бореальных круглых лесов и населением всего 5,5 миллиона человек.

Йохан Линелл чистит охладитель своего Вольво, работающего на древесном газе, который он сделал из старого стального дизельного бака.Охлаждение газа делает его более плотным и конденсирует воду из топливной смеси, так что на двигатель передается больше мощности. После использования Йохан обнаружил, что внутренняя часть холодильника будет покрыта загадочным кремообразным веществом. «Это напомнило мне вазелин». (Фото любезно предоставлено Иоганном Линеллом)

Ярно Хаапакоски, генеральный директор Volter Oy с 2011 года, объясняет, что семье из шести человек, живущей в образцовой деревне Кемпеле, которая снабжается энергией и обогревом от большой установки газификации древесины, требуется всего 20 м³ (706 футов³) древесины в год. .По данным Metla, Финского института лесных исследований, в финских лесах ежегодно производится 104,5 миллиона кубических метров новой древесины, чего почти достаточно для удовлетворения энергетических потребностей всех жителей Финляндии. Более того, сжигание деревьев — это «замкнутый углеродный цикл»: углекислый газ, выделяемый деревьями при сжигании, примерно равен углекислому газу, который они вытягивают из воздуха в процессе роста.

Есть и обратная сторона. Древесный газ — это в первую очередь окись углерода, а окись углерода не имеет запаха, легче воздуха и исключительно ядовита.При атмосферной концентрации всего 0,5% он может убить, а всего 0,03% достаточно, чтобы вызвать потерю сознания. В одном из инцидентов в Хельсинки во время войны были замечены пассажиры, садившиеся в ожидающее такси холодным днем. Через десять минут такси не двинулось с места, прохожие открыли двери и обнаружили пассажиров без сознания, отравленных утечкой газа в закрытый отсек автомобиля. Треть из примерно 25 000 жертв отравления угарным газом в военное время в Финляндии пострадали во время вождения своих автомобилей, что часто приводило к катастрофическим результатам, а подходы к обнаружению угарного газа во время войны зачастую были грубыми.Дания, например, установила мышей или канареек в клетках возле газогенераторов для проверки на наличие смертельных газов. Но сегодня Хаапакоски не беспокоится. По его словам, детекторы намного сложнее, а горелки могут быть построены с устройствами защиты от сбоев и аварийной сигнализации.

И это не первое возрождение древесного газа. Между возрождением этой технологии в Финляндии 21 века и ее расцветом в Европе военного времени интерес к технологиям резко возрос в 1970-е годы после глобального нефтяного кризиса. Некоторые интересы были оборонными, например, Швеция, разработавшая три типа аварийных газогенераторов, готовых к серийному производству во время кризиса.Но большая часть интереса возникла в развивающихся странах с наиболее острой потребностью: в сельских районах Азии, Африки и Латинской Америки.

Потенциал оказался огромным. Любые углеродные отходы могут быть газифицированы, будь то рисовая шелуха, пшеничная мякина, скорлупа грецких орехов, семена фруктов, опилки, солома, торф или кукурузные початки. Фильтры могут быть сделаны из масла, угля, пробки, воды, ткани, фарфоровой крошки или сизаля. А при наличии необходимого опыта можно построить эффективные газификаторы для автомобилей или электрогенераторов из бочек с нефтью и ржавых труб.Крупные газифицирующие электростанции были эффективны в определенных местах, таких как лесопилки в Сапире, Парагвае и Восточном мысе Южной Африки, сушилка для кокосовых орехов в Шри-Ланке, работающая на газифицированной кокосовой скорлупе, или несколько сотен небольших электростанций, работающих на газификации рисовой шелухи. заводы в Китае. Аварийные установки, такие как Power Pallet, генератор газификатора, разработанный в Калифорнии, недавно показали себя многообещающими в качестве средства оказания помощи при стихийных бедствиях в Либерии. Но в наши дни производство метана из сточных вод оказалось гораздо более успешным в качестве автономного альтернативного источника энергии.В бедных странах горючие твердые вещества, такие как скорлупа орехов и солома, по-прежнему могут быть товаром, даже если они дешевы, в то время как метан создается из отходов.

Йохан Линелл и его друзья Микаэль Андерберг и Мартин Йоханссон начали строительство своего Volvo, работающего на древесном газе, в начале 2007 года. К июлю он был готов, и они отправились в путешествие на дровах протяженностью 5420 км. Швеция. Поездка заняла 20 дней, несмотря на то, что максимальная скорость автомобиля составляла 90 км / ч (56 миль / ч), потому что остановки каждые 50 км (31 миль) для дозаправки их оригинального бака газификатора 1942 года замедляли прогресс.

Отчасти их маршрут был продиктован необходимостью найти лес. Собирать еловые шишки и поваленные ветром деревья можно только в экстренных случаях. Для эффективной газификации древесина должна состоять менее чем на 20% из воды, а это значит, что древесину необходимо тщательно высушить, прежде чем ее можно будет использовать. Влажная древесина не только снижает мощность двигателя за счет добавления пара в смесь и использования тепла для испарения; он также может вызвать «зависание древесины» из-за того, что горение будет настолько медленным, что древесина не сможет попасть в горелку. «Это похоже на мосты и не упадет туда, где огонь», — объясняет Линелл.«Центр становится холодным, процесс образования газа останавливается». Он также может распространять сильное тепло в неправильные части системы. «Если вам не повезло, — говорит Линелл, — это их плавит». А если вы вынуждены собирать корм, вы не можете просто использовать что-либо. «Если вы найдете сухое дерево, которое немного подсохло, вы можете использовать его, но это не может быть сосна, — говорит он, — это должна быть ель. Большая мертвая рождественская елка. Не то, что у тебя дома. Большой ». Газификаторы также не могут сжигать топливо всех форм и размеров.Куски дерева одинакового размера обеспечивают постоянную скорость горения, необходимую для предотвращения «падения давления», внезапной потери мощности. Во время своего путешествия по Швеции Линелл и его друзья буксировали трейлер с импровизированной машиной для рубки древесины, состоящей из бензопилы, поршня и двигателя старого автомобиля.

(Фото любезно предоставлено Иоганном Линеллом)

Поездка покинула Линелла с вопросами: «Я подумал:« Могу ли я что-нибудь сделать с этими знаниями? » Могу ли я получить прибыль? Начать бизнес? » Я понял, что газификация автомобилей не годится.Он функционирует, но требует больших затрат. В современном стиле жизни слишком много работы, слишком много времени и слишком грязно. Даже если бы у вас была инфраструктура, я не думаю, что люди будут ею пользоваться ». Однако сельскохозяйственные приложения выглядели многообещающими, главным образом потому, что« вы более стационарны — у вас может быть своя куча дров ». Линелл применил свои навыки, чтобы 68-летний трактор и переделали его для работы по деревьям, поваленным ветром. Он решил провести весь 2008 год, проживая самодостаточную, углеродно-нейтральную жизнь на своей семейной ферме в Даларне, Швеция, выращивая картофель, морковь, свеклу, репу и салат на своей новой машине.В конце концов, бизнес-плана не было, и он не получил прибыли. «Я просто взял старый трактор и немного дров в лесу и принялся за работу».

Детали конструкции древесного газогенератора

Обновление Примечание: 11 января 2009 г.

Если вы заинтересованы в создании газогенератора, обратите внимание, что, по нашему мнению, лучший способ начать работу — это набор для экспериментов с газификатором, произведенный Джимом Мейсоном из Allpowerlabs.Он содержит множество инновационных функций, и это устройство, с которым мы сейчас работаем. Информация о том, что мы делаем с нашим GEK, начинается с 68 тома нашего информационного бюллетеня / блога.

Детали конструкции генератора древесного газа

вместе с обзором реакций
, участвующих на каждой стадии процесса

& nbsp
Конструкция, которую мы создаем, называется «генератором с пониженной тягой», и с точки зрения конструкции ее можно описать как резервуар внутри резервуара в резервуаре.Ключевая цель на этом этапе проекта состоит в том, чтобы задействовать как можно больше «готовых» или, точнее, «из кучи металлолома» материалов. Нет ничего плохого в том, чтобы создавать компоненты с нуля, если это необходимо, но никакая конструкция такого уровня сложности, скорее всего, не даст оптимальной производительности в исходной форме, поэтому первая цель — получить начальное устройство и работать так быстро и дешево. , по возможности, а затем «кайдзен» оттуда. [ кайдзен — достижение совершенства дизайна за счет небольших, постепенных улучшений] Для внешней оболочки мы используем бочку с открытым верхом на 55 галлонов.Внутри него находится еще один барабан на 55 галлонов, который был разрезан, сжат и скреплен вместе, чтобы создать внутреннюю стенку, которая примерно на два дюйма меньше в диаметре, чем внешний барабан. Внутри генератора расположен теплообменник, в котором тепло выхлопных газов вырабатывает пиролитический газ из древесной стружки. Одна из целей проекта состоит в том, чтобы удерживать большую часть тепла внутри генератора, управляя начальной пиролитической фазой процесса преобразования, вместо того, чтобы нагревать окружающую среду вокруг генератора.[ пиролиз — для разложения соединения путем его нагревания в анаэробной атмосфере.] [ анаэробный — имеющий отношение к бескислородной среде.] Чтобы сохранить тепло реакции внутри активной зоны газогенератора, пространство между двумя барабанами будет заполнено литой огнеупорной изоляцией.
& nbsp
Самый внутренний барабан — это барабан гражданской обороны на 40 галлонов.Это часть резервуара, которая заполняется древесной стружкой. Этот резервуар образует «верхнюю зону» генератора — место пиролиза исходной древесины. То, что вы видите на картинке, — это крышка бочки с открытым верхом на 55 галлонов, в которой было вырезано круглое отверстие, размер которого идеально подходит для внутреннего бочки на 40 галлонов. По завершении этот внутренний реактор будет расположен внутри изолированной бочки объемом 55 галлонов, а стандартный зажим бочки обеспечит окончательное уплотнение. Пиролитический газ представляет собой смесь органических соединений, включая метан, метанол, этан, этанол, метилэтиловый эфир и множество смол и более тяжелых соединений, образующихся при расщеплении сахаров, целлюлозы и лигнинов в древесине под действием тепла.Этот газ будет гореть, но это топливо низкого качества, которое быстро забьет ваши трубопроводы, поскольку вода и смолы в газе конденсируются. Очень запутанно. Очень неудовлетворительно. Поэтому в генераторе происходят еще две операции: оксидация и редукция. Первая стадия процесса включает варку древесины для получения пиролитического газа, процесс, который начинается при температуре около 451 ° F и почти завершается при температуре около 800 ° F. Остается уголь.В большинстве автомобильных систем на древесном газе, использовавшихся во время Второй мировой войны, использовался древесный уголь вместо необработанной древесины, так что они могли пропустить пиролитическую фазу и минимизировать размер генератора. Чтобы сделать все это в одном генераторе, требуется более крупный и сложный блок, и если у вас есть место, тогда можно пойти дальше, так как вы получите больше энергии из фунта древесины, если будете сжигать и древесный уголь, и древесный уголь. пиролитические газы. К тому времени, когда древесина спускается на дно 40-галлонной бочки, она превращается в древесный уголь; вот тогда все действительно начинает накаляться.Секция генератора непосредственно под пиролитической камерой является очагом окисления. Здесь часть древесного угля сжигается для выработки тепла, которое запускает процесс.
кольцо пода в перевернутом виде
и nbsp
Древесный уголь горит на воздухе при температуре от 2000 ° F до 3000 ° F, выделяя углекислый газ [C02] и окись углерода [CO] в зависимости от количества доступного кислорода.[ воздух — 20% активная смесь кислорода и инертных газов. Ключевым моментом здесь является то, что для нагрева газа от комнатной температуры до температуры сгорания требуется энергия. Если вы используете воздух в качестве источника кислорода, вам нужно нагреть четыре фунта инертного газа (то есть азота), чтобы «сжечь» фунт кислорода. Образовавшийся древесный газ будет разбавлен инертным азотом и, соответственно, будет иметь более низкое энергосодержание, чем если бы в качестве окислителя использовался чистый кислород.] Именно здесь, в этой средней зоне, зоне очага, мы будем генерировать тепло, необходимое для запуска химии; пиролиз вверху, а затем уменьшение внизу. [ эндотермический — химическая реакция, для протекания которой требуется постоянный подвод тепла.] [ экзотермический — химическая реакция, протекающая с выделением тепла.] Для этой первоначальной модели я построил очаг из обода шины для дома на колесах.Оказалось, что внешний обод был чуть больше внутренней кромки 40-галлонного барабана для компакт-дисков. Все, что потребовалось, чтобы закрепить его на месте, — это несколько металлических винтов, чтобы удерживать его по центру. Как упоминалось ранее, этот генератор древесного газа имеет конструкцию с нисходящей тягой. В генератор не поступает воздух; скорее, воздух втягивается через генератор за счет вакуума, создаваемого двигателем транспортного средства. По сути, двигатель внутреннего сгорания работает как вакуумный насос. Когда поршни опускаются, они создают вакуум, который, в свою очередь, втягивает воздух и топливо в цилиндры через впускной коллектор двигателя.При работе на древесном газе двигатель всасывает топливный газ, смесь h3, CO и инертного N2 из генератора во впускной коллектор, а оттуда в двигатель. Поскольку двигатель создает разрежение в генераторе, воздух и перегретый пар втягиваются в подовое кольцо через 2-дюймовую муфту, приваренную к боковой стороне пода. Это подается в распределительную камеру, созданную путем приваривания 5-дюймовой полосы стальной пластины к обод; эта камера распределяет паровоздушную смесь вокруг подового кольца.Подовое кольцо имеет дюжину отверстий диаметром 3/8 дюйма, просверленных в нижней части камеры, через которые поступающий газ всасывается в горящий уголь.
В этот момент первичная экзотермическая реакция выглядит так: 1) C + O2 => CO2 + тепло Кроме того, происходят две экзотермические вторичные реакции: 2) 2 C + O2 => 2 CO + Нагрев частичное окисление раскаленного угля и 3) CXh3X + O2 => 2 CO + h3O + Нагрейте частичное окисление пиролитического газа.Как отмечалось выше, каждая из реакций, происходящих в зоне окисления, выделяет много тепла, которое превращает оставшийся древесный уголь в так называемый «светящийся уголь». Следующая остановка — зона восстановления — место, где варочный котел творит чудеса.
редукционный стакан и стопорное кольцо
и nbsp
Напомним, необработанная древесина нагревается в первой, самой верхней камере до точки, в которой выделяются летучие пиролитические газы, и древесина превращается в древесный уголь.Во вторую камеру, зону очага, был введен воздух, и часть древесного угля была сожжена, тем самым высвободив много тепла и превратив оставшийся древесный уголь в так называемый «тлеющий уголь». Это светящийся уголь, который делает работу в зоне восстановления. Когда раскаленный уголь падает через зону очага, он улавливается в чаше из нержавеющей стали; т.е. редукционный стакан. Чаша сделана из миксерной чаши из нержавеющей стали, которая имеет множество отверстий, вроде очень крупного сита, и удерживается на месте под кольцом пода металлическим кольцом, показанным над чашей.Кольцо было припаяно к дну очага, но чаша просто свободно сидит в кольце, так что его можно периодически механически встряхивать, чтобы зола могла пройти и собраться на дне генератора. Когда газы протягиваются через слой светящегося углерода, происходят эндотермические реакции: 1) C + h3O + Heat => CO + h3 Эта реакция известна как реакция «водяного газа», и это был основной способ производства газа для промышленного и бытового использования столетие назад.Позже строительство сети трубопроводов позволило транспортировать «природный газ», смесь метана и углекислого газа, по всей стране, и заводы по производству водяного газа были остановлены в пользу более дешевого источника энергии. Светящийся уголь настолько агрессивен, что отделяет атом кислорода от молекулы воды, оставляя вам два горючих газа, окись углерода и водород. Эти два газа — то, что будет питать двигатель и продвигать нас по дороге.
показана активная зона газогенератора, лежащая на боку с установленным редукционным стаканом и стопорным кольцом
и nbsp
То же самое происходит с любым кислородсодержащим углеродным соединением, образующимся на стадии пиролиза, такими соединениями, как метанол или метилэтиловый эфир.Это хорошо, но в этом нет необходимости, поскольку эти соединения все равно сгорели бы в двигателе. Что очень важно, так это то, что более сложные кислородсодержащие соединения, называемые «смолами», также разлагаются на горючие газы во время этой фазы процесса. Это важно, потому что эти соединения будут конденсироваться задолго до того, как попадут в двигатель, попутно склеивая работы. Хотя наша цель в этом проекте — превратить древесину в жизнеспособное моторное топливо, генераторы древесного газа также являются очень эффективным способом выработки регулируемого тепла в стационарных установках.Превратив твердую древесину в горючий газ в генераторе, а затем направив этот газ по трубопроводу к месту использования, например, в печи, процесс можно сделать гораздо более контролируемым и эффективным, чем если бы вы просто попытались сжечь такое же количество древесины. в дровяной печи. Кроме того, если бы вы использовали газ для целей сгорания, не было бы необходимости охлаждать газ, как мы должны делать, чтобы эффективно заправлять двигатель внутреннего сгорания (подробнее об этом позже). Вместо этого летучие смолы можно было просто направить в горелку и сжечь.Одной из основных причин использования конструкции газогенератора с нисходящим потоком является необходимость разложить эти смолы до того, как они выйдут из генератора древесного газа и начнут засорять остальную часть системы.
Вид на активную зону газогенератора
& nbsp
2) C + CO2 + тепло => 2CO Примечателен агрессивный характер светящегося угля.Он настолько голоден, что даже заставит молекулу углекислого газа «делиться» своим кислородом, тем самым превращая твердый атом углерода и молекулу инертного газа в две молекулы горючего газа. Довольно изящный трюк. Когда газогенератор нагревается до температуры, выходят только горючие неконденсирующиеся газы, такие как окись углерода и водород, пар и немного золы. С этого момента речь идет о теплообменниках, предназначенных для сохранения тепла внутри реактора, контуре обратной связи по пару, чтобы поддерживать реакцию на уровне около 2300 F °, фильтрации, чтобы не допустить попадания золы в двигатель, и охлаждении для увеличения плотности газ доставлен в двигатель.ОБНОВЛЕНИЕ — осень 2008 г.
Записки с наветренной стороны — Указатель — Vol. 63

Котлы для газификации древесины | АТМОС

Котлы газифицирующие на дровах

Котел с газификацией древесины
— тип DCxxS (X)

Котлы сконструированы для сжигания древесины по принципу генераторной газификации с использованием вытяжного вентилятора (S), который отводит дымовые газы из котла или направляет воздух в котел. котел.

Корпус котла изготавливается сварной из стальных листов толщиной 3-8 мм.В их состав входит топливный бункер, который в нижней части снабжен жаропрочным патрубком с продольным отверстием для дымовых газов и отвода газов. Выгорающая часть многокамерной печи под топливным бункером снабжена керамической трубной арматурой. В задней части корпуса котла расположен вертикальный газоход для продуктов сгорания, который в верхней части оборудован клапаном нагрева. В верхней части газохода для продуктов сгорания имеется выпускной патрубок для подсоединения к дымоходу.

Возможности котлов с газификацией древесины ATMOS

  • Возможность сжигания больших кусков дерева (бревна)
  • Большое пространство для дерева — длительный период горения
  • Высокий КПД 81 — 91% — первичный и вторичный воздух предварительно нагревается до высокой температуры
  • Экологическое горение — котел класс 5 ČSN EN 303-5, ECODESIGN 2015/1189
  • Вытяжной вентилятор — золоудаление без пыли, котельная без дыма
  • Охлаждающий контур с защитой от перегрева — без риска повреждения котла
  • Вытяжной вентилятор автоматически выключает при сгорании топлива
  • Комфортное золоудаление — большое пространство для золы (при сжигании дров необходимо очищать его один раз в неделю) Котел с газификацией древесины
    — тип DCxxGS
  • Котел без трубчатого теплообменника — простая очистка
  • Малый размер и небольшой вес
  • Высокое качество

Окружающая среда

Обратное сгорание и керамическая камера сгорания обеспечивают идеальное сгорание с минимальными выбросами загрязняющих веществ.Котлы соответствуют требованиям к экологически чистым продуктам согласно директиве № 13/2002 Министерства окружающей среды Чехии. Они соответствуют европейскому стандарту EN 303-5 и всем классам котлов 3, 4, 5, EKODESIGN 2015/1189.

Установка

Котлы

ATMOS необходимо подключать через терморегулирующий клапан LADDOMAT 22 или ESBE, чтобы поддерживать минимальную температуру воды, возвращающейся в котел, на уровне 65 ° C.Температура воды на выходе из котла должна постоянно поддерживаться в пределах 80–90 ° C. Стандартная конфигурация всех котлов включает контур охлаждения для предотвращения перегрева. Рекомендуем устанавливать котлы с накопительными баками.

Сертификат

Все котлы ATMOS сертифицированы в испытательных лабораториях для отдельных стран назначения: Государственная испытательная лаборатория Брно, TÜV Мюнхен — Германия, Литва, Украина, Швеция, Польша, Австрия, Словакия, Венгрия согласно действующим стандартам — EN 303-5.
Защищено патентом.

Котлы ATMOS Generator DC15GS, DC20GS, DC25GS, DC32GS и DC40GS — это совершенно новые типы котлов на дровах. Это настоящие генераторы легких коммерческих автомобилей.


DC18S, DC22S, DC25S, DC30SX, DC32S,
DC40SX, DC50S
ATMOS (Dřevoplyn) Woodgas — дровяные котлы


DC15GS, DC20GS, DC25GS, DC32GS, DC40GS,
DC50GSX, DC70GSX
ATMOS Генератор — дровяные котлы


Вид на верхнюю загрузочную камеру — Woodgas


Вид на верхнюю загрузочную камеру — Генератор


Вид на нижнюю камеру сгорания — Woodgas


Вид на нижнюю камеру сгорания — Генератор



Вытяжной вентилятор
сводит к минимуму дымность при питании и работе котла


Защита от перегрева — контур охлаждения

постоянного тока 100
DC 70 S, DC 75 SE

горение пламени
в нижней камере сгорания в сферическом пространстве

Регламент котлов

Электрический — механический — Мощность регулируется предохранительным клапаном с регулятором тяги типа FR 124, который автоматически открывает или закрывает предохранительный клапан в зависимости от заданной температуры воды на выходе (80–90 ° C).При настройке регулятора мощности следует уделять особое внимание, поскольку регулятор выполняет еще одну важную функцию, помимо регулирования мощности — он также защищает котел от перегрева. Регулирующий термостат, расположенный на панели котла, регулирует вентилятор в соответствии с заданной температурой (75 — 85 ° C). На регулирующем термостате следует установить температуру на 5 ° C ниже, чем на регуляторе тяги FR 124.
Котел работает на пониженной мощности даже без вентилятора — нагрев не пропадает при отключении электроэнергии.При мощности до 70% от номинальной мощности котел может работать без вентилятора.

Регламент котла

Состав панели:
Главный выключатель, предохранительный термостат, термометр, термостат регулятора и термостат горения

Электромеханическое регулирование — оптимальное решение для удобного управления работой котла (вентилятора).

Конструкция панели со стандартной регулировкой является базовой для всех выпускаемых котлов.

Панель с электронным регулированием ATMOS ACD 01

Состав панели:
Главный выключатель, предохранительный термостат, предохранитель 6,3 А и электронное регулирование ACD 01

Погодозависимое регулирование оснащено функциями для управления работой котла (вентилятора), насоса в контуре котла, двух отопительных контуров, подогрева технической воды и управления солнечным отоплением.
Конструкция панели со встроенным электронным регулированием ACD 01 выпускается как вариант для котлов DC25S, DC32S, DC25GS.

Каждый котел может быть оборудован у заказчика электронным регулятором ATMOS ACD 01 для управления всей системой отопления в зависимости от температуры наружного воздуха и температуры в помещении. Этим регулированием также может управлять сам котел с вентилятором с множеством других функций.

АТМОС Вудгаз
Размер загрузочной камеры

Технические характеристики

ОБОЗНАЧЕНИЯ НА СХЕМЕ КОТЛА

1. Котельный барабан 14. Арматура огнестойкая и жаропрочная — GS — задняя грань круглого пространства
2. Дверца загрузочная верхняя 15 Крышка для чистки
3. Дверь зольника нижняя 16 Диафрагма
4. Вентилятор — напорный, вытяжной (S) 17 Тяга предохранительного клапана зажигания
5. Арматура огнестойкая и жаропрочная — насадка 18 Термометр
6. Панель управления 19 Диафрагма печи
7. Защитный термостат 20 Переключатель
8. Регулирующий предохранительный клапан 22 Регулятор мощности — Honeywell FR124
9. Огнестойкая и жаропрочная арматура — сторона топки — GS 23 Контур охлаждения
10. Арматура огнестойкая и жаропрочная — GS — круглое пространство L + P 24 Термостат вентилятора
11. Уплотнение — форсунки 25 V. Дверная панель — Sibrall
12. Арматура огнестойкая и жаропрочная — полумесяц 26 Уплотнение двери — шнур 18 x 18
13. Клапан предохранительный пусковой 27 Термостат отработанных газов

Размеры

DC18S DC22S DC25S DC30SX DC32S DC40SX DC50S DC70S DC15GS DC20GS DC25GS DC32GS DC40GS DC50GSX DC70GSX DC75SE DC100 DC105S DC150S
А 1185 1185 1185 1185 1260 1260 1260 1399 1280 1280 1280 1280 1434 1563 1686 1487 1690 1813 1813
B 758 959 959 959 959 959 1160 1160 670 758 959 959 959 1042 1268 1487 1170 1095 1295
С 675 * 675 * 675 * 675 * 678 678 678 678 678 678 678 678 678 678 678 774 970 1010 1010
D 874 874 874 874 950 950 950 1047 950 950 950 950 1099 997 1086 1165 1290 1459 1459
E 150 (152) 150 (152) 150 (152) 150 (152) 150 (152) 150 (152) 150 (152) 180 150 (152) 150 (152) 150 (152) 150 (152) 150 (152) 150 (152) 180 180 200 200 200
Ф 65 65 65 65 69 69 69 90 69 69 69 69 69 70 58 82 80 129 129
G 208 208 208 208 185 185 185 325 185 185 185 185 185 184 184 194 590 721 721
H 933 933 933 933 1008 1008 1008 1008 1008 1008 1008 1152 1287 1407 1230
CH 212 212 212 212 256 256 256 0 256 256 256 256 256 256 256 306 0 0 0
I 212 212 212 212 256 256 256 240 256 256 256 256 256 256 256 306 330 307 307
Дж 6/4 « 6/4 « 6/4 « 6/4 « 6/4 « 6/4 « 2 « 2 « 6/4 « 6/4 « 6/4 « 6/4 « 2 « 2 « 2 « 2 « 2 « 2 « 2 «

* ширина котла 555 мм после разборки боковых колпаков

Тип
ATMOS
DC18S DC22S DC25S DC30SX DC32S DC40SX DC50S DC70S DC15GS DC20GS DC25GS DC32GS DC40GS DC50GSX DC70GSX DC75SE DC100 DC105S DC150S
Мощность котла (кВт) 20 22 25/27 30 35 40 49,9 70 15 20 25 32 40 49 70 75 99 105 150
Требуемая тяга в дымоходе (Па) 20 23 23 24 24 24 25 30 16 20 23 25 25 25 26 30 35 25 25
Масса котла (кг) 269 324 326 332 366 368 433 515 302 343 431 436 485 538 690 669 820 901 1030
Объем воды (л) 45 58 58 58 80 80 89 93 56 64 80 80 90 120 170 190 294 265 306
Объем топливного бака (дм 3 ) 66 100 100 100 140 140 180 180 66 80 120 125 160 210 280 345 400 300 400
Макс.длина доски (мм) 330 530 530 530 530 530 730 730 250 330 530 530 530 530 730 1000 730 550 750
Тип. расход за сезон (м 3 ) 20 22 25 30 35 40 50 70 15 19 25 32 40 50 70 75 99 105 150
Требуемое топливо (предпочтительное)

Сухая древесина с удельной энергией 5-18 МДж / кг, диаметром 80-150 мм, с содержанием воды 12-20%

Мин.температура обратной воды 65 ° С
КПД (%) 90,1% 89,9% 89,9% 89,9% 88,9% 88,9% 85,7% 86,3% 91,2% 90,6% 88,8% 89,3% 88,8% 90,6% 90,3% 83% 89% 92% 90,3%
Температура дымовых газов при номинальной мощности (° C) 157 177 177 177 185 185 255 245 134 166 158 171 250 165 161 165 172 180
Класс котла ČSN EN 303-5 5 5 5 5 5 5 4 4 5 5 5 5 5 5 5 3 5 5 5
Класс энергоэффективности А + А + А + А + А + А + А + А + А + А + А + А + А + А + А + А + А + А + А +

Внимание! Котел DC15E вентилятором не оборудован!
Котлы DC70S и DC100 оборудованы приточным вентилятором.

Газификация древесины — эффективный способ сжигания древесины

Котел с газификацией древесины. Древесина сжигается в топке (вверху), а газы движутся вниз и сжигаются при температуре от 1800 до 2000 F в керамической камере внизу. Затем горячие газы проходят через жаротрубный теплообменник для передачи тепла воде, хранящейся в большом резервуаре. Температура дымовых газов обычно ниже 350 F, креозот отсутствует. Древесина должна быть сухой (желательно двухлетней).Из Руководства по установке, эксплуатации и техническому обслуживанию Eko-Vimar Orlanski, https://www.newhorizoncorp.com/PDF/ekomanual.pdf; используется с разрешения.
Использование опоры для резки позволяет быстро и эффективно раскряжевать множество бревен и веток небольшого диаметра одновременно. Этот метод рекомендуется только тем, кто обучен технике безопасности с бензопилой и имеет опыт работы с бензопилой. Будьте предельно осторожны, обрезая маленькие ветки, и кладите самые большие сверху, так как маленькие кусочки могут вылететь в сторону пилорама.Держите пилу на повышенной скорости, так как медленная цепь может зацепиться за мелкую древесину и толкнуть ее в сторону пилорама. Фотографии любезно предоставлены автором

Бен Хоффман

Правильно высушенная и обожженная древесина — отличное зеленое топливо для отопления в сельской местности. Поскольку свежесрубленная древесина может на 60 процентов состоять из воды, ключом к минимизации резки, раскалывания и штабелирования древесины является ее высыхание в течение как минимум года. Если вы этого не сделаете, около 40 процентов вашей древесины будет сжигаться только для того, чтобы отогнать воду — никакого нагрева.Большинство печей работают с КПД от 40 до 60 процентов, дровяные котлы, работающие на открытом воздухе, обычно получают от 30 до 50 процентов, а газогенераторы древесины — от 80 до 92 процентов, но главное — это сухая древесина. Через год влажность древесины может составить от 20 до 35 процентов; через два года — от 10 до 20 процентов. Мой газификатор требует влажности от 15 до 25 процентов для максимальной эффективности, поэтому я сушу древесину в течение двух лет и недавно завершил установку солнечной сушилки для древесины, чтобы попытаться сократить время сушки.

При газификации древесина сначала сжигается в обычной топке, затем газы направляются в керамическую камеру сгорания, где температура достигает 1800-2000 F.Все газы и смолы сгорают, дым из дымохода не выходит, дымоход остается чистым. Несмотря на высокие температуры в камере газификации, к тому времени, когда газы проходят через жаротрубный теплообменник котла, температура дымовых газов может достигать 350 F. Мои температуры дымовых газов обычно ниже 250, что указывает на эффективность жаротрубного теплообменника. Если древесина слишком влажная, огонь охлаждается и из дымохода выходит белый пар. Поскольку котлы с газификацией древесины серийно производятся в Европе, они намного дешевле отечественных моделей.Моя изготовлена ​​в Польше. Теперь я обогреваю свой дом площадью 1400 квадратных футов, подвал и бытовую воду с осени до поздней весны примерно на 3-1 / 2 шнурах. Перед установкой котла мой дом был площадью 1000 квадратных футов, и с дровяной печью для отопления я сжег 3-1 / 2 шнура плюс от 150 до 200 галлонов масла для горячего водоснабжения.

В холодную погоду я разводил один костер в день и держу его около восьми часов. Ключ к эффективности — сухая древесина и быстрое горячее горение. Мой небольшой котел на 85000 БТЕ нагревает воду, хранящуюся в пропановом баке на 500 галлонов, и эта вода циркулирует по запросу для обогрева жилых помещений и бытовой воды.С годичной древесиной мой бак достиг максимальной температуры 170 градусов, но с действительно сухой древесиной она достигает 180, что значительно увеличивает БТЕ. Один пожар хорош в течение дня зимой в штате Мэн, но продолжался два-три дня мягкой осенью 2015 года. Когда цены на нефть упали, летом я сжигал нефть, а не дрова; один пожар может обеспечить горячее водоснабжение на неделю, но большая часть тепла в резервуаре будет потеряна в подвал. Большая семья, принимающая много душа и много стирающая, скорее всего, выиграет от еженедельного ожога.

Древесина — идеальное топливо для отопления сельской местности в штате Мэн, особенно если у вас есть лесной участок. Заготовка дров — это возможность улучшить лес за счет удаления мертвых, умирающих, больных и плохо сформированных деревьев, позволяя остаточным деревьям расти быстрее, производить больше кислорода и использовать больше парниковых газов CO2. Если вы садовод, древесная зола добавляет в почву кальций, калий, другие питательные вещества и биоуглерод (но применяйте только после и в соответствии с рекомендациями теста почвы, поскольку древесная зола может быстро и чрезмерно повысить pH почвы).С точки зрения энергии покупать древесину у местного поставщика намного лучше, чем покупать пеллеты издалека, и это сводит к минимуму потребление моторного топлива. Он также обеспечивает местную занятость и сохраняет деньги в местной экономике.

Я вырезал примерно половину своей древесины из крошечного лесного массива и использую верхушки и ветки примерно 1-1 / 2 дюйма в диаметре для кухонной плиты. Ветви и дерево менее 4 дюймов эффективно раскряжевываются в «стойке для резки», сделанной несколько лет назад одним другом.

Биомасса для производства электроэнергии | WBDG

Введение

На этой странице

ЭТА СТРАНИЦА ПОДДЕРЖИВАЕТСЯ

Биомасса используется для отопления помещений, производства электроэнергии и комбинированного производства тепла и электроэнергии.Термин «биомасса» охватывает большое количество разнообразных материалов, включая древесину из различных источников, сельскохозяйственные остатки, а также отходы животноводства и жизнедеятельности человека.

Биомассу можно преобразовать в электроэнергию несколькими способами. Наиболее распространенным является прямое сжигание биомассы, такой как сельскохозяйственные отходы или древесные материалы. Другие варианты включают газификацию, пиролиз и анаэробное сбраживание. Газификация производит синтез-газ с полезным содержанием энергии за счет нагрева биомассы меньшим количеством кислорода, чем необходимо для полного сгорания.Пиролиз дает бионефть за счет быстрого нагревания биомассы в отсутствие кислорода. Анаэробное сбраживание производит возобновляемый природный газ, когда органическое вещество разлагается бактериями в отсутствие кислорода.

Различные методы работают с разными типами биомассы. Обычно древесная биомасса, такая как древесная щепа, пеллеты и опилки, сжигается или газифицируется для выработки электроэнергии. Остатки кукурузной соломы и пшеничной соломы упаковываются в тюки для сжигания или превращаются в газ с помощью анаэробного варочного котла.Очень влажные отходы, такие как отходы животных и человека, превращаются в газ со средним содержанием энергии в анаэробном варочном котле. Кроме того, большинство других типов биомассы можно преобразовать в бионефть путем пиролиза, которое затем можно использовать в котлах и печах.

В Вудленде, штат Калифорния, электростанция использует древесину, полученную в сельском хозяйстве.
Источник: NREL

В этом обзоре основное внимание уделяется древесной биомассе, используемой для выработки электроэнергии на промышленных предприятиях, а не в проектах коммунальных предприятий.Тепло биомассы и биогаз, включая анаэробное сбраживание и свалочный газ, рассматриваются на других страницах технологических ресурсов в этом руководстве:

По сравнению со многими другими вариантами возобновляемой энергии, биомасса имеет преимущество диспетчеризации, что означает, что она управляема и доступна при необходимости, подобно системам выработки электроэнергии на ископаемом топливе. Однако недостатком биомассы для производства электроэнергии является то, что топливо необходимо закупать, доставлять, хранить и оплачивать. Кроме того, при сжигании биомассы образуются выбросы, которые необходимо тщательно контролировать и контролировать в соответствии с нормативными требованиями.

В этом обзоре представлены конкретные детали для тех, кто рассматривает системы производства электроэнергии на биомассе как часть крупного строительного проекта. Дополнительную общую информацию можно получить в Управлении энергоэффективности и возобновляемых источников энергии (EERE) Министерства энергетики США (DOE). Основы технологии биомассы. Подробную информацию об использовании биомассы для комбинированного производства тепла и электроэнергии можно получить в Партнерстве по комбинированному производству тепла и электроэнергии Агентства по охране окружающей среды США (EPA).

Описание

Большинство биоэлектростанций используют системы сжигания с прямым сжиганием топлива.Они сжигают биомассу напрямую, чтобы произвести пар высокого давления, который приводит в действие турбогенератор для производства электроэнергии. В некоторых отраслях промышленности, связанных с биомассой, отводимый или отработанный пар электростанции также используется для производственных процессов или для обогрева зданий. Эти комбинированные системы производства тепла и электроэнергии (ТЭЦ) значительно повышают общую энергоэффективность примерно до 80% по сравнению со стандартными системами, работающими только на биомассе, с эффективностью примерно 20%. Сезонные потребности в отоплении повлияют на эффективность системы ТЭЦ.

Простая система выработки электроэнергии на биомассе состоит из нескольких ключевых компонентов. Для парового цикла это включает комбинацию следующих элементов:

  • Оборудование для хранения и транспортировки топлива
  • Камера сгорания / печь
  • Котел
  • Насосы
  • Вентиляторы
  • Паровая турбина
  • Генератор
  • Конденсатор
  • Градирня
  • Контроль за выхлопом / выбросами
  • Система управления (автоматизированная).

Системы прямого сжигания подают сырье биомассы в камеру сгорания или топку, где биомасса сжигается с избытком воздуха для нагрева воды в котле для создания пара. Вместо прямого сжигания некоторые развивающиеся технологии газифицируют биомассу для получения горючего газа, а другие производят пиролизные масла, которые можно использовать для замены жидкого топлива. Котельное топливо может включать древесную щепу, пеллеты, опилки или биомасло. Затем пар из котла расширяется через паровую турбину, которая вращается, чтобы запустить генератор и произвести электричество.

В целом, все системы, работающие на биомассе, требуют места для хранения топлива и некоторого типа оборудования для обращения с топливом и средств контроля. Система, использующая древесную щепу, опилки или гранулы, обычно использует бункер или силос для краткосрочного хранения и внешний склад для хранения топлива для более крупных хранилищ. Автоматизированная система управления транспортирует топливо из внешнего хранилища с использованием некоторой комбинации кранов, штабелеукладчиков, регенераторов, фронтальных погрузчиков, ремней, шнеков и пневмотранспорта. Ручное оборудование, такое как фронтальные погрузчики, можно использовать для переноса биомассы из штабелей в бункеры, но этот метод потребует значительных затрат на рабочую силу и эксплуатацию оборудования и техническое обслуживание (O&M).Менее трудоемким вариантом является использование автоматических штабелеукладчиков для создания штабелей и регенераторов для перемещения щепы из штабелей в бункер для щепы или бункер.

В электроэнергетических системах, работающих на древесной стружке, обычно используется одна сухая тонна на мегаватт-час производства электроэнергии. Это приближение типично для систем с влажной древесиной и полезно для первого приближения требований к потреблению и хранению топлива, но фактическое значение будет варьироваться в зависимости от эффективности системы. Для сравнения, это эквивалентно 20% эффективности HHV с 17 MMBtu / т древесины.

Большая часть древесной щепы, производимой из сырых пиломатериалов, будет иметь влажность от 40% до 55% на влажной основе, что означает, что тонна зеленого топлива будет содержать от 800 до 1100 фунтов воды. Эта вода снизит содержание извлекаемой энергии в материале и снизит эффективность котла, так как вода должна испаряться на первых этапах сгорания.

Самые большие проблемы с установками, работающими на биомассе, связаны с обработкой и предварительной обработкой топлива. Это относится как к небольшим установкам с колосниковым обогревом, так и к большим установкам с подвесным обогревом.Сушка биомассы перед сжиганием или газификацией повышает общую эффективность процесса, но во многих случаях может быть экономически невыгодной.

Выхлопные системы используются для вывода побочных продуктов сгорания в окружающую среду. Средства контроля выбросов могут включать в себя циклон или мультициклон, рукавный фильтр или электрофильтр. Основная функция всего перечисленного оборудования — это контроль твердых частиц, и она указана в порядке увеличения капитальных затрат и эффективности. Циклоны и мультициклоны могут использоваться в качестве предварительных коллекторов для удаления более крупных частиц перед рукавным фильтром (тканевым фильтром) или электростатическим фильтром.

Кроме того, может потребоваться контроль выбросов несгоревших углеводородов, оксидов азота и серы в зависимости от свойств топлива и местных, государственных и федеральных нормативных требований.

Как это работает?

В системе прямого сгорания биомасса сжигается в камере сгорания или печи для получения горячего газа, который подается в котел для выработки пара, который расширяется через паровую турбину или паровой двигатель для производства механической или электрической энергии.

В системе прямого сжигания переработанная биомасса является котельным топливом, который производит пар для работы паровой турбины и генератора для производства электроэнергии.

Виды технологий и стоимость технологий

Есть множество компаний, в основном в Европе, которые продают маломасштабные двигатели и комбинированные теплоэнергетические системы, которые могут работать на биогазе, природном газе или пропане. Некоторые из этих систем доступны в Соединенных Штатах с мощностью от примерно 2 киловатт (кВт) и примерно 20 000 британских тепловых единиц (БТЕ) ​​в час тепла до нескольких мегаватт (МВт). Кроме того, в настоящее время в Европе доступны маломасштабные (от 100 до 1500 кВт) паровые двигатели / генераторные установки и паровые турбины (от 100 до 5000 кВт), работающие на твердой биомассе.

В Соединенных Штатах прямое сжигание является наиболее распространенным методом производства тепла из биомассы. Установленная стоимость малых электростанций, работающих на биомассе, составляет от 3000 до 4000 долларов за кВт, а приведенная стоимость энергии — от 0,8 до 0,15 доллара за киловатт-час (кВтч).

Двумя основными типами систем прямого сжигания щепы являются камеры сгорания со стационарной и подвижной решеткой, также известные как топки с неподвижным слоем и камеры сгорания с атмосферным псевдоожиженным слоем.

Фиксированные системы

Существуют различные конфигурации систем с неподвижным слоем, но общей характеристикой является то, что топливо тем или иным образом доставляется на решетку, где оно вступает в реакцию с кислородом воздуха.Это экзотермическая реакция, при которой образуются очень горячие газы и пар в секции теплообменника котла.

Системы с псевдоожиженным слоем

В системе с циркулирующим псевдоожиженным слоем или с барботажным псевдоожиженным слоем биомасса сжигается в горячем слое взвешенных негорючих частиц, таких как песок. По сравнению с колосниковыми камерами сгорания системы с псевдоожиженным слоем обычно производят более полное преобразование углерода, что приводит к снижению выбросов и повышению эффективности системы.Кроме того, котлы с псевдоожиженным слоем могут использовать более широкий спектр исходного сырья. Кроме того, системы с псевдоожиженным слоем имеют более высокую паразитную электрическую нагрузку, чем системы с неподвижным слоем, из-за повышенных требований к мощности вентилятора.

Системы газификации биомассы

Небольшая модульная система биоэнергетики от Community Power Corporation

Хотя системы газификации биомассы встречаются реже, они аналогичны системам сжигания, за исключением того, что количество воздуха ограничено и, таким образом, вырабатывается чистый топливный газ с полезной теплотворной способностью в отличие от сжигания, при котором отходящий газ не имеет полезной теплотворной способности. теплотворная способность.Чистый топливный газ обеспечивает возможность приводить в действие множество различных видов газовых первичных двигателей, таких как двигатели внутреннего сгорания, двигатели Стирлинга, термоэлектрические генераторы, твердооксидные топливные элементы и микротурбины.

На эффективность системы прямого сжигания или газификации биомассы влияет ряд факторов, включая влажность биомассы, распределение и количество воздуха для горения (избыток воздуха), рабочую температуру и давление, а также температуру дымовых газов (выхлопных газов).

Приложение

Тип системы, наиболее подходящей для конкретного применения, зависит от многих факторов, включая доступность и стоимость каждого типа биомассы (например, щепа, пеллеты или бревна), стоимость конкурирующего топлива (например, мазут и природный газ), пиковые и годовые электрические нагрузки и затраты, размер и тип здания, доступность площадей, наличие рабочего и обслуживающего персонала, а также местные нормы выбросов.

Проекты, которые могут использовать как производство электроэнергии, так и тепловую энергию из энергетических систем, работающих на биомассе, часто являются наиболее рентабельными.Если место имеет предсказуемый доступ к круглогодичным доступным ресурсам биомассы, то некоторое сочетание производства тепла из биомассы и электроэнергии может быть хорошим вариантом. Транспортировка топлива составляет значительную часть его стоимости, поэтому в идеале ресурсы должны быть доступны из местных источников. Кроме того, на предприятии, как правило, необходимо хранить сырье биомассы на месте, поэтому доступ на площадку и хранение являются факторами, которые следует учитывать.

Как и в случае с любой другой технологией электроснабжения на месте, система производства электроэнергии должна быть подключена к коммунальной сети.Правила присоединения могут быть другими, если система является комбинированной теплоэнергетической системой, а не только для производства электроэнергии. Возможность использовать чистые измерения также может иметь решающее значение для экономики системы.

Руководство Федеральной программы энергоменеджмента (FEMP) по интеграции возобновляемых источников энергии в федеральное строительство содержит дополнительную информацию о требованиях к межсетевым соединениям и чистому учету.

Экономика

Основные статьи капитальных затрат для энергосистемы, работающей на биомассе, включают хранение топлива и оборудование для обращения с топливом, камеру сгорания, котел, первичный двигатель (например.грамм. турбина или двигатель), генератор, элементы управления, дымовая труба и оборудование для контроля выбросов.

Стоимость системы имеет тенденцию к снижению по мере увеличения размера системы. Для паровой системы, работающей только на электроэнергии (не комбинированной), мощностью от 5 до 25 МВт, затраты обычно составляют от 3000 до 5000 долларов за киловатт электроэнергии. Нормированная стоимость энергии для этой системы будет составлять от 0,08 до 0,15 доллара за кВтч, но она может значительно возрасти с расходами на топливо. Для больших систем требуется значительное количество материала, что приводит к увеличению расстояний транспортировки и затрат на материалы.Небольшие системы имеют более высокие затраты на эксплуатацию и техническое обслуживание на единицу произведенной энергии и более низкую эффективность, чем большие системы. Следовательно, определение оптимального размера системы для конкретного приложения — это итеративный процесс.

Существует множество стимулов для производства энергии из биомассы, но они различаются в зависимости от политики федерального законодательства и законодательства штата. База данных государственных стимулов для возобновляемых источников энергии и эффективности® перечисляет стимулы для биомассы. Сроки программ стимулирования часто позволяют меньше времени на строительство, чем необходимо для проектов, связанных с биомассой.Кроме того, федеральные агентства часто не могут напрямую воспользоваться финансовыми стимулами для возобновляемых источников энергии, если они не используют другую структуру собственности.

Руководство

FEMP по интеграции возобновляемых источников энергии в федеральное строительство содержит дополнительную информацию о финансировании проектов в области возобновляемых источников энергии.

Интересно, что штат Массачусетс недавно исключил электричество, работающее на биомассе, из своего Стандарта портфеля возобновляемых источников энергии, поскольку государственные чиновники не верили, что биомасса обеспечивает явное сокращение выбросов парниковых газов.Таким образом, проекты, связанные с использованием биомассы, больше не имеют права на получение сертификатов возобновляемой энергии, которые засчитываются для целей или финансирования возобновляемых источников энергии штата Массачусетс.

Оценка доступности ресурсов

Наиболее важными факторами при планировании энергетической системы на биомассе являются оценка ресурсов, планирование и закупки. В рамках процессов отбора и анализа осуществимости критически важно определить потенциальные источники биомассы и оценить необходимое количество топлива.

Если возможно, подробно определите способность потенциальных поставщиков производить и поставлять топливо, отвечающее требованиям оборудования, работающего на биомассе.Это может быть довольно интенсивный процесс, поскольку он включает в себя определение нагрузки, которая будет обслуживаться, выявление возможных производителей или поставщиков оборудования, работу с этими поставщиками для определения спецификации топлива и контакт с поставщиками, чтобы узнать, могут ли они соответствовать спецификации — и какая цена. Также необходимо оценить ежемесячные и годовые потребности в топливе, а также пиковое потребление топлива, чтобы помочь с обращением с топливом и определением размеров оборудования для хранения топлива.

Поскольку на большей части территории Соединенных Штатов не существует установленной системы распределения древесной щепы, иногда бывает трудно найти поставщиков.Одно из предложений — связаться с региональной лесной службой США и государственной лесной службой. К другим ресурсам, с которыми можно связаться, относятся ландшафтные компании, лесопилки и другие переработчики древесины, свалки, лесоводы и производители деревянной мебели.

Оценки ресурсов биомассы на уровне округа также доступны в Интернете с помощью интерактивного инструмента картографии и анализа. Инструмент оценки биомассы был разработан Национальной лабораторией возобновляемых источников энергии (NREL) при финансовой поддержке EPA. Раньше оценка ресурсов обычно была статичной и не позволяла пользователям анализировать данные или манипулировать ими.Этот новый инструмент позволяет пользователям выбрать местоположение на карте, количественно оценить ресурсы биомассы, доступные в пределах определенного пользователем радиуса, и оценить общую тепловую энергию или мощность, которые могут быть произведены путем восстановления части этой биомассы. Инструмент действует как предварительный источник информации о сырье биомассы; однако он не может заменить оценку сырья на месте.

Доступные ресурсы биомассы в США.
Источник: NREL

Необходимо разработать процесс приема поставок биомассы и оценки свойств топлива.По состоянию на июль 2011 года национальные спецификации по древесной щепе отсутствуют, но разрабатываются региональные спецификации. Наличие спецификации помогает сообщать и обеспечивать соблюдение требований к микросхеме. Спецификация должна включать физические размеры, диапазон содержания влаги в топливе, энергосодержание, содержание золы и минералов, а также другие факторы, влияющие на обращение с топливом или его сгорание. Для обеспечения справедливой стоимости контракты на поставку топлива должны масштабировать закупочную цену обратно пропорционально содержанию влаги, поскольку более высокое содержание влаги значительно снижает эффективность сгорания и увеличивает вес транспортируемого материала.

Рекомендации по закупкам

Следующие ниже рекомендации имеют решающее значение для успеха любого проекта по производству энергии из биомассы.

  • Полностью вовлекайте лиц, принимающих решения, и широкую общественность на этапах планирования и по мере достижения прогресса, особенно если система будет установлена ​​в общественном здании.
  • Тесно сотрудничать с производителем или поставщиком оборудования, работающего на биомассе, для совместной работы над проектированием зданий и требованиями к оборудованию.
  • Согласование календарного планирования строительства с поставкой оборудования.Например, легче доставить и установить оборудование, если кран имеет доступ к месту установки.
  • Определите маршрут доставки топлива, чтобы грузовики могли легко добраться до места хранения и при необходимости развернуться.

Эксплуатация и обслуживание

Затраты на эксплуатацию и техническое обслуживание энергетических систем, работающих на биомассе, в основном состоят из затрат на топливо и рабочую силу. В остальном эти системы аналогичны другим системам производства электроэнергии на основе котлов. Эксплуатация ведется непрерывно, поэтому затраты на эксплуатацию, а также на покупку и хранение топлива необходимо оценивать вместе с общими затратами по проекту.

Особые соображения

Ниже приведены важные особенности электрических систем, работающих на биомассе.

Экологическая экспертиза / разрешение

Основной проблемой NEPA и выдачей разрешений для энергетической системы, работающей на биомассе, являются выбросы от сжигания. Следовательно, следует пересмотреть местные требования. Выбросы в атмосферу из системы биомассы зависят от конструкции системы и характеристик топлива. При необходимости можно использовать системы контроля выбросов для уменьшения выбросов твердых частиц и оксидов азота.Выбросы серы полностью зависят от содержания серы в биомассе, которое обычно очень низкое.

Хранение щепы требует внимательности, подготовки и внимательности. Когда стружка хранится в здании, существует вероятность скопления пыли от стружки на горизонтальных поверхностях и попадания внутрь оборудования. Обеспокоенность вызывает способность древесной щепы самовоспламеняться или самовоспламеняться при хранении в течение длительного времени, хотя встречается редко. Для получения дополнительной информации см. Информационный бюллетень OSHA по безопасности и охране здоровья «Горючая пыль в промышленности: предотвращение и смягчение последствий пожара и взрывов».

Это происходит из-за цепочки событий, которая начинается с биологического разложения органического вещества и может привести к тлею кучи. Критический диапазон влажности, поддерживающий самовозгорание, составляет примерно от 20% до 45%. Вероятность самовозгорания также увеличивается с увеличением размера кучи из-за увеличения глубины.

Чтобы помочь в решении этой проблемы, Управление пожарной охраны в Онтарио, Канада предоставляет следующие рекомендации:

  • Место хранения должно быть хорошо дренированным и ровным, с твердым грунтом или вымощенным асфальтом, бетоном или другим твердым покрытием.На поверхности грунта между сваями не должно быть горючих материалов. Во дворе должны быть удалены сорняки, трава и подобная растительность. Переносные горелки с открытым пламенем для сорняков нельзя использовать на площадках для хранения щепы. Сваи не должны превышать 18 м (59 футов) в высоту, 90 м (295 футов) в ширину и 150 м (492 футов) в длину, если временные водопроводные трубы со шланговыми соединениями не проложены на верхней поверхности сваи.

  • Между штабелями щепы и открытыми конструкциями, дворовым оборудованием или инвентарём должно поддерживаться пространство, равное (а) удвоенной высоте сваи для горючего материала или зданий или (b) высоте сваи для негорючих зданий и оборудования.

  • В местах скопления щепок курение запрещено.

Пожары древесной стружки могут быть вызваны другими факторами, такими как удары молнии, тепло от оборудования, искры от сварочных работ, лесные пожары и поджоги. Эти пожары иногда называют поверхностными пожарами, потому что они возникают и распространяются по внешней стороне сваи.

При хранении очень важно поддерживать чистоту щепы. Когда щепа хранится на земле или гравии, часть этого материала часто собирается вместе со щепой и попадает в камеру сгорания.

21 февраля 2011 года EPA установило нормы выбросов Закона о чистом воздухе для больших и малых котлов и мусоросжигательных заводов, которые сжигают твердые отходы и осадок сточных вод. Эти стандарты охватывают более 200 000 котлов и мусоросжигательных заводов, которые выбрасывают опасные загрязнители воздуха (HAP), также известные как токсичные вещества. Новые стандарты EPA должны соблюдаться при планировании проекта любого котла для сжигания топлива.

EPA также приняло Закон о чистом воздухе, разрешающий выбросы парниковых газов 2 января 2011 года.Этот процесс, также называемый «правилом адаптации», требует разрешения на производство парниковых газов, но не распространяется на более мелкие предприятия. Ожидается, что окончательные правила будут разработаны в течение трехлетнего исследовательского периода, но федеральные предприятия, использующие производство электроэнергии из биомассы в рамках нового строительного проекта, могут захотеть убедиться, что размер объекта, работающего на биомассе, не вызывает эти требования.

В 2009 году штат Массачусетс издал документ под названием «Нормы безопасности и выбросы котлов и печей на биомассе в северо-восточных штатах