Как работает электрогенератор: Что такое Генератор и как он устроен

Содержание

Что такое Генератор и как он устроен

Как генератор создает электроэнергию?

Генераторы являются полезными устройствами, которые снабжают электрической энергией во время прекращения подачи электроэнергии и предотвращают нарушение обычной деятельности человека, которая случается из-за отсутствия электроэнергии. Генераторы имеют различные электрические и физические конфигурации для использования, которое вам необходимо. Дальше мы рассмотрим, как именно функционирует генератор, его основные компоненты, и как электрогенератор действует в роли вторичного источника электричества, в случае его использование в жилых домах или на промышленных предприятиях.

Как работает генератор?

Электрический генератор – это устройство, которое конвертирует механическую энергию, полученную из внешнего источника, в электрическую энергию. Важно понимать, что в целом генератор не «создает» электрическую энергию. Вместо этого, он использует механическую энергию, которая снабжается им, для усиления движения электрических зарядов, находящихся в проводе его обмотки через внешнюю электрическую цепь (кольцо циркуляции). Этот поток электрических зарядов составляет электрический выходной ток, поступающий от генератора. Этот механизм можно понять, проведя аналогию электростанции с водяной помпой, которая вызывает своими действиями поток воды, но в действительности не «создает» его.

Современный электрогенератор работает по принципу электромагнитной индукции, обнаруженной Майклом Фарадеем в 1831-1832 годах. Фарадей открыл, что поток электрических зарядов может быть вызван перемещением электрического проводника, таким как например провод, который содержит электрические заряды, в магнитном поле. Такое передвижение создает разность напряжений между двумя концами провода или электрического проводника, который в свою очередь вызывает электрические заряды в поток, таким образом генерируя электрический ток.

Основные компоненты электростанции

Можно провести такую классификацию основных компонентов электрогенератора:
(1) Двигатель 
(2) Синхронный генератор (или генератор переменного тока)
(3) Система подачи топлива
(4) Регулятор напряжения
(5) Система выпуска и охлаждения двигателя
(6) Система смазки
(7) Зарядное устройство
(8) Панель управления
(9) Основная сборка / Конструкция

(1) Двигатель электростанции

Двигатель является источником подачи механической энергии миниэлектростанции. Размер двигателя прямо пропорционален максимальной мощности, которую генератор может производить. Есть несколько факторов, которые нужно обязательно знать при оценке двигателя вашего генератора.

(а) вид используемого топлива – двигатели электростанции работают на различном топливе, таких как дизельное топливо, бензин, пропан или природный газ. Чаще всего

маленькие генераторы для дома работают на бензине, тогда как большие промышленные Электростанции на дизельном топливе, жидком пропане, природном газе или пропановом газе. Определенные двигатели также могут работать на двух видах топлива таких как дизельное топливо и газ.

(b) двигатели с верхним расположением клапанов OHV – такие двигатели отличаются от других тем что, впускные и выпускные клапаны у них расположены в верхушке (головке) цилиндра двигателя, а не на блоке цилиндров. Двигатели с верхним расположением клапанов более дорогие, но имеют некоторые преимущества перед другими двигателями:

— компактный дизайн 
— более простой механизм работы 
— долговечность
— удобный для пользования в работе 
— низкий уровень шума во время работы 
— низкий уровень выбросов 

(с) чугунная гильза в цилиндре двигателя – это своего рода подкладка в цилиндре двигателя. Она сокращает изнашивание и обеспечивает долговечность двигателя. Большинство двигателей с верхним расположением клапанов оснащены такой гильзой в цилиндре, но все равно необходимо проверять это в двигателе. Чугунная гильза не дорога, но играет очень важную роль в долговечности двигателя, особенно если вам необходимо часто использовать генератор.

(2) Синхронный генератор 

Синхронный генератор (или генератор переменного тока) является частью электростанции, который вырабатывает электрическую мощность от механической, подаваемой двигателем. Он содержит в себе неподвижные и подвижные детали, монтированные в корпус. Компоненты работают вместе, вызывая тем самым относительное движение между магнитными и электрическими полями, что в свою очередь вырабатывает электроэнергию.

(а) Ротор – это подвижная деталь, которая создает вращающееся магнитное поле одним из таких трех способов: 

(i) индукцией – известен как синхронный бесщеточный генератор и обычно используется в больших генераторах.
(ii) Постоянными магнитами – зачастую используется в маленьких генераторах 

(iii) С помощью задающего генератора (возбудителя) – задающий генератор является маленьким источником постоянного тока, который активизирует ротор через сборку токопроводящих контактных колец и щеток.

Ротор вырабатывает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмоткой статора. Это создает переменный ток на выходе генератора. 

Вот следующие факторы, которые нужно знать при оценке синхронного генератора

(а) металлический или пластиковый корпус – металлический дизайн обеспечит долговечность генератора. Пластиковый корпус деформируется со временем из-за чего его движущиеся части могут подпадать под негативное воздействие внешних факторов. Это может вызвать изнашивание и что еще важно опасность для пользователя. 
(b) шариковый или игольчатый подшипник – предпочтение отдается шариковым подшипникам, тем более что они будут дольше вам служить. 

(c) бесщеточный генератор – синхронный генератор, который не использует щетки, требует меньшего технического обслуживания и также производит более чистую энергию. 

(3) Система подачи топлива 

Топливный бак обычно имеет достаточную способность поддерживать электрогенератор в рабочем состоянии от 6 до 8 часов в среднем. В случае если минигенератор, топливный бак крепится на верхней части корпуса электростанции. Для промышленного применения необходимо устанавливать наружный топливный бак. 

Представляем вам следующие характеристики системы подачи топлива:

(а) соединение трубопроводов от топливного бака к двигателю – линия питания направляет топливо от бака к двигателю и обратный провод направляет топливо от двигателя к баку.
(b) вентиляционная труба для топливного бака – топливный бак имеет вентиляционную трубу для предотвращения повышения давления во время повторного заполнения или слива топливного бака. Когда вы заполняете бак, обеспечьте контакт металлических поверхностей между соплом наполнителя и топливным баком для избежания искр. 

(с) сливное соединение от топливного бака к дренажной трубе – это необходимо для того, чтобы при любом сливе во время повторного заполнения бака не случилась утечка жидкости на генераторной установке. 
(d) топливный насос – он перемещает топливо от основного бака-хранилища до бака периодического действия (временного бака). Топливный насос как правило имеет электропривод.
(е) топливный водный разделитель / топливный фильтр – он отделяет воду и неизвестные вещества с топливной жидкости для защиты других компонентов генератора от коррозии и загрязнения. 
(f) топливный инжектор – он автоматизирует топливную жидкость и распыляет необходимое количество топлива в камеру сгорания двигателя. 

(4) Регулятор напряжения AVR

Эта составляющая регулирует выходное напряжение генератора. Далее будет описаны компоненты регулятора напряжения, которые занимают неотъемлемую часть в его работе.

(1) Регулятор напряжения: изменение переменного напряжения в постоянный ток – регулятор напряжения берет на себя малую часть выходного переменного напряжения и конвертирует его в постоянный ток. Регулятор напряжения затем подает постоянный ток на вторичную обмотку в статоре, известному как возбудитель обмотки (или обмотка задающего генератора).
(2) Возбудитель обмотки: изменение постоянного тока в переменный – возбудитель обмотки функционирует так же, как и основная обмотка статора и генерирует небольшое количество переменного тока. Возбудитель обмотки связан с таким понятием как вращающийся выпрямитель тока.
(3) Вращающийся выпрямитель тока: изменение переменного тока в постоянный – он выпрямляет переменный ток, который генерируется возбудителем обмотки, и конвертирует его в постоянный ток. Этот постоянный ток в свою очередь подается на ротор для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора.

(4) Ротор: изменение постоянного тока в переменное напряжение – ротор индуцирует большое количество переменного напряжения через обмотку статора, которую генератор производит как большое количество выходного переменного напряжения.

Этот цикл происходит до тех пор, пока генератор начинает вырабатывать выходное напряжение, соответствующее его полной работоспособности. Когда производительность (или выходная мощность) генератора увеличивается, регулятор напряжения вырабатывает меньше постоянного тока. Если генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает достаточно постоянного тока для поддержания выходной мощности генератора на полном рабочем уровне.

При добавлении нагрузки на электростанцию

, его выходное напряжение немного уменьшается. Это побуждает регулятор напряжения начать действовать. Цикл продолжается до тех пор, пока выходная мощность генератора не увеличиться до ее первоначальной работоспособности.

(5) Система выхлопа и охлаждения двигателя электростанции

(а) Система охлаждения электрогенератора
Продолжительное использование миниэлектростанции приводит к тому, что различные его компоненты нагреваются. Поэтому в таком случае необходимо иметь охлаждающую и вентиляционную систему для прекращения нагрева. Вода иногда используется как охлаждающая жидкость для генераторов, но это ограничивается определенными ситуациями, например, когда у вас маленький генератор для дачи или городских условий или очень большой генератор около 2250 кВт и т.д.
Водород иногда может использоваться как охладитель для обмотки статора в больших электростанциях, так как он более эффективно поглощает тепло. Водород убирает тепло от генератора и переносит его через теплообменник во вторичный контур охлаждения, который имеет деминирализованную воду как охлаждающая жидкость. Вот почему рядом с большими генераторами и маленькими электростанциями всегда находится большая охлаждающая башня (или стояк). Для всех других использований, как на предприятии, так и в жилых условиях, стандартный радиатор и вентилятор устанавливаются на генератор и работают в основном как охлаждающая система. Очень важно проверять уровень охлаждения

генератора каждый день. Охлаждающая система и помпа с неочищенной водой должны промываться каждые 600 часов и теплообменник также должен очищаться каждые 2400 часов работы мини генератора. Генератор должен быть помещен в открытую и проветриваемую область. По национальным правилам установки оборудования устанавливается, что минимальное расстояние по сторонам генератора должно быть равно 3 футам для обеспечения свободного потока свежего воздуха.

(b) Система выхлопа
 Отработаный газ, выпущенный генератором, содержит в себе высокотоксичные химикаты, с которые нужно надлежащим образом отвести. Поэтому необходимо установить соответствующую вытяжную систему для ликвидации отработаных газов. Иногда люди даже и не думают об этом, хотя отравление угарным газом остается одним из самых распространенных случаев смертей. Вытяжные трубы чаще всего изготавливаются из чугуна, кованого железа или стали. Они должны быть автономными и не должны поддерживаться двигателем генератора. Чаще всего выхлопные трубы прикрепляются к двигателю с использованием гибких соединителей для минимизации вибраций и предотвращения разрушения вытяжной системы генератора. Вытяжные трубы заканчиваются на открытом воздухе и ведут от дверей, окон и других открывающихся приспособлений, к дому или другому строению. Вы должны быть уверены, что вытяжная система вашего генератора не соединена с другим оборудованием.

(6) Система смазки

Так как генератор состоит из движущихся частей в его двигателе, необходимо смазывание для обеспечения длительности срока службы и плавной обработки на долгое время. Двигатель мини-электростанции смазывается маслом, которое находится в помпе. Необходимо проверять уровень смазывающего масла каждые 8 часов работы генератора. Кроме этого в проверке нуждается любая утечка масла и его изменения каждые 500 часов работы бензогенератора.

(7) Зарядное устройство

Запуск генератора изначально производится от аккумулятора. Зарядное устройство сохраняет батарею генератора заряженной, снабжая ее точным «плавающим» напряжением. Если такое напряжение очень низкое, батарея останется незаряженной. Если напряжение очень высокое, оно сократит срок работы батареи. Зарядные устройства обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Также такие устройства полностью автоматизированы и не требуют каких-либо корректировок или изменений в параметрах. Постоянное выходное напряжение зарядного устройства устанавливается на 2.33 Вольт на ячейку, что является точным напряжением для свинцово-кислотной батареи. Зарядное устройство имеет отдельное постоянное напряжение, что препятствует нормальному функционированию электрогенератора.

(8) Панель управления электростанцией

Это пользовательский интерфейс портативной электростанции и он содержит положения об элементах управления. Разные производители предлагают разные панели управления для генераторов. Описание некоторых из них рассмотрим подробней.
(а) электрическое включение и выключение – такие панели управления автоматически включают ваш генератор во время прекращения подачи электроэнергии, следят за электростанцией во время ее работы и автоматически выключают ее, когда она больше не нужена.
(b) механическое устройство прибора (датчик) – различные приборы указывают на важные параметры, таки как давление масла, температура охлаждения, напряжение батареи, скорость вращения двигателя и длительность работы. Непрерывный контроль таких параметров позволяет автоматически выключить генератор, если один из них превысит свои показатели.
(с) датчики мини генератора – панель управления также имеет датчики для измерения выходного тока и напряжения и рабочей частоты.
(d) другие виды контроля – фазовый селекторный переключатель, переключатель частоты, и переключатель управления двигателем (ручной режим или авто режим) и др.

(9) Рама / Корпус

Все генераторы, переносные или стационарные, имеют установленную под заказ раму или корпус, который обеспечивает основную поддержку.

Использование генераторов для промышленного и бытового применения

Хотя основной принцип работы генерирования электроэнергии остается практически одинаковым для всех генераторов, механизм включения питания устройства при использовании электрической мощности, отличается в разных системах.

Переносной генератор

Такие генераторы обычно используются для бытовых целей, когда нужно подключить несколько домашних приборов во время отключения подачи электроэнергии или на строительных площадках, где отсутствует источник электрической энергии и необходимо подключить различные строительные приборы. В таких случаях обычно необходима мощность электрогенератор по крайней мере 4 кВт.

Использование удлинителя:
Одним из наиболее экономичных путей является обеспечение электроснабжения во время отсутствия подачи электроэнергии через использование удлинителя для прямого соединения переносного генератора с теми устройствами, которые вы хотите подключить.
Использование сетевого переключателя:
Безопасным путем при использовании переносного генератора для дома является использование сетевого переключателя мощности, который установлен и соединен с основной электрической сетью вашего дома. Такой выключатель способен переключаться от основного источника питания, зачастую это городская электросеть, к вторичному или даже третичному источнику питания, такому как генератор, когда питание от основного источника прерывается. Ручные переключатели работают через непосредственное управление или через использование удаленного пульта управления. Во время отсутствия электроэнергии переключатель перекидывает питание от второстепенных источников питания и подключает ее к генератору.
В таких случаях мини-генератор может быть присоединен к панели через удлинитель. Электрическая мощность от генератора может подаваться через основной автоматический выключатель и использоваться для необходимых областей. Критические и некритические электроприборы могут быть сгруппированы индивидуально таким образом, что переносный минигенератор будет обслуживать только необходимые приборы. Изолируя линию питания от питания генератора, вы также устраняете риск «обратной связи». Такой является поток электрической мощности от миниэлектростанции в линию питания, что может быть фатальным для электриков, работающих над линией питания во время отсутствия электроэнергии.

Резервный генератор

Переносные генераторы не практичны, так как они могут обслуживать только несколько приборов. Аварийная резервная система может использоваться для поставки мощности на весь дом, а не только на отдельные приборы, и может даже сохранять рабочими кондиционеры во время отсутствия электроэнергии. Также вы можете выбрать меньшие резервные блоки для обеспечения работы только некоторых приборов, таких как холодильник, свет и вентиляторы. Обычно такие устройства колеблются в потреблении от 6 кВт до 40 кВт.

Использование автоматического ввода резерва:
Резервные генераторы обычно устанавливаются вне дома и подсоединяются к основной электрической сети через автоматический переключатель. Система автоматически возобновляет питание в доме в пределах 20 секунд после отключения такого питания без какого-либо ручного вмешательства.

Коммерческий резервный генератор / Промышленные электростанции

Промышленные генераторы используются на коммерческих предприятиях, таких как офисы, производственные фабрики, добыча полезных ископаемых, больницы и др., которые просто не могут позволить себе риск нарушения непрерывности работы во время отсутствия электроэнергии. Зачастую промышленные электростанции – это стационарная установка, которая производит от 50 до 200 кВт мощности. Большинство маленьких и бытовых генераторов являются однофазными (120 Вольт), но коммерческие генераторы практически всегда трехфазные (120, 240 или 480 Вольт).

Использование автоматического ввода резерва:
Также как и бытовые резервные мини генераторы, коммерческие резервные электростанции подключены к электрической сети здания через автоматический переключатель и активизируются автоматически во время отсутствия электроэнергии. Они специально сконструированы так, что переключение между первичным и вторичным источником питания занимает долю секунды и позволяет без замедлений обеспечивать необходимые устройства электроэнергией.

Google

Как устроен генератор — все об устройстве электрогенераторов постоянного и переменого тока

Принцип работы генерирующего устройства

Работа электрогенерирующего оборудования основывается на принципе конвертации механической энергии, получаемой из внешнего источника, в электроэнергию. Иными словами, устройство не вырабатывает самостоятельно электричество. Происходит усиление движения возникающих в проводах его обмотки электрических зарядов, которые проходя через внешнее кольцо циркуляции, отдают свою энергию. В результате на выходе образуется электрический ток, который и поступает в сеть от электростанции.

С научной точки зрения принцип называется «магнитной индукцией» и был обнаружен Майклом Фарадеем в 19 веке. Ученый физик установил, что перемещением электрического проводника в магнитном поле рождается поток зарядов. Между двумя концами проводника, в частности, провода, создается разность напряжений, который усиливает движение зарядов, превращая их в электричество.

Перейти в каталог генераторного оборудования:

Основные элементы электростанции


Как устроен генератор переменного тока?

Это неотъемлемая часть электростанции, которая осуществляет преобразование механической мощности в электрическую энергию. Состоит устройство из неподвижных и подвижных модулей, которые вмонтированы в его корпус. Все элементы работают в синхронном режиме, усиливая движение между электрическими и магнитными полями, что рождает электричество.

Ротор, как подвижный модуль, создает вращающееся магнитное поле. Выполняется это несколькими способами:

  • индукцией, которая происходит в синхронном бесщеточном генераторе, которые, как правило, имеют достаточно внушительные габариты;
  • постоянными магнитами, используемыми в малых генераторах;
  • с помощью задающего возбудителя, активизирующего ротор через сборку щеток и токопроводящих контактных колец.

Подвижным ротором вокруг статора вырабатывается вращающееся магнитное поле и вызывается разность напряжений в обмотке. Таким образом производится на выходе переменный ток.

Факторы, влияющие на эффективность работы синхронного генератора:

  • металлический или пластиковый корпус. В первом случае устройство отличается большей долговечностью. Пластик же со временем деформируется и может стать причиной повреждения внутренних элементов, создавая таким образом аварийную ситуацию и опасность для пользователя.
  • шариковый или игольчатый подшипник: первый более предпочтителен в силу большей его износостойкости.
  • в бесщеточном генераторе не используются щетки, благодаря чему отличается производством более чистой энергии на фоне меньшего технического обслуживания.

Двигатель

С помощью этого элемента образуется механическая энергия для работы миниэлектростанции. Его размер напрямую зависит от максимальной мощности электростанции. Кроме того, существует множество факторов, влияющих на функциональность двигателя:

  • вид топлива, используемое для работы двигателя. Это могут быть бензин, дизельное топливо, природный газ или пропан. Бытовые электростанции, как правило, работают на бензине, промышленные же электростанции – на дизельном топливе, природном газу, жидком или газообразном пропане. Есть модификации, работающие на комбинированном виде топлива – дизеле и газу.
  • верхнее расположение клапанов OHV. Впускные и выпускные клапаны таких двигателей располагаются не на блоке цилиндров, а на их верхушке. Данные модели имеют более высокую стоимость, что обусловлены дополнительными преимуществами. Это компактный дизайн, упрощенная рабочая механика, удобство в использовании, а также долговечность конструкции. Кроме того, их работа отличается низким уровнем шума и меньшим уровнем выбросов.
  • чугунная гильза в цилиндре двигателя, используемая в качестве подкладки. Таким способом уменьшается износ двигателя, что увеличивает доремонтный срок службы. Такая чугунная гильза используется в большинстве устройств с верхним расположением клапанов. Как элемент, эта подкладка имеет невысокую стоимость, однако очень важна, особенно в случаях частого использования электростанции.

Система подачи топлива

Топливный резервуар обычно имеет достаточный объем для поддержания стабильной работы электростанции на период от 6 до 8 часов. На малых устройствах бак устанавливается в верхней части корпуса. Для промышленной установки применяется наружный резервуар.

Характеристики системы:

  • соединение трубопроводов с двигателем. Таким путем осуществляется подача топлива к работающему модулю и обратно.
  • вентиляционная труба для топливного бака необходима для снижения уровня давления при повторном заполнении или сливе резервуара. Крайне важно при этом обеспечить контакт металлических поверхностей сопла наполнителя и топливного бака во избежание искр.
  • сливное соединение с дренажной трубой используется для предотвращения протечек жидкости во время слива.
  • топливный насос отвечает за перемещение топлива от основного хранилища в точку потребления. Данное устройство имеет электропривод.
  • топливный фильтр очищает жидкость от иных примесей, способных привести к коррозии и загрязнению внутренних модулей оборудования.
  • инжектор автоматически управляет поступлением необходимого объема жидкости в камеру сгорания.

Регулятор напряжения AVR

Этот модуль осуществляет регулировку выходного напряжения электростанции. Устройство состоит из нескольких компонентов:

  • регулятор напряжения контролирует процесс преобразования переменного напряжения в постоянный электроток. Затем происходит его подача на вторичную обмотку статора.
  • возбудитель обмотки необходим для генерирования небольшого количества переменного тока. Напрямую связан с вращающимся выпрямителем тока.
  • вращающийся выпрямитель тока осуществляет выпрямление переданного с возбудителя обмотки переменного тока с последующей конвертацией его в постоянный. Затем выполняется его подача на ротор, где в дополнение к вращающемуся магнитному полю создается и электромагнитное напряжение.
  • ротору отводится роль индукции большого количества переменного напряжения на обмотку статора.

Регулятор напряжения максимально задействован в начальном периоде запуска установки. Как только устройство выходит на полную работоспособность, модуль снижает выработку постоянного тока. В состоянии равновесия регулятор напряжения производит только необходимое количество мощности для поддержания электростанции в рабочем состоянии.

При увеличении нагрузки на электростанцию, регулятор напряжения выходит из состояния равновесия и активизирует свою работу, пока мощность оборудования не выйдет на показанный уровень потребления.

В нашем каталоге Вы можете ознакомиться с примерами дизельных генераторов с АВР >>


Установка выхлопа и охлаждения двигателя электростанции

Включает в себя:

  • Систему охлаждения электростанции, используемую для снижения уровня перегрева рабочего устройства. В качестве антифриза используется вода, водород, а также стандартный радиатор и вентилятор. За уровнем охлаждения следует периодически наблюдать, чтобы предотвратить аварийную ситуацию. Система требует постоянной очистки от загрязнений, выполняемую через каждые 600 часов работы. Следует обеспечить приток к устройству свежего воздуха: по действующим нормам в радиусе от электрогенерирующей установки должно быть не меньше метра свободного пространства.
  • Систему выхлопа. В процессе сгорания топлива образуется отработанный газ, содержащий высокотоксичные химические соединения. Очень важно создать эффективную систему утилизации выхлопов с использованием вытяжек.

Система смазки

Электростанция в комплекте имеет множество движущихся модулей, эффективность работы которых зависит и от содержания смазочных веществ. Для чего в помпе всегда находится специальное масло, уровень которого следует контролировать каждые 8 часов. Также необходимо строго отслеживать возможные протечки смазывающего вещества.

Зарядное устройство

Запуск электростанции осуществляется с помощью аккумулятора. Эта батарея должна быть всегда заряженной, за что отвечает зарядное устройство. Оно снабжает аккумулятор необходимым количеством «плавающей» энергии, которая и производит подзарядку емкости. Важно следить за уровнем этой энергии: снижение приведет к неполной зарядке аккумулятора, а повышенный уровень выведет его из строя.

Изготавливается зарядное устройство из нержавеющей стали, чтобы увеличить срок службы модуля. Его работа полностью автоматизирована и не требует вмешательства в параметры. Постоянное напряжение на выходе определяется на уровне на 2.33 Вольт на ячейку. Зарядное устройства обладает отдельным постоянным напряжением, которое может привнести сбои в нормальное функционирование электрооборудования.

Панель управления

Модуль снабжен упрощенным интерфейсом, на котором отображены все положения управляемых элементов. Каждый производитель предлагает собственный вариант панели.

Электрическое включение и выключение автоматически запускает электростанцию в рабочее состояние в случае необходимости. И отключает, когда деятельность устройства нецелесообразна.

Механическое устройство прибора отображает на датчиках наиболее важные параметры по давлению масла, температуре охлаждения, напряжению батареи, скорости вращения двигателя и длительности работы. При превышении нормы электростанция автоматически отключается.

Датчики мини электростанции отвечают за измерение выходного тока, напряжения и рабочей частоты. Иные виды контроля: переключатель частоты, фазовый селекторный переключатель и переключатель режимов двигателя.

Рама / Корпус

Основная конструкция служит генераторному оборудованию главной поддержкой и имеет выполненный под заказ корпус. В случаях, когда предполагается перемещение оборудования, рама может быть дополнительно оснащена шасси.

Для наглядности, вы можете посмотреть нашу продукцию из раздела передвижные дизельные генераторы >>

Как работает электрогенератор

Электрогенератор – один из составляющих элементов автономной электростанции, а также многих других. По сути, он и является самым важным элементом, без которого невозможна выработка электрической энергии. Электрогенератор преобразует вращательную механическую энергию в электрическую. Принцип его действия основан на так называемом явлении самоиндукции, когда в проводнике (катушке), двигающемся в силовых линиях магнитного поля возникает электродвижущая сила (ЭДС), которую можно (для лучшего понимания вопроса) назвать электрическим напряжением (хотя это и не одно и то же).

Составными частями электрического генератора являются магнитная система (в основном используются электромагниты) и система проводников (катушек). Первая создает магнитное поле, а вторая, вращаясь в нем, преобразует его в электрическое. Дополнительно в генераторе есть еще и система отвода напряжения (коллектор и щетки, соединение катушек определенным образом). Она собственно связывает генератор с потребителями электрического тока.

Получить электроэнергию можно и самому, проведя самый простейший опыт. Для этого нужно взять два разнополюсных магнита или повернуть два магнита разными полюсами друг к другу, и поместить между ними металлический проводник в виде рамки. К ее концам подключить небольшую (слабомощную) электрическую лампочку. Если рамку начать вращать в ту или другую сторону, лампочка начнет светится, то есть на концах рамки появилось электрическое напряжение, а через ее спираль потек электрический ток. Точно также происходит в электрогенераторе, стой лишь разницей, что в электрогенераторе более сложная система электромагнитов и намного сложнее катушка из проводников, обычно медных.

Электрогенераторы различаются как по типу привода, так и по виду выходного напряжения. По типу привода, который приводит его в движение:

  • Турбогенератор – приводится в движение при помощи паровой турбины или газотурбинного двигателя. В основном используются на больших (промышленных) электростанциях.
  • Гидрогенератор – приводится в движение при помощи гидравлической турбины. Применяется также на больших электростанциях, работающих посредством движения речной и морской воды.
  • Ветрогенератор – приводится в движение при помощи энергии ветра. Используется как в маленьких (частных) ветряных электростанциях, так и в больших промышленных.
  • Дизель-генератор и бензо-генератор приводятся в движение соответственно дизельным и бензиновым двигателем.

По виду выходного электрического тока:

  • Генераторы постоянного тока – на выходе получаем постоянный ток.
  • Генераторы переменного тока. Бывают однофазные и трехфазные, с однофазным и трехфазным выходным переменным током соответственно.

Различные типы генераторов имеют свои конструктивные особенности и практически несовместимые узлы. Объединяет их лишь общий принцип создания электромагнитного поля путем взаимного вращения одной системы катушек относительно другой либо относительно постоянных магнитов. Ввиду этих особенностей ремонт генераторов или их отдельных компонентов под силу только квалифицированным специалистам.

< Предыдущая   Следующая >

Генераторы тока: переменного и постоянного

Отсутствие электричества сегодня не становится проблемой как в быту, так и в промышленности. Широкий ассортимент генераторов тока позволяет решить проблему быстро, с минимальными трудозатратами. Резервные источники питания незаменимы в современной реальности — всему нужна электроэнергия. Гарантии, что подачу электроэнергии не прекратят в самый неподходящий момент – не может дать ни она организация. Поэтому резервная электростанция на базе генератора постоянного или переменного тока  — важное, а зачастую незаменимое оборудование, которое обеспечивает непрерывность производства, комфорт в бытовой сфере, безопасность и непрерывность технологических процессов.

Что такое генератор тока

Когда нет электрической энергии, требуется получить её из другого источника. Наши предки, например, использовали силу ветра, течения рек. Впрочем, сегодня подобную энергию применяют, если не жалко времени и сил на возведение плотин и ветряков. Генераторы тока стандартно «работают» на топливе, за счет вращения обмотки в магнитном поле преобразовывая механическую энергию вращения в электричество. Ток возникает в замкнутом контуре, протекает по обмоткам, когда к электростанции подключается потребитель — именно так работает генератор тока.
В зависимости от того, как вращается магнитное поле (при неподвижном или подвижном проводнике) различают два типа этих электрических машин — генераторы постоянного или переменного тока.

В чем разница между постоянным и переменным током

Вспоминаем уроки физики. Электроток — заряженные микрочастицы, которые «бегут» в определенном направлении. У постоянного тока частицы движутся по прямой, в одном направлении от минуса к плюсу. У переменного движение электронов идет по синусоиде с определенной частотой (полярность между проводами меняется несколько раз за заданный промежуток времени).

Разница между движением заряженных частиц заложена в принцип работы генераторов электрического тока. Для простого обывателя можно сказать так: в розетке — переменный, в батарейке — постоянный. В качестве частного случая, с очень большим упрощением, можно сказать так: всё что с напряжением до 48 Вольт — всё постоянный, всё что от 100 до 500 Вольт — переменный.

Автор статьи и специалисты Mototech прекрасно осведомлены о том, что и постоянный ток может иметь практически любое напряжение (например, 380 Вольт на шине постоянного тока в ИБП), так же как и переменный ток для узких задач.

В чем конструктивная разница между генераторами

Несмотря на то, что конечный результат работы электростанций один — потребитель получает электроэнергию, методы преобразования механической энергии в электродвижущую силу и электричество различаются. Элементы (комплектующие) также отличны.

Особенности конструкции генераторов переменного тока

Электростанция такого типа состоит из:

  • Внешней силовой рамы, изготовленной из высокопрочных сплавов. Корпус рассчитан на интенсивную нагрузку, возникающую при передаче магнитного потока от полюса к полюсу. Проще говоря: чугунный кожух не «пробивается» разрядами тока.
  • Магнитных полюсов, закрепленные на корпусе болтами или шпильками. На «плюс» и «минус» монтируется обмотка.
  • Статора. Остов с катушкой возбуждения изготавливают из ферромагнитных материалов, на сердечнике устанавливают магнитные полюса, которые и образуют магнитное поле.
  • Вращающегося ротора (якоря). Задача магнитопровода — снизить вихревые токи и повысить КПД генератора постоянного тока.
  • Коммутационного узла, оснащенного щетками (обычно изготовленными из графита) и коллекторными пластинами из меди.

Полюсов может быть несколько (число минусов и плюсов всегда идентично). Поэтому сегодня потребитель может купить электростанцию необходимой мощности и обеспечить электричеством как дом, так и промышленный объект.

Особенности конструкции генератора переменного тока

Конструктивной разницы в статоре и роторе между устройствами постоянного и переменного тока нет. Практически идентичны и силовые рамы. Существенное отличие в комплектации коммуникационного узла. Каждый выход механизма помимо щеток оснащен токопроводящими кольцами. «Закольцованный» ток движется по синусоиде и несколько раз в секунду достигает пика мощности. По типу устройства, характеристикам и принципу работы современные генераторы переменного тока делятся на синхронные и асинхронные.


Специфика синхронного устройства: скорость вращения ротора равна скорости вращения магнитного поля в рабочем зазоре.

Асинхронным машинам характерны:

  • Отсутствие электрической связи с ротором;
  • Вращение якоря под воздействием остаточного механизма статора;
  • Измененная электрическая нагрузка на статоре.

Такие агрегаты могут быть однофазными и трехфазными.

Принцип работы генератора постоянного тока

Простейший  по конструкции генератор работает следующим образом:

  • Рамка вращается вокруг оси, расположенная на корпусе обмотка регулярно проходит через «минус» и «плюс» полюсов.
  • Каждый раз при достижении разнополюсных точек, происходит смена направления тока на противоположное.
  • Выходной цепи благодаря полукольцу, расположенному на коллекторном узле, создается постоянный ток.
  • С помощью щеток с положительного или отрицательного полюса снимается потенциал и по схеме передается потребителю.

Такая схема работает в простейшей конструкции, с одним плюсом и минусом, если положительных/отрицательных точек больше, ЭДС и ориентировочное количество электроэнергии рассчитываются по формуле.


К преимуществам генераторов постоянного тока относят:

  • Небольшой вес и компактность агрегата;
  • Возможность использовать в экстремальных условиях;
  • Отсутствие потерь, связанных с вихревыми токами.

Минус: на большую мощность при использовании устройств такого типа рассчитывать не стоит.

Принцип работы генератора переменного тока

Устройства такого типа преобразуют механику в электроэнергию, вращая проволочную катушку в магнитном поле. Ток вырабатывается, когда силовые линии пересекают обмотку. До тех пор, пока магнитное поле соприкасается с проводником, в нем индуцируется электроток.
Идентичный принцип действует и в случае, если рамка вращается относительно магнита, пересекая силовые линии.

Основные достоинства генераторов переменного тока

В электростанциях с синусоидальной подачей тока отсутствует реактивная мощность. То есть весь запас электроэнергии (с вычетом потерь на проводах) расходуется на нужды потребителя, а не на поддержание работоспособности устройства.

Плюсами использования генераторов переменного тока являются:

  • Большая выходная мощность при одинаковых габаритах устройств постоянного и переменного тока;
  • Выработка электроэнергии на низких скоростях вращения ротора;
  • Проще конструкция и схема, соответственно, меньше узлов, нуждающихся в техобслуживании и ремонте;
  • Конструкция токосъемного узла отличается большей надежностью;
  • Больше эксплуатационный ресурс и меньше эксплуатационные затраты.

Дополнительное преимущество: агрегаты с трехфазным питанием можно использовать для питания высоковольтных потребителей.

Где применяются генераторы постоянного и переменного тока

Оба вида генераторов популярны в бытовой и промышленной сфере. Станции постоянного тока нашли применение в сфере транспорта. Так, в трамваях, троллейбусах обычно установлены двигатели, работающие на постоянном токе. Низковольтные устройства незаменимы для питания систем освещения в местах, где нет доступа к централизованной подачи электроэнергии. Например, на борту самолетов. Если большая мощность — не основополагающая характеристика электростанции, то генераторы постоянного тока отлично справятся с питанием оборудования в учебных, медицинских учреждениях, лабораториях. Полноценные дизельные электростанции постоянного тока используются на аэродромах для зарядки и питания бортовых систем летной техники. 

Электростанции переменного тока необходимы практически для всего остального. 99% того, что питается от централизованной сети — это устройства переменного тока. Соответственно, аварийное питание этих объектов так же должно осуществляться от соответствующего оборудования. 

Мototech специализируется на продаже электростанций различного типа. Поможем выбрать оптимальный вариант электростанции мощностью от 5 до 6000 кВА и конечно же, это будут электростанции переменного тока. Мы обеспечим сопроводительные строительные и электромонтажные работы, грамотную пуско-наладку и обслуживание устройств. С клиентами работают сотрудники с энергетическим образованием, поэтому квалифицированную информацию, ответы на вопросы и правильные расчеты характеристик в соответствии с вашими потребностями гарантируем.


Автомобильный генератор — как работает, из чего состоит и устройство

Генератор — основной источник электроэнергии машины. Расскажем подробно как работает, из чего состоит и его устройство внутри. Информация подойдет для начинающих и опытных автолюбителей.

Как работает

При пуске двигателя автомобиля основным потребителем электроэнергии является стартер, сила тока достигает сотен ампер, что вызывает значительное падение напряжения аккумулятора. В этом режиме потребители питаются только от аккумулятора, который интенсивно разряжается. Сразу после пуска двигателя генератор становится основным источником электроснабжения. Генератор авто является источником постоянной подзарядки аккумуляторной батареи во время работы двигателя. Если он не будет работать, аккумулятор быстро разрядиться. Он обеспечивает требуемый ток для заряда АКБ и работы электроприборов. После подзарядки аккумулятора, генератор снижает зарядный ток и работает в штатном режиме.

При включении мощных потребителей (например, обогревателя заднего стекла, фар) и малых оборотов двигателя суммарный потребляемый ток может быть больше, чем способен отдать генератор. В этом случае нагрузка ляжет на аккумулятор, и он начнет разряжаться.

Привод и крепление

Привод осуществляется от шкива коленчатого вала ременной передачей. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива, тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток. На современных машинах привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра и, следовательно, получать высокие передаточные отношения. Натяжение поликлинового ремня осуществляется натяжными роликами при неподвижном генераторе.

Устройство и из чего состоит

Любой генератор автомобиля содержит статор с обмоткой, зажатый между двумя крышками — передней, со стороны привода, и задней, со стороны контактных колец. Генераторы крепятся в передней части двигателя болтами на специальных кронштейнах. Крепежные лапы и натяжная проушина находятся на крышках. Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором. Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, а «компактной» конструкции — еще на цилиндрической части над лобовыми сторонами обмотки статора. На крышке со стороны контактных колец крепятся щеточный узел, который объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности.

Статор генератора

1 — сердечник, 2 — обмотка, 3 — пазовый клин, 4 — паз, 5 — вывод для соединения с выпрямителем

Статор набирается из стальных листов толщиной 0.8…1 мм, но чаще выполняется навивкой «на ребро». При выполнении пакета статора навивкой ярмо статора над пазами обычно имеет выступы, по которым при навивке фиксируется положение слоев друг относительно друга. Эти выступы улучшают охлаждение статора за счет более развитой наружной поверхности.

Необходимость экономии металла привела к созданию конструкции пакета статора, набранного из отдельных подковообразных сегментов. Скрепление между собой отдельных листов пакета статора в монолитную конструкцию осуществляется сваркой или заклепками. Практически все генераторы автомобилей массовых выпусков имеют 36 пазов, в которых располагается обмотка статора. Пазы изолированы пленочной изоляцией или напылением эпоксидного компаунда.

Ротор генератора

а — в сборе; б — полюсная система в разобранном виде; 1,3- полюсные половины; 2 — обмотка возбуждения; 4 — контактные кольца; 5 — вал

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами — полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса.

Валы роторов выполняются из мягкой автоматной стали. Но при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива.

Во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от поворота при затяжке гайки крепления шкива, или при разборке генератора, когда необходимо снять шкив и вентилятор.

Щеточный узел

Это конструкция, в которой размещаются щетки т.е. скользящие контакты. В автомобильных генераторах применяются щетки двух типов — меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными. Они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин.

Выпрямительные узлы

Применяются двух типов. Это пластины-теплоотводы, в которые запрессовываются диоды силового выпрямителя или конструкции с сильно развитым оребрением и диоды припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы или в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками.

Наиболее опасным является замыкание пластин теплоотводов, соединенных с «массой» и выводом «+» генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи и возможен пожар.


Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы

Это радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами. Посадка шариковых подшипников на вал со стороны контактных колец — обычно плотная, со стороны привода — скользящая, в посадочное место крышки наоборот — со стороны контактных колец — скользящая, со стороны привода — плотная. Охлаждение генератора авто осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов воздух засасывается центробежным вентилятором в крышку со стороны контактных колец. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места — к выпрямителю и регулятору напряжения.
Система охлаждения: а — устройства обычной конструкции; б — для повышенной температуры в подкапотном пространстве; в — устройства компактной конструкции. Стрелками показано направление воздушных потоков На автомобилях с плотной компоновкой подкапотного пространства применяют генераторы со специальным кожухом, через который в него поступает холодный забортный воздух. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Для чего нужен регулятор напряжения

Регуляторы поддерживают напряжение генератора в определенных пределах для оптимальной работы электроприборов, включенных в бортовую сеть автомобиля. Генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, встроенными внутрь корпуса. Схемы их исполнения и конструктивное оформление могут различаться, но принцип работы одинаков.

Регуляторы напряжения обладают свойством термокомпенсации — изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Величина термокомпенсации достигает до 0,01 В на 1°С. Некоторые модели выносных регуляторов имеют ручные переключатели уровня напряжения (зима/лето).

Как работает электрический генератор — ООО «УК Энерготехсервис»

Компания «Cистемотехника» занимается производством и продажей энергетического оборудования.

Оказываем комплексные услуги по поставке, монтажу и обслуживанию систем бесперебойного электроснабжения по оптимальным ценам в Москве.

Работа электрогенерирующего оборудования основывается на принципе конвертации механической энергии, получаемой из внешнего источника, в электроэнергию. Иными словами, устройство не вырабатывает самостоятельно электричество.

Происходит усиление движения возникающих в проводах его обмотки электрических зарядов, которые проходя через внешнее кольцо циркуляции, отдают свою энергию.

В результате на выходе образуется электрический ток, который и поступает в сеть от электростанции.

С научной точки зрения принцип называется «магнитной индукцией» и был обнаружен Майклом Фарадеем в 19 веке. Ученый физик установил, что перемещением электрического проводника в магнитном поле рождается поток зарядов. Между двумя концами проводника, в частности, провода, создается разность напряжений, который усиливает движение зарядов, превращая их в электричество.

Перейти в каталог генераторного оборудования:

Это неотъемлемая часть электростанции, которая осуществляет преобразование механической мощности в электрическую энергию. Состоит устройство из неподвижных и подвижных модулей, которые вмонтированы в его корпус. Все элементы работают в синхронном режиме, усиливая движение между электрическими и магнитными полями, что рождает электричество.

Ротор, как подвижный модуль, создает вращающееся магнитное поле. Выполняется это несколькими способами:

  • индукцией, которая происходит в синхронном бесщеточном генераторе, которые, как правило, имеют достаточно внушительные габариты;
  • постоянными магнитами, используемыми в малых генераторах;
  • с помощью задающего возбудителя, активизирующего ротор через сборку щеток и токопроводящих контактных колец.

Подвижным ротором вокруг статора вырабатывается вращающееся магнитное поле и вызывается разность напряжений в обмотке. Таким образом производится на выходе переменный ток.

Факторы, влияющие на эффективность работы синхронного генератора:

  • металлический или пластиковый корпус. В первом случае устройство отличается большей долговечностью. Пластик же со временем деформируется и может стать причиной повреждения внутренних элементов, создавая таким образом аварийную ситуацию и опасность для пользователя.
  • шариковый или игольчатый подшипник: первый более предпочтителен в силу большей его износостойкости.
  • в бесщеточном генераторе не используются щетки, благодаря чему отличается производством более чистой энергии на фоне меньшего технического обслуживания.

Двигатель

С помощью этого элемента образуется механическая энергия для работы миниэлектростанции. Его размер напрямую зависит от максимальной мощности электростанции. Кроме того, существует множество факторов, влияющих на функциональность двигателя:

  • вид топлива, используемое для работы двигателя. Это могут быть бензин, дизельное топливо, природный газ или пропан. Бытовые электростанции, как правило, работают на бензине, промышленные же электростанции – на дизельном топливе, природном газу, жидком или газообразном пропане. Есть модификации, работающие на комбинированном виде топлива – дизеле и газу.
  • верхнее расположение клапанов OHV. Впускные и выпускные клапаны таких двигателей располагаются не на блоке цилиндров, а на их верхушке. Данные модели имеют более высокую стоимость, что обусловлены дополнительными преимуществами. Это компактный дизайн, упрощенная рабочая механика, удобство в использовании, а также долговечность конструкции. Кроме того, их работа отличается низким уровнем шума и меньшим уровнем выбросов.
  • чугунная гильза в цилиндре двигателя, используемая в качестве подкладки. Таким способом уменьшается износ двигателя, что увеличивает доремонтный срок службы. Такая чугунная гильза используется в большинстве устройств с верхним расположением клапанов. Как элемент, эта подкладка имеет невысокую стоимость, однако очень важна, особенно в случаях частого использования электростанции.

Система подачи топлива

Топливный резервуар обычно имеет достаточный объем для поддержания стабильной работы электростанции на период от 6 до 8 часов. На малых устройствах бак устанавливается в верхней части корпуса. Для промышленной установки применяется наружный резервуар.

Характеристики системы:

  • соединение трубопроводов с двигателем. Таким путем осуществляется подача топлива к работающему модулю и обратно.
  • вентиляционная труба для топливного бака необходима для снижения уровня давления при повторном заполнении или сливе резервуара. Крайне важно при этом обеспечить контакт металлических поверхностей сопла наполнителя и топливного бака во избежание искр.
  • сливное соединение с дренажной трубой используется для предотвращения протечек жидкости во время слива.
  • топливный насос отвечает за перемещение топлива от основного хранилища в точку потребления. Данное устройство имеет электропривод.
  • топливный фильтр очищает жидкость от иных примесей, способных привести к коррозии и загрязнению внутренних модулей оборудования.
  • инжектор автоматически управляет поступлением необходимого объема жидкости в камеру сгорания.

Регулятор напряжения AVR

Этот модуль осуществляет регулировку выходного напряжения электростанции. Устройство состоит из нескольких компонентов:

  • регулятор напряжения контролирует процесс преобразования переменного напряжения в постоянный электроток. Затем происходит его подача на вторичную обмотку статора.
  • возбудитель обмотки необходим для генерирования небольшого количества переменного тока. Напрямую связан с вращающимся выпрямителем тока.
  • вращающийся выпрямитель тока осуществляет выпрямление переданного с возбудителя обмотки переменного тока с последующей конвертацией его в постоянный. Затем выполняется его подача на ротор, где в дополнение к вращающемуся магнитному полю создается и электромагнитное напряжение.
  • ротору отводится роль индукции большого количества переменного напряжения на обмотку статора.

Регулятор напряжения максимально задействован в начальном периоде запуска установки. Как только устройство выходит на полную работоспособность, модуль снижает выработку постоянного тока. В состоянии равновесия регулятор напряжения производит только необходимое количество мощности для поддержания электростанции в рабочем состоянии.

При увеличении нагрузки на электростанцию, регулятор напряжения выходит из состояния равновесия и активизирует свою работу, пока мощность оборудования не выйдет на показанный уровень потребления.

В нашем каталоге Вы можете ознакомиться с примерами дизельных генераторов с АВР >>

Установка выхлопа и охлаждения двигателя электростанции

Включает в себя:

  • Систему охлаждения электростанции, используемую для снижения уровня перегрева рабочего устройства. В качестве антифриза используется вода, водород, а также стандартный радиатор и вентилятор. За уровнем охлаждения следует периодически наблюдать, чтобы предотвратить аварийную ситуацию. Система требует постоянной очистки от загрязнений, выполняемую через каждые 600 часов работы. Следует обеспечить приток к устройству свежего воздуха: по действующим нормам в радиусе от электрогенерирующей установки должно быть не меньше метра свободного пространства.
  • Систему выхлопа. В процессе сгорания топлива образуется отработанный газ, содержащий высокотоксичные химические соединения. Очень важно создать эффективную систему утилизации выхлопов с использованием вытяжек.

Система смазки

Электростанция в комплекте имеет множество движущихся модулей, эффективность работы которых зависит и от содержания смазочных веществ. Для чего в помпе всегда находится специальное масло, уровень которого следует контролировать каждые 8 часов. Также необходимо строго отслеживать возможные протечки смазывающего вещества.

Зарядное устройство

Запуск электростанции осуществляется с помощью аккумулятора. Эта батарея должна быть всегда заряженной, за что отвечает зарядное устройство. Оно снабжает аккумулятор необходимым количеством «плавающей» энергии, которая и производит подзарядку емкости. Важно следить за уровнем этой энергии: снижение приведет к неполной зарядке аккумулятора, а повышенный уровень выведет его из строя.

Изготавливается зарядное устройство из нержавеющей стали, чтобы увеличить срок службы модуля. Его работа полностью автоматизирована и не требует вмешательства в параметры.

Постоянное напряжение на выходе определяется на уровне на 2.33 Вольт на ячейку.

Зарядное устройства обладает отдельным постоянным напряжением, которое может привнести сбои в нормальное функционирование электрооборудования.

Панель управления

Модуль снабжен упрощенным интерфейсом, на котором отображены все положения управляемых элементов. Каждый производитель предлагает собственный вариант панели.

Электрическое включение и выключение автоматически запускает электростанцию в рабочее состояние в случае необходимости. И отключает, когда деятельность устройства нецелесообразна.

Механическое устройство прибора отображает на датчиках наиболее важные параметры по давлению масла, температуре охлаждения, напряжению батареи, скорости вращения двигателя и длительности работы. При превышении нормы электростанция автоматически отключается.

Датчики мини электростанции отвечают за измерение выходного тока, напряжения и рабочей частоты. Иные виды контроля: переключатель частоты, фазовый селекторный переключатель и переключатель режимов двигателя.

Рама / Корпус

Основная конструкция служит генераторному оборудованию главной поддержкой и имеет выполненный под заказ корпус. В случаях, когда предполагается перемещение оборудования, рама может быть дополнительно оснащена шасси.

Для наглядности, вы можете посмотреть нашу продукцию из раздела передвижные дизельные генераторы >>

Генераторы тока: переменного и постоянного

Отсутствие электричества сегодня не становится проблемой как в быту, так и в промышленности. Широкий ассортимент генераторов тока позволяет решить проблему быстро, с минимальными трудозатратами. Резервные источники питания незаменимы в современной реальности — всему нужна электроэнергия.

Гарантии, что подачу электроэнергии не прекратят в самый неподходящий момент – не может дать ни она организация.

Поэтому резервная электростанция на базе генератора постоянного или переменного тока  — важное, а зачастую незаменимое оборудование, которое обеспечивает непрерывность производства, комфорт в бытовой сфере, безопасность и непрерывность технологических процессов.

Что такое генератор тока

Когда нет электрической энергии, требуется получить её из другого источника. Наши предки, например, использовали силу ветра, течения рек. Впрочем, сегодня подобную энергию применяют, если не жалко времени и сил на возведение плотин и ветряков.

Генераторы тока стандартно «работают» на топливе, за счет вращения обмотки в магнитном поле преобразовывая механическую энергию вращения в электричество. Ток возникает в замкнутом контуре, протекает по обмоткам, когда к электростанции подключается потребитель — именно так работает генератор тока.

В зависимости от того, как вращается магнитное поле (при неподвижном или подвижном проводнике) различают два типа этих электрических машин — генераторы постоянного или переменного тока.

В чем разница между постоянным и переменным током

Вспоминаем уроки физики. Электроток — заряженные микрочастицы, которые «бегут» в определенном направлении. У постоянного тока частицы движутся по прямой, в одном направлении от минуса к плюсу. У переменного движение электронов идет по синусоиде с определенной частотой (полярность между проводами меняется несколько раз за заданный промежуток времени).

Разница между движением заряженных частиц заложена в принцип работы генераторов электрического тока. Для простого обывателя можно сказать так: в розетке — переменный, в батарейке — постоянный. В качестве частного случая, с очень большим упрощением, можно сказать так: всё что с напряжением до 48 Вольт — всё постоянный, всё что от 100 до 500 Вольт — переменный.

Автор статьи и специалисты Mototech прекрасно осведомлены о том, что и постоянный ток может иметь практически любое напряжение (например, 380 Вольт на шине постоянного тока в ИБП), так же как и переменный ток для узких задач. 

В чем конструктивная разница между генераторами

Несмотря на то, что конечный результат работы электростанций один — потребитель получает электроэнергию, методы преобразования механической энергии в электродвижущую силу и электричество различаются. Элементы (комплектующие) также отличны.

Особенности конструкции генераторов переменного тока

Электростанция такого типа состоит из:

  • Внешней силовой рамы, изготовленной из высокопрочных сплавов. Корпус рассчитан на интенсивную нагрузку, возникающую при передаче магнитного потока от полюса к полюсу. Проще говоря: чугунный кожух не «пробивается» разрядами тока.
  • Магнитных полюсов, закрепленные на корпусе болтами или шпильками. На «плюс» и «минус» монтируется обмотка.
  • Статора. Остов с катушкой возбуждения изготавливают из ферромагнитных материалов, на сердечнике устанавливают магнитные полюса, которые и образуют магнитное поле.
  • Вращающегося ротора (якоря). Задача магнитопровода — снизить вихревые токи и повысить КПД генератора постоянного тока.
  • Коммутационного узла, оснащенного щетками (обычно изготовленными из графита) и коллекторными пластинами из меди.

Полюсов может быть несколько (число минусов и плюсов всегда идентично). Поэтому сегодня потребитель может купить электростанцию необходимой мощности и обеспечить электричеством как дом, так и промышленный объект.

Особенности конструкции генератора переменного тока

Конструктивной разницы в статоре и роторе между устройствами постоянного и переменного тока нет. Практически идентичны и силовые рамы. Существенное отличие в комплектации коммуникационного узла. Каждый выход механизма помимо щеток оснащен токопроводящими кольцами. «Закольцованный» ток движется по синусоиде и несколько раз в секунду достигает пика мощности. По типу устройства, характеристикам и принципу работы современные генераторы переменного тока делятся на синхронные и асинхронные.

Специфика синхронного устройства: скорость вращения ротора равна скорости вращения магнитного поля в рабочем зазоре.

Асинхронным машинам характерны:

  • отсутствие электрической связи с ротором;
  • вращение якоря под воздействием остаточного механизма статора;
  • измененная электрическая нагрузка на статоре.

Такие агрегаты могут быть однофазными и трехфазными.

Принцип работы генератора постоянного тока

Простейший  по конструкции генератор работает следующим образом:

  • Рамка вращается вокруг оси, расположенная на корпусе обмотка регулярно проходит через «минус» и «плюс» полюсов.
  • Каждый раз при достижении разнополюсных точек, происходит смена направления тока на противоположное.
  • Выходной цепи благодаря полукольцу, расположенному на коллекторном узле, создается постоянный ток.
  • С помощью щеток с положительного или отрицательного полюса снимается потенциал и по схеме передается потребителю.

Такая схема работает в простейшей конструкции, с одним плюсом и минусом, если положительных/отрицательных точек больше, ЭДС и ориентировочное количество электроэнергии рассчитываются по формуле.

К преимуществам генераторов постоянного тока относят:

  • небольшой вес и компактность агрегата;
  • возможность использовать в экстремальных условиях;
  • отсутствие потерь, связанных с вихревыми токами.

Минус: на большую мощность при использовании устройств такого типа рассчитывать не стоит.

Принцип работы генератора переменного тока

Устройства такого типа преобразуют механику в электроэнергию, вращая проволочную катушку в магнитном поле. Ток вырабатывается, когда силовые линии пересекают обмотку. До тех пор, пока магнитное поле соприкасается с проводником, в нем индуцируется электроток. Идентичный принцип действует и в случае, если рамка вращается относительно магнита, пересекая силовые линии.

Основные достоинства генераторов переменного тока

В электростанциях с синусоидальной подачей тока отсутствует реактивная мощность. То есть весь запас электроэнергии (с вычетом потерь на проводах) расходуется на нужды потребителя, а не на поддержание работоспособности устройства.

Плюсами использования генераторов переменного тока являются:

  • большая выходная мощность при одинаковых габаритах устройств постоянного и переменного тока;
  • выработка электроэнергии на низких скоростях вращения ротора;
  • проще конструкция и схема, соответственно, меньше узлов, нуждающихся в техобслуживании и ремонте;
  • конструкция токосъемного узла отличается большей надежностью;
  • больше эксплуатационный ресурс и меньше эксплуатационные затраты.

Дополнительное преимущество: агрегаты с трехфазным питанием можно использовать для питания высоковольтных потребителей.

Где применяются генераторы постоянного и переменного тока

Оба вида генераторов популярны в бытовой и промышленной сфере. Станции постоянного тока нашли применение в сфере транспорта. Так, в трамваях, троллейбусах обычно установлены двигатели, работающие на постоянном токе. Низковольтные устройства незаменимы для питания систем освещения в местах, где нет доступа к централизованной подачи электроэнергии.

Например, на борту самолетов. Если большая мощность — не основополагающая характеристика электростанции, то генераторы постоянного тока отлично справятся с питанием оборудования в учебных, медицинских учреждениях, лабораториях. Полноценные дизельные электростанции постоянного тока используются на аэродромах для зарядки и питания бортовых систем летной техники.

 

Электростанции переменного тока необходимы практически для всего остального. 99% того, что питается от централизованной сети — это устройства переменного тока. Соответственно, аварийное питание этих объектов так же должно осуществляться от соответствующего оборудования. 

Мototech специализируется на продаже электростанций различного типа. Поможем выбрать оптимальный вариант электростанции мощностью от 5 до 6000 кВА и конечно же, это будут электростанции переменного тока.

Мы обеспечим сопроводительные строительные и электромонтажные работы, грамотную пуско-наладку и обслуживание устройств.

С клиентами работают сотрудники с энергетическим образованием, поэтому квалифицированную информацию, ответы на вопросы и правильные расчеты характеристик в соответствии с вашими потребностями гарантируем.

Принцип работы генератора переменного и постоянного тока

Как известно, при прохождении тока через проводник (катушку) образуется магнитное поле. И, наоборот, при движении проводника вверх-вниз через линии магнитного поля возникает электродвижущая сила.

Если движение проводника медленное, то соответственно возникающий электрический ток будет слабым.

Значение тока прямо пропорционально напряженности магнитного поля, числу проводников, и соответственно скорости их движения.

Простейший генератор тока состоит из катушки, изготовленной в виде барабана, на которую намотана проволока. Катушка крепится на валу. Барабан с проволочной обмоткой еще называют якорем.

генератор тока

Для снятия тока с катушки, конец каждого провода припаивается к токособирающим щеткам. Эти щетки должны быть полностью изолированы друг от друга.

Электрический мотор

Генератор переменного тока

генератор переменного тока

При вращении якоря вокруг своей оси происходит изменение электродвижущей силы. Когда виток поворачивается на девяносто градусов сила тока максимальная. При следующем повороте падает к значению нуля.

генератор переменного тока

Полный оборот витка в генераторе тока создает период тока или, другими словами, переменный ток.

Генератор постоянного тока

Генератор постоянного тока

Для получения постоянного тока используется переключатель. Он представляет собой разрезанное кольцо на две части, каждая из которых присоединена к разным виткам якоря. При правильной установке половинок кольца и токособирающих щеток, за каждый период изменения силы тока в устройстве, во внешнюю среду будет поступать постоянный ток.

Генератор постоянного тока

Крупный промышленный генератор тока имеет неподвижный якорь, именуемый статором. Внутри статора вращается ротор, создающий магнитное поле.

Обязательно прочитайте статьи про автомобильные генераторы:

В любом автомобиле есть генератор тока, работающий при движении машины для питания электрической энергией аккумулятора, систем зажигания, фар, радиоприемника и т.д. Обмотка возбуждения ротора является источником магнитного поля. Для того чтобы магнитный поток обмотки возбуждения подводился без потерь к обмотке статора, катушки помещают в специальные пазы стальной конструкции.

автомобильный генератор тока

Таким образом, генератор тока является современным устройством, способный преобразовывать энергию механического движения в электрическую.

IT News

Дата Категория: Физика

Генератор превращает механическую энергию в электрическую путем вращения проволочной катушки в магнитном поле. Электрический ток вырабатывается и тогда, когда силовые линии движущегося магнита пересекают витки проволочной катушки {рисунок справа). Электроны {голубые шарики) перемещаются по направлению к положительному полюсу магнита, а электрический ток течет от положительного полюса к отрицательному. До тех пор, пока силовые линии магнитного поля пересекают катушку (проводник), в проводнике индуцируется электрический ток.

Аналогичный принцип работает и при перемещении проволочной рамки относительно магнита {дальний рисунок справа), т. е. когда рамка пересекает силовые линии магнитного поля.

Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное.

Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.

Принцип действия генератора переменного тока

Простейший генератор переменного тока состоит из проволочной рамки, вращающейся между полюсами неподвижного магнита. Каждый конец рамки соединен со своим контактным кольцом, скользящим по электропроводной угольной щетке (рисунок над текстом).

Индуцированный электрический ток течет к внутреннему контактному кольцу, когда соединенная с ним половина рамки проходит мимо северного полюса магнита, и, наоборот, к внешнему контактному кольцу, когда мимо северного полюса проходит другая половина рамки.

Трехфазный генератор переменного тока

Одним из наиболее экономически выгодных способов выработки сильного переменного тока является использование одного магнита, вращающегося относительно нескольких обмоток. В типичном трехфазном генераторе три катушки расположены равноудалено от оси магнита. Каждая катушка вырабатывает переменный ток, когда мимо нее проходит полюс магнита (правый рисунок).

Изменение направления электрического тока

Когда магнит вдвигается в проволочную катушку, он индуцирует в ней электрический ток. Этот ток заставляет стрелку гальванометра отклоняться в сторону от нулевого положения. Когда магнит вынимается из катушки, электрический ток изменяет свое направление на противоположное, и стрелка гальванометра отклоняется в другую сторону от нулевого положения.

Переменный ток

Магнит не будет индуцировать электрический ток до тех пор, пока его силовые линии не начнут пересекать проволочную петлю. Когда полюс магнита вдвигается в проволочную петлю, в ней индуцируется электрический ток. Если магнит прекращает движение, электрический ток (голубые стрелки) также прекращается (средняя диаграмма). Когда магнит вынимается из проволочной петли, в ней индуцируется электрический ток, текущий в противоположном направлении.

Как работает электрогенератор

Электрогенератор – один из составляющих элементов автономной электростанции, а также многих других. По сути, он и является самым важным элементом, без которого невозможна выработка электрической энергии. Электрогенератор преобразует вращательную механическую энергию в электрическую. Принцип его действия основан на так называемом явлении самоиндукции, когда в проводнике (катушке), двигающемся в силовых линиях магнитного поля возникает электродвижущая сила (ЭДС), которую можно (для лучшего понимания вопроса) назвать электрическим напряжением (хотя это и не одно и то же).

Составными частями электрического генератора являются магнитная система (в основном используются электромагниты) и система проводников (катушек).

Первая создает магнитное поле, а вторая, вращаясь в нем, преобразует его в электрическое. Дополнительно в генераторе есть еще и система отвода напряжения (коллектор и щетки, соединение катушек определенным образом).

Она собственно связывает генератор с потребителями электрического тока.

Получить электроэнергию можно и самому, проведя самый простейший опыт. Для этого нужно взять два разнополюсных магнита или повернуть два магнита разными полюсами друг к другу, и поместить между ними металлический проводник в виде рамки. К ее концам подключить небольшую (слабомощную) электрическую лампочку.

Если рамку начать вращать в ту или другую сторону, лампочка начнет светится, то есть на концах рамки появилось электрическое напряжение, а через ее спираль потек электрический ток.

Точно также происходит в электрогенераторе, стой лишь разницей, что в электрогенераторе более сложная система электромагнитов и намного сложнее катушка из проводников, обычно медных.

Электрогенераторы различаются как по типу привода, так и по виду выходного напряжения. По типу привода, который приводит его в движение:

  • Турбогенератор – приводится в движение при помощи паровой турбины или газотурбинного двигателя. В основном используются на больших (промышленных) электростанциях.
  • Гидрогенератор – приводится в движение при помощи гидравлической турбины. Применяется также на больших электростанциях, работающих посредством движения речной и морской воды.
  • Ветрогенератор – приводится в движение при помощи энергии ветра. Используется как в маленьких (частных) ветряных электростанциях, так и в больших промышленных.
  • Дизель-генератор и бензо-генератор приводятся в движение соответственно дизельным и бензиновым двигателем.

По виду выходного электрического тока:

  • Генераторы постоянного тока – на выходе получаем постоянный ток.
  • Генераторы переменного тока. Бывают однофазные и трехфазные, с однофазным и трехфазным выходным переменным током соответственно.

Различные типы генераторов имеют свои конструктивные особенности и практически несовместимые узлы. Объединяет их лишь общий принцип создания электромагнитного поля путем взаимного вращения одной системы катушек относительно другой либо относительно постоянных магнитов. Ввиду этих особенностей ремонт генераторов или их отдельных компонентов под силу только квалифицированным специалистам.

Электрические генераторы

Генераторы — электрические машины производящие электроэнергию

Электрогенераторы — это электрические машины, преобразующие механическую энергию в электрическую энергию.

Действие электрических генераторов основано на принципе электромагнитной индукции: в проводе, движущемся в магнитном поле, наводится электродвижущая сила — ЭДС. 

Электрические генераторы могут производить как постоянный, так и переменный ток. Слово генератор (generator) переводится с латыни как производитель.

Известными поставщиками генераторов на мировой рынок являются такие компании как: Mecc Alte, ABB, General Electric (GE), Siemens AG.

Электрические  генераторы постоянного тока 

Долгое время электрические генераторы постоянного тока были единственными типом источника электроэнергии.

В обмотке якоря генератора постоянного тока индуктируется переменный ток, который преобразуется в постоянный ток электромеханическим выпрямителем — коллектором. Однако процесс выпрямления тока коллектором связан с повышенным износом коллектора и щеток, особенно при большой частоте вращения якоря генератора.

1– коллектор; 2 – щетки; 3 – магнитные полюса; 4 – витки; 5 – вал; 6 – якорь 

Генераторы постоянного тока различают по характеру их возбуждения — независимого возбуждения и самовозбуждением.

В генераторах с электромагнитным возбуждением обмотка возбуждения, располагаемая на главных полюсах, подключается к независимому источнику питания.

Генераторы с магнитоэлектрическим возбуждением возбуждаются постоянными магнитами, из которых изготовляются полюсы машины.

Генераторы постоянного тока находят применение в тех отраслях промышленности, где по условиям производства предпочтительным является постоянный ток — на предприятиях металлургической и электролизной промышленности, на транспорте, судах и др. Генераторы постоянного тока используются на электростанциях в качестве возбудителей синхронных генераторов и источников постоянного тока.

Мощность генераторов постоянного тока может достигать десятка мегаватт.

Генераторы переменного тока

Генераторы переменного тока позволяют получать большие токи при достаточно высоком напряжении. В настоящее время имеется несколько типов индукционных генераторов.

Они состоят из электромагнита или постоянного магнита, создающие магнитное поле, и обмотки, в которой индуцируется переменная ЭДС. Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней.

Она пропорциональна также амплитуде переменного магнитного потока через каждый виток. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали.

Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, — в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси.

Поэтому он называется ротором.

Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим. Этим обеспечивается наибольшее значение потока магнитной индукции. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными.

Подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки. Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.

Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту.

Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том же валу.

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны. Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

Обмотки возбуждения синхронных генераторов бывают двух типов: с явнополюсными и неявнополюсными роторами. В генераторах с явнополюсными роторами полюса, несущие обмотки возбуждения, выступают из индуктора.

Генераторы такого типа рассчитаны на сравнительно низкие частоты вращения, для работы с приводом от поршневых паровых машин, дизельных двигателей, гидротурбин. Паровые и газовые турбины используются для привода синхронных генераторов с неявнополюсными роторами.

Ротор такого генератора представляет собой стальную поковку с фрезерованными продольными пазами для витков обмотки возбуждения, которые обычно выполняются в виде медных пластин.

Витки закрепляются в пазах, а поверхность ротора шлифуется и полируется для снижения уровня шума и потерь мощности, связанных с сопротивлением воздуха.

Обмотки генераторов по большей части делают трехфазными — на выходных зажимах генератора вырабатываются три синусоидальных напряжения переменного тока, поочередно достигающих своего максимального амплитудного значения. В механике редко встречается подобное сочетание движущихся частей, которые могли бы порождать энергию столь же непрерывно и экономично.

Мощные синхронные генераторы охлаждаются водородом. Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. 

Дополнительная тематическая информация: турбогенераторы

«Как работает генератор переменного тока?» – Яндекс.Кью

Генератор переменного тока превращает механическую энергию в электрическую, путем вращения проволочной катушки в магнитном поле. Электрический ток вырабатывается и тогда, когда силовые линии движущегося магнита пересекают витки проволочной катушки.

Электроны перемещаются по направлению к положительному полюсу магнита, а электрический ток течет от положительного полюса к отрицательному. До тех пор, пока силовые линии магнитного поля пересекают катушку (проводник), в проводнике индуцируется электрический ток.

Аналогичный принцип работает и при перемещении проволочной рамки относительно магнита, когда рамка пересекает силовые линии магнитного поля. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется.

Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное. Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.

Асинхронный двигатель состоит из статора — неподвижной части в которой крепится одна часть намоток(катушек) из проводов и ротора — подвижная часть, вал на котором крепится вторая часть намоток.

Намотки на валу к электросети не подключаются, а намотки статора подключается к электросети переменного тока. При появлении тока в катушках статора создаётся магнитное поле, а за счёт того, что ток переменный, магнитное поле изменяется. Из-за этого изменения возникают магнитные потоки, действующие на ротор, заставляющие его вращаться.

Прочитать ещё 1 ответУчёный, педагог, аспирант, ведущий инженер в области радиосвязи

Принцип работы достаточно простой.

В трансформаторе первичная и вторичная катушки соединены сердечником, первичная катушка находится в зарядке и создаёт изменяющееся магнитное поле которое возбуждает эдс (электричество) во второй катушке которое после некоторых преобразований поступает на аккумулятор вашего устройства.

Во времена всеобщей лжи говорить правду — это экстремизм

В моменты торможения основной двигатель электромобиля работает в режиме рекуперации, то есть отдаёт энергию обратно на аккумулятор.

Эта технология придумана далеко не вчера, такое же было и в гибридных авто и даже в электричках это используется. Уже десятки лет электрички тоже отдают энергию обратно в сеть, при торможении. Генератор не нужен, он лишь снизит общий КПД системы, отнимая мощность двигателя.

Таким образом, основной движок как раз и работает в режиме генератора лишь тогда, когда это имеет смысл.

Прочитать ещё 35 ответов

Магнитное поле состоит из виртуальных фотонов магнитного типа. Работает очень просто. Виртуальный фотон, попадая в объект, который способен его поглотить, передаёт этому объекту соответствующие энергию, импульс, момент импульса.

Именно так передаётся энергия от первичной обмотки трансформатора ко вторичной обмотке.

к.п.н., широкий круг интересов

Энергия — физическая величина, характеризующая состояние системы, общая количественная мера движения и взаимодействия всех видов материи. Если на физическую систему воздействовать силой, то энергия системы меняется.

Физическая величина «работа» является мерой действия силы, мерой изменения энергии системы. В результате совершения работы могут меняться потенциальная, кинетическая, внутренняя и другие виды энергии.

Например, если деформировать пружину, меняется ее потенциальная энергия, при этом совершается работа по деформации пружины. Когда меняется скорость автомобиль, меняется его кинетическая энергия в результате совершения работы газов горючей смеси в цилиндре.

Если сжать газ, меняется его внутренняя энергия в результате совершения работы по сжатию газа. Электрического тока в проводнике возникает в результате совершения работы сторонними силами в источнике тока и т.д. Совершение работы не является единственным способом изменения энергии системы.

Она может меняться также в результате передачи энергии другой системе. Но в целом энергия не возникает из ничего и не исчезает, она может только переходить из одной формы в другую, передаваться от одной системы другой.

Прочитать ещё 1 ответ

Индукционный генератор — Induction generator

Асинхронный генератор или асинхронный генератор представляет собой тип переменного тока (AC) электрический генератор , который использует принципы асинхронных двигателей для производства электроэнергии. Индукционные генераторы работают механически поворачивая их роторы быстрее , чем синхронная скорость.

Регулярный асинхронный двигатель переменного тока , как правило , может быть использован в качестве генератора, без каких — либо внутренних модификаций.

Асинхронные генераторы могут быть использованы в таких приложениях, как мини — гидро — электростанции, ветровые турбины, или в снижении газовых потоков высокого давления с более низким давлением, потому что они могут восстановить энергию с относительно простого управления.

Асинхронный генератор , как правило , получает энергию возбуждения от электрической сети. Из — за этого, индукционные генераторы не может , как правило , « черный старт » система распределения обесточено. Иногда, однако, они самовозбуждение с помощью конденсаторов поэтапной коррекции.

Принцип действия

Асинхронный генератор вырабатывает электрическую энергию , когда его ротор включается быстрее , чем синхронная скорость . Для типичного четыре-полюсного двигателя (две пары полюсов на статоре) , работающего на частоте 60 Гц электрической сети с, синхронная частота вращения составляет 1800 оборотов в минуту (RPM).

Же четыре-полюсный двигатель работает на сетке 50 Гц будет иметь синхронную скорость 1500 оборотов в минуту. Двигатель обычно оказывается немного медленнее , чем синхронная скорость; разница между синхронной и рабочей скорости, называется «проскальзывание» и обычно выражается в процентах от синхронной скорости.

Например, двигатель работает при 1450 оборотов в минуту , который имеет синхронной скорости 1500 оборотов в минуту работает на листке + 3,3%.

При нормальной работе двигателя, вращение потока статора быстрее , чем вращение ротора. Это вызывает поток статора для индукции ротора токи, которые создают поток ротора с магнитной полярности , противоположной статора. Таким образом, ротор валяется позади потока статора, с токами в роторе , индуцированной на частоте скольжения.

В процессе работы генератора, первичный двигатель (турбину или двигатель) приводит в движение ротор выше синхронной скорости (отрицательный) скольжения.

Поток статора все еще индуцирует тока в роторе, но так как противостоящий поток ротора теперь резки катушки статора, активный ток в катушках статора и двигатель в настоящее время работает как генератор, посылая энергию назад к электрической сети.

возбуждение

Эквивалентная схема индукционного генератора

Асинхронная машина требует извне подаваемого тока якоря. Поскольку поле ротора всегда отстает от статора поля, индукция машина всегда «потребляет» реактивную мощность , независимо от того, является ли он работает в качестве генератора или двигателя.

Источник тока возбуждения намагничивающего потока (реактивная мощность) для статора все еще требуется, чтобы вызвать ток ротора. Это может подаваться от электрической сети или, как только он начинает получать энергию от самого генератора.

Асинхронная машина может быть запущена заряжая конденсаторы с источником постоянного тока, в то время как генератор, как правило, обращаются на уровне или выше порождающих скорости. После того, как источник постоянного тока удален конденсаторы будут обеспечивать ток намагничивания, необходимый для начала производства напряжения.

Асинхронная машина, которая в последнее время работает также может самопроизвольно напряжения и ток из-за остаточный магнетизм, оставшимся в ядре.

активная мощность

Активная мощность доставлены в линии пропорциональна скольжению выше синхронной скорости. Полная номинальная мощность генератора достигается при очень малых значениях скольжения (в зависимости от двигателя, как правило, 3%).

При синхронной скорости 1800 оборотов в минуту, генератор не будет производить никакой силы. Когда скорость движения увеличивается до 1860 оборотов в минуту (типичный пример), полный выходной мощности производится.

Если первичный двигатель не может производить достаточно энергии, чтобы полностью управлять генератором, скорость останется где-то между 1800 и 1860 диапазоном оборотов.

Требуемая емкость

Конденсаторная батарея должна предоставить реактивную мощность двигателя при использовании в автономном режиме. Реактивная мощность подается должна быть равна или больше , чем реактивная мощность , что машина обычно рисует при работе в качестве двигателя.

Крутящий момент против скольжения

Основные фундаментальные индукционных генераторов является преобразование между механической энергии в электрическую энергию. Это требует внешнего вращающего момента , приложенного к ротору , чтобы повернуть его быстрее , чем синхронной скорости.

Тем не менее, увеличение крутящего момента на неопределенный срок , не приводит к неопределенному увеличению выработки электроэнергии.

Вращающееся поле магнитного момент возбуждается от якоря работает , чтобы противодействовать движение ротора и предотвращение чрезмерной скорости из — за индуцированное движение в противоположном направлении.

По мере того как скорость вращения двигателя увеличивается счетчик крутящего момент достигает максимальное значение крутящего момента (опрокидывающий момент) , что она не может работать до тех пор , прежде чем рабочие условия становятся нестабильными. В идеале, индукционные генераторы лучше всего работают в стабильной области между состоянием без нагрузки и максимального крутящего момента области.

Максимальный ток сквозного

На практике и без учета этого понятия во внимание, многие пользователи безуспешно применить эти принципы к фактическому развертыванию.

Почти в каждом случае, при той же активной сеточного напряжения, сила, которая производит генератор больше, чем мощность он потребляет, когда он находится на двигателе, полностью нагруженном состоянии, его номинальной мощности.

Иногда различие в нескольких сгибах. Чем выше мощность приведет к более высокой силе тока.

Для длительной работы, и подразумевается в его гарантии, каждый двигатель имеет «максимальный ток сквозной». Это значение силы тока, то плотность тока , происходят от максимального сквозного тока свойства внутреннего медного провода магнита и комбинированной конфигурации их соединений.

Без открытия до единицы , чтобы исследовать внутреннюю установку медных проводов, а разделение мощности его номинальной мощности по его номинальному напряжению может дать пользователям некоторые чувства его значения (W / V = A, где W является его номинальной мощностью в Вт, в является его номинальным напряжением, и а представляет собой значение силы тока).

Таким образом, требование сделать блок генерировать больше энергии, чем это номинальное должно быть более внимательно изучить.

Сетка и автономные соединения

Типичные соединения при использовании в качестве автономного генератора

В индукционных генераторах, требуется реактивная мощность для установления воздушного зазора магнитного потока обеспечиваются конденсаторной батареей , подключенной к машине в случае автономной системы , так и в случае присоединения он привлекает реактивную мощность от сети , чтобы поддерживать его воздушный зазор поток. Для системы подключенных к сети, частота и напряжение на машине будут продиктованы электрической сетью, так как она очень мала по сравнению со всей системой. Для автономных систем, частота и напряжения являются сложной функцией параметров машины, емкость используется для возбуждения, а значение нагрузки и типа.

Пользы

Индукционные генераторы часто используются в ветровых турбинах и некоторых микро гидроэнергетических установок из — за их способность производить полезную мощность при различной частоте вращения ротора. Индукционные генераторы механически и электрически проще , чем другие типы генераторов. Кроме того, они более прочные, не требуя никаких щеток или коммутаторов .

Ограничения

Асинхронный генератор подключен к системе конденсатора может генерировать достаточную реактивную мощность для работы на своем собственном.

Когда ток нагрузки превышает возможности генератора для подачи как намагниченность реактивной мощности и мощности нагрузки генератор будет немедленно прекратить для производства электроэнергии.

Нагрузка должна быть удалена, и асинхронный генератор перезапускается либо с источником постоянного тока, или если он присутствует, остаточный магнетизм в ядре.

Асинхронные генераторы особенно пригодны для генерирующих станций ветра, как и в этом случае скорость всегда является переменным фактором. В отличие от синхронных двигателей, асинхронные генераторы в зависимости от нагрузки и не может использоваться только для управления частотой сетки.

Пример применения

В качестве примера, рассмотрим использование 10 л.с., 1760 об / мин, 440 В, трехфазный асинхронный двигатель, как асинхронный генератор. Тока при полной нагрузке двигателя составляет 10 А, а коэффициент мощности при полной нагрузке составляет 0,8.

Требуемая емкость на фазу, если конденсаторы соединены в треугольник:

Полная мощность S = √ 3 EI = 1,73 × 440 × 10 = 7612 ВА
Активная мощность P = S Cos в = 7612 × 0,8 = 6090 Вт

Реактивная мощность Q = = 4567 ВАР S 2 — п 2 { Displaystyle { SQRT {S ^ {2} -Р ^ {2}}}}

Для машины, чтобы работать как асинхронный генератор, конденсатор банк должен поставить минимальные 4567/3 фазы = 1523 VAR на фазу. Напряжение на конденсаторе 440 В, поскольку конденсаторы соединены в треугольник.

Емкостный ток Ic = Q / Е = 1523/440 = 3,46
Емкостное реактивное сопротивление на фазу Xc = E / Ic = 127 Ом

Минимальная емкость на фазы:

C = 1 / (2 * π * F * Xc) = 1 / (2 * 3,141 * 60 * 127) = 21 мкФ.

  • Если нагрузка также поглощает реактивную мощность, конденсаторный банк должен быть увеличен в размере, чтобы компенсировать.
  • Prime скорость движителя должна быть использована для генерации частоты 60 Гц:
  • Как правило, скольжение должно быть похоже на значение полной нагрузки, когда машина работает в качестве двигателя, но отрицательной (работу генератора):

если Ns = 1800, можно выбрать N = Ns + 40 оборотов в минуту
Требуемая скорость простой двигатель N = 1800 + 40 = 1840 оборотов в минуту.

Смотрите также

Заметки

Рекомендации

  • Электрические машины, приводы и Power Systems , 4 — е издание, Теодор Wildi, Prentice Hall, ISBN  0-13-082460-7 , стр 311-314.

внешняя ссылка

  • Тестирование автономных и присоединенной асинхронный генератор

Как работает газовый генератор?

О том, что газ является одним из самых дешевых источников тепла, знают все. Эта характеристика лежит в основе все возрастающей популярности газовых генераторов в быту, на строительстве и в промышленности.

Газовая мини-электростанция – принцип работы

Последовательность процессов получения электроэнергии, преобразуя для этого тепловую – аналогична протекающим в дизельных и бензиновых электрогенераторах. Превращение тепла, выделяемого при сгорании газа, в механическую энергию происходит в рабочей камере двигателя внутреннего сгорания. Выработка электричества совершается в генераторе.

Востребованным типом генераторной установки на газовом топливе является ее модификация с автозапуском. Автоматическое включение мини-электростанции происходит без вмешательства оператора при разрыве цепи в центральной системе энергоснабжения.

Оборудование может использоваться:

  • в качестве резервного источника электроснабжения;
  • как основной поставщик энергии;
  • для сезонного включения на даче, летнем загородном доме.

Основное достоинство данного типа генератора – в возможности работать как когенерационная установка, т. е. одновременно производить как электричество, так и тепло.

Два способа как запитать электрогенератор на газу

Многофункциональную генераторную установку можно подключить к газовой магистрали, а также заправлять из баллона со сжиженным газом.

Первый способ – более сложный и займет много времени. Проведение процедуры включает разработку проекта, сбор всей необходимой документации и согласование проекта подключения. Но в результате потребитель будет иметь полную энергонезависимость, при этом вырабатываемая электроэнергия будет гораздо дешевле, чем при использовании бензо- или дизель-генераторов.

При отсутствии возможности магистрального подключения запитать электрогенератор можно баллонным газом. Соединение генератора с баллоном производится посредством использования гибкого газопроводного шланга без перегибов. Напрямую, без газового редуктора соединение не допускается.

Газ является взрывоопасным веществом. При эксплуатации газового электрогенератора необходимо соблюдать все меры безопасности, следить за соблюдением герметичности в местах сопряжения шланга, не допуская утечки газа.


Electric Generator: Основное введение в принцип работы генераторов, их особенности и применение

Как работают электрические генераторы?
Электрогенератор — это устройство, которое используется для производства электроэнергии, которая может храниться в батареях или может подаваться непосредственно в дома, магазины, офисы и т. Д. Электрогенераторы работают по принципу электромагнитной индукции. Катушка-проводник (медная катушка, плотно намотанная на металлический сердечник) быстро вращается между полюсами магнита подковообразного типа.Катушка проводника вместе с ее сердечником называется якорем. Якорь соединен с валом источника механической энергии, такого как двигатель, и вращается. Требуемая механическая энергия может быть обеспечена двигателями, работающими на таких видах топлива, как дизельное топливо, бензин, природный газ и т. Д., Или за счет возобновляемых источников энергии, таких как ветряная турбина, водяная турбина, турбина на солнечной энергии и т. Д. Когда змеевик вращается, он разрезает магнитное поле, которое лежит между двумя полюсами магнита. Магнитное поле будет мешать электронам в проводнике, вызывая в нем электрический ток.

Характеристики электрогенераторов

  • Мощность: Электрогенераторы с широким диапазоном выходной мощности легко доступны. Как низкие, так и высокие требования к мощности можно легко удовлетворить, выбрав идеальный электрический генератор с соответствующей выходной мощностью.
  • Топливо: Для электрогенераторов доступны различные варианты топлива, такие как дизельное топливо, бензин, природный газ, сжиженный нефтяной газ и т. Д.
  • Портативность: На рынке доступны генераторы, на которых установлены колеса или ручки, чтобы их можно было легко перемещать с одного места на другое.
  • Шум: Некоторые модели генераторов имеют технологию снижения шума, которая позволяет держать их в непосредственной близости без каких-либо проблем с шумовым загрязнением.

Применение электрогенераторов
  • Электрогенераторы полезны для домов, магазинов, офисов и т. Д., Которые часто сталкиваются с перебоями в подаче электроэнергии. Они действуют как резервные, чтобы гарантировать бесперебойное электропитание устройств.
  • В удаленных районах, где нет доступа к электричеству из основной линии, электрические генераторы действуют как основной источник питания.
  • При работе на проектных площадках, где нет доступа к электричеству из сети, электрические генераторы могут использоваться для питания машин или инструментов.

Обратитесь к ближайшим к вам ближайшим к вам ближайшим дилерам по производству генераторов и получите бесплатные расценки
(Единый пункт назначения для MSME, ET RISE предоставляет новости, обзоры и анализ по GST, экспорту, финансированию, политике и управлению малым бизнесом.)

Загрузите приложение The Economic Times News, чтобы получать ежедневные обновления рынка и новости бизнеса в реальном времени.

Как генератор вырабатывает электроэнергию? Статья о том, как работают генераторы

Генераторы

— это полезные устройства, которые подают электроэнергию во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание бизнес-операций.Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях. В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.

Как работает генератор?

Электрический генератор — это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.

Важно понимать, что генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию, чтобы заставить движение электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь. Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, рассматривая генератор как аналог водяного насоса, который вызывает поток воды, но фактически не «создает» воду, текущую через него.

Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг. Фарадей обнаружил, что вышеупомянутый поток электрических зарядов может быть вызван перемещением электрического проводника, такого как провод, содержащий электрические заряды, в магнитном поле. Это движение создает разность напряжений между двумя концами провода или электрического проводника, что, в свою очередь, вызывает протекание электрических зарядов, генерируя электрический ток.

Основные компоненты генератора

Основные компоненты электрогенератора можно в общих чертах классифицировать следующим образом:

  • Двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Системы охлаждения и выхлопа
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Основной узел / рама
Ниже приводится описание основных компонентов генератора.
Двигатель

Двигатель является источником подводимой механической энергии к генератору. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может выдать генератор. При оценке двигателя вашего генератора необходимо учитывать несколько факторов. Для получения полных рабочих характеристик двигателя и графиков технического обслуживания необходимо проконсультироваться с производителем двигателя.

(a) Тип используемого топлива — двигатели генераторов работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженном или газообразном состоянии) или природный газ. Меньшие двигатели обычно работают на бензине, в то время как более крупные двигатели работают на дизельном топливе, жидком пропане, пропане или природном газе. Некоторые двигатели также могут работать на двойной подаче дизельного и газового топлива в двухтопливном режиме.

(b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV — двигатели с верхним расположением клапанов отличаются от других двигателей тем, что впускные и выпускные клапаны двигателя расположены в головке цилиндра двигателя, а не на двигателе. блокировать.Двигатели OHV имеют ряд преимуществ перед другими двигателями, такими как:

• Компактная конструкция
• Более простой рабочий механизм
• Прочность
• Удобство в эксплуатации
• Низкий уровень шума при работе
• Низкий уровень выбросов

Однако OHV-двигатели также дороже других двигателей.

(c) Чугунная гильза (CIS) в цилиндре двигателя — CIS — это накладка в цилиндре двигателя.Это снижает износ и обеспечивает долговечность двигателя. Большинство двигателей OHV оснащены системой CIS, но очень важно проверить наличие этой особенности в двигателе генератора. CIS — это не дорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.

Генератор

Генератор переменного тока, также известный как «генератор», представляет собой часть генератора, которая вырабатывает электрическую мощность за счет механического входа, подаваемого двигателем.Он содержит набор неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, которое, в свою очередь, генерирует электричество.

(а) Статор — это стационарный компонент. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.

(b) Ротор / Якорь — это движущийся компонент, который создает вращающееся магнитное поле одним из следующих трех способов:

(i) Индукционным способом — они известны как бесщеточные генераторы переменного тока и обычно используются в больших генераторах.
(ii) Постоянными магнитами — это обычное дело в небольших генераторах переменного тока.
(iii) Использование возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через совокупность токопроводящих контактных колец и щеток.

Ротор создает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмотками статора. Это производит переменный ток (AC) на выходе генератора.

При оценке генератора переменного тока необходимо учитывать следующие факторы:

(a) Металлический корпус по сравнению с пластиковым корпусом — цельнометаллическая конструкция обеспечивает долговечность генератора.Пластиковые корпуса со временем деформируются, что приводит к обнажению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.

(b) Шариковые подшипники по сравнению с игольчатыми подшипниками — шариковые подшипники предпочтительнее и служат дольше.

(c) Бесщеточная конструкция — генератор переменного тока, в котором не используются щетки, требует меньшего обслуживания, а также производит более чистую мощность.

Топливная система

Топливный бак обычно имеет достаточную емкость, чтобы генератор работал в среднем от 6 до 8 часов.В случае небольших генераторных установок топливный бак является частью опорной рамы генератора или устанавливается наверху рамы генератора. Для коммерческого использования может потребоваться монтаж и установка внешнего топливного бака. Все подобные установки должны быть одобрены Управлением городского планирования. Щелкните следующую ссылку для получения дополнительных сведений о топливных баках для генераторов.

Общие характеристики топливной системы включают следующее:

(a) Трубопровод от топливного бака к двигателю — линия подачи направляет топливо из бака в двигатель, а обратная линия направляет топливо от двигателя в бак.

(b) Вентиляционная труба для топливного бака — Топливный бак имеет вентиляционную трубу для предотвращения повышения давления или вакуума во время заправки и опорожнения бака. При заправке топливного бака убедитесь, что металл-металл соприкасается с заправочной форсункой и топливным баком, чтобы избежать искр.

(c) Переливное соединение от топливного бака к сливной трубе — это необходимо для того, чтобы любой перелив во время заправки бака не вызвал разлива жидкости на генераторную установку.

(d) Топливный насос — перекачивает топливо из основного накопительного бака в дневной.Топливный насос обычно работает от электричества.

(e) Топливный водоотделитель / топливный фильтр — он отделяет воду и посторонние вещества от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.

(f) Топливная форсунка — распыляет жидкое топливо и распыляет необходимое количество топлива в камеру сгорания двигателя.


Регулятор напряжения
Как следует из названия, этот компонент регулирует выходное напряжение генератора.Механизм описан ниже для каждого компонента, который участвует в циклическом процессе регулирования напряжения.

(1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток — регулятор напряжения принимает небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбудителя.

(2) Обмотки возбудителя: преобразование постоянного тока в переменный — обмотки возбудителя теперь работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток.Обмотки возбудителя подключены к блокам, известным как вращающиеся выпрямители.

(3) Вращающиеся выпрямители: преобразование переменного тока в постоянный — они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор / якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора / якоря.

(4) Ротор / якорь: преобразование постоянного тока в переменное напряжение — ротор / якорь теперь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.

Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения вырабатывает меньше постоянного тока. Когда генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, достаточный для поддержания выходной мощности генератора на полном рабочем уровне.

Когда вы добавляете нагрузку к генератору, его выходное напряжение немного падает.Это вызывает действие регулятора напряжения, и начинается вышеуказанный цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не достигнет своей первоначальной полной рабочей мощности.

Система охлаждения и выпуска
(а) Система охлаждения
Продолжительное использование генератора вызывает нагрев различных его компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, выделяемого в процессе.

Неочищенная / пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше.Водород иногда используется в качестве хладагента для обмоток статора больших генераторных установок, поскольку он более эффективно поглощает тепло, чем другие хладагенты. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему очень большие генераторы и малые электростанции часто имеют рядом с собой большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генераторе и работают как основная система охлаждения.

Необходимо ежедневно проверять уровень охлаждающей жидкости в генераторе. Систему охлаждения и насос неочищенной воды следует промывать через каждые 600 часов, а теплообменник следует очищать через каждые 2400 часов работы генератора. Генератор следует размещать на открытом и вентилируемом месте с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) требует, чтобы со всех сторон генератора оставалось минимум 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.

(б) Выхлопная система
Выхлопные газы, выделяемые генератором, такие же, как выхлопные газы любого другого дизельного или газового двигателя, и содержат высокотоксичные химические вещества, с которыми необходимо обращаться должным образом. Следовательно, важно установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент невозможно переоценить, поскольку отравление угарным газом остается одной из наиболее частых причин смерти в пострадавших от урагана районах, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.

Выхлопные трубы обычно изготавливаются из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно присоединяются к двигателю с помощью гибких соединителей, чтобы минимизировать вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба заканчивается снаружи и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не подключена к выхлопной системе любого другого оборудования.Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, нужно ли для эксплуатации вашего генератора получить разрешение от местных властей, чтобы убедиться, что вы соблюдаете местное законодательство и защитите себя от штрафов и других санкций.


Смазочная система
Поскольку генератор содержит движущиеся части в своем двигателе, он требует смазки для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе.Уровень смазочного масла следует проверять каждые 8 ​​часов работы генератора. Вы также должны проверять отсутствие утечек смазки и менять смазочное масло каждые 500 часов работы генератора.


Зарядное устройство
Генератор st e работает от батареи. Зарядное устройство поддерживает заряд аккумуляторной батареи генератора, подавая на нее точное «плавающее» напряжение. Если напряжение холостого хода очень низкое, аккумулятор останется недозаряженным.Если напряжение холостого хода очень высокое, это сократит срок службы батареи. Зарядные устройства для аккумуляторов обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо регулировок или изменений каких-либо настроек. Выходное напряжение постоянного тока зарядного устройства установлено на уровне 2,33 В на элемент, что является точным значением напряжения холостого хода для свинцово-кислотных аккумуляторов. Зарядное устройство аккумулятора имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.


Панель управления
Это пользовательский интерфейс генератора, в котором находятся электрические розетки и элементы управления. В следующей статье представлены дополнительные сведения о панели управления генератором. Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из них упомянуты ниже.

(a) Электрический запуск и выключение — Панели управления автоматическим запуском автоматически запускают ваш генератор при отключении электроэнергии, контролируют генератор во время работы и автоматически отключают агрегат, когда он больше не нужен.

(b) Манометры двигателя. Различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы. Постоянное измерение и мониторинг этих параметров позволяет автоматически отключать генератор, когда любой из них превышает соответствующие пороговые уровни.

(c) Датчики генератора. На панели управления также есть счетчики для измерения выходного тока и напряжения, а также рабочей частоты.

(d) Другие элементы управления — переключатель выбора фазы, переключатель частоты и переключатель управления двигателем (ручной режим, автоматический режим) среди прочего.

Основной узел / рама

Все генераторы, переносные или стационарные, имеют индивидуальные корпуса, которые обеспечивают структурную опору основания. Рама также позволяет заземлить генерируемые элементы в целях безопасности.

Как работают генераторы | Электрогенераторы

Какие части электрического генератора?

Генератор состоит из девяти частей, и все они играют роль в передаче энергии туда, где она больше всего нужна.Детали генератора:

  1. Двигатель. Двигатель подает энергию на генератор. Мощность двигателя определяет, сколько электроэнергии может обеспечить генератор.
  1. Генератор . Здесь происходит преобразование механической энергии в электрическую. Генератор, также называемый «genhead», содержит как движущиеся, так и неподвижные части, которые работают вместе, создавая электромагнитное поле и движение электронов, которые генерируют электричество.
  1. Топливная система . Топливная система позволяет генератору производить необходимую энергию. Система включает топливный бак, топливный насос, трубопровод, соединяющий бак с двигателем, и возвратный трубопровод. Топливный фильтр удаляет мусор до того, как он попадет в двигатель, а форсунка нагнетает топливо в камеру сгорания.
  1. Регулятор напряжения . Этот компонент помогает контролировать напряжение вырабатываемой электроэнергии.Это также помогает преобразовать электричество из переменного тока в постоянный, если это необходимо.
  1. Системы охлаждения и выхлопа . Генераторы выделяют много тепла. Система охлаждения предотвращает перегрев машины. Выхлопная система направляет и удаляет дымовую форму во время работы.
  1. Система смазки . Внутри генератора много маленьких движущихся частей. Очень важно смазать их соответствующим образом моторным маслом, чтобы обеспечить бесперебойную работу и защитить их от чрезмерного износа.Уровни смазки следует проверять регулярно, каждые 8 ​​часов работы.
  1. Зарядное устройство . Батареи используются для запуска генератора. Зарядное устройство для батареи — это полностью автоматический компонент, который обеспечивает готовность батареи к работе в случае необходимости, подавая на нее постоянное низкое напряжение.
  1. Панель управления . Панель управления контролирует все аспекты работы генератора от скорости запуска и работы до выходов.Современные устройства даже способны определять падение или отключение электроэнергии и могут автоматически запускать или выключать генератор.
  1. Основной узел / рама . Это корпус генератора. Это та часть, которую мы видим; структура, которая держит все это на месте.

Какое топливо нужно для электрогенераторов?

Современные электрические генераторы доступны во многих вариантах заправки. Дизель-генераторы — самые популярные промышленные генераторы на рынке.К бытовым генераторам чаще всего относятся: генераторы природного газа или генераторы пропана, в то время как портативные генераторы меньшего размера обычно работают на бензине, дизельном топливе или пропане. Некоторые генераторы могут работать на двух видах топлива и работают как на бензине, так и на дизельном топливе.

Топливные баки генератора

Топливная система обеспечивает генератор необходимым сырьем для выработки электроэнергии, инициируя процесс внутреннего сгорания. Без топлива не может происходить горение, и генератор не может преобразовывать механическую энергию в электрическую.Топливо для генератора необходимо хранить на месте, чтобы генератор можно было сразу же запустить в работу, когда это необходимо.

В зависимости от типа генератора и его применения топливные баки могут быть установлены на раме генератора или могут быть внешними баками, расположенными далеко от самого генератора. Как правило, чем больше генератор и чем дольше он должен работать, тем больше топливный бак. Топливо для генератора хранится в баках разной емкости, в зависимости от предполагаемого использования генератора и требуемой мощности.Танки можно размещать над землей, под землей или под базой. Резервуары вспомогательной базы предназначены для хранения менее 1000 галлонов топлива и расположены над землей, но ниже основания генераторной установки.

Наземные и подземные резервуары для хранения топлива генератора — лучший выбор для нужд большой емкости. Подземные резервуары для хранения более дороги в установке, но они, как правило, служат дольше, поскольку защищены от непогоды. У обоих типов резервуаров для хранения топлива есть свои плюсы и минусы, но вы не будете одиноки в принятии решения.Топливные баки генераторов и топливные системы генераторов должны соответствовать ряду требований и разрешений, прежде чем их можно будет установить, независимо от того, предназначена ли установка для жилого или коммерческого использования.

Основной кодекс, регулирующий топливные баки генератора в Соединенных Штатах, — это Кодексы и стандарты Национальной ассоциации противопожарной защиты (NFPA), в частности разделы NFPA 30 и NFPA 37. Таким образом, все запросы на топливный бак генератора должны подаваться в Государственную пожарную службу. Маршалла для утверждения.

Чтобы определить минимальную требуемую емкость топливного бака, вам нужно подумать о том, как вы собираетесь использовать генератор.В случае кратковременных или нечастых отключений электроэнергии может быть приемлемым резервный генератор с меньшим резервуаром для хранения, однако вам придется наполнять резервуар чаще, чем вам нужно будет пополнять резервуары большего размера. Резервуары большего размера могут потребоваться, если вы планируете снабжать энергией крупный коммерческий объект основным генератором или если вы подвержены длительным и частым перебоям в подаче электроэнергии.

Ваш поставщик генератора может помочь вам определить оптимальный размер топливного бака, чтобы у вас было достаточно топлива, когда оно вам понадобится.Еще одна вещь, о которой следует помнить как при покупке генератора, так и при выборе топливного бака для генератора, — это стоимость и доступность топлива в вашем регионе. Перед покупкой генератора рекомендуется поговорить с местными поставщиками топлива, чтобы получить лучшее представление о стоимости и логистике, связанных с получением топлива для генератора.

Выхлопные системы и средства контроля выбросов генератора

Поскольку машины, работающие на ископаемом топливе и работающие непрерывно, даже если это время работы нестабильно, генераторы должны быть оснащены компонентами для их охлаждения и фильтрации выбросов.Системы охлаждения и вентиляции генераторов снижают и отводят тепло различными способами:

  • Вода. Для охлаждения компонентов генератора можно использовать воду. Этот тип системы охлаждения обычно ограничен конкретными ситуациями или очень большими установками мощностью 2250 кВт и выше.
  • Водород. Водород — очень эффективный хладагент, который используется для поглощения тепла, выделяемого работающим генератором. Тепло передается теплообменнику и вторичному охлаждающему контуру, которые часто расположены в больших местных градирнях.
  • Радиаторы и вентиляторы. Генераторы меньшего размера охлаждаются за счет комбинации стандартного радиатора и вентилятора.

Дымовые газы, выделяемые генераторами, аналогичны выхлопным газам других бензиновых или дизельных двигателей. В их состав входят токсичные химические вещества, такие как углекислый газ, который необходимо отфильтровать и удалить из выбросов. Выхлопная система генератора справляется с этой задачей.

Выхлопные трубы подсоединены к двигателю, где они направляют дым вверх, наружу и от генератора и установки.Труба выходит за пределы здания, в котором находится генератор, и должна заканчиваться далеко от дверей, окон и других зон забора воздуха.

Помимо выхлопных систем, некоторые генераторы подлежат федеральному контролю за выбросами. Контролируемые выбросы генератора: оксид азота (NOx), углеводороды, оксид углерода (CO) и твердые частицы.

В целом аварийные генераторы и генераторы, которые работают менее 100 часов в год, не подпадают под федеральные требования по выбросам от генераторов, однако постоянно установленные основные генераторы и резервные генераторы подчиняются федеральным требованиям по выбросам в соответствии с тремя правилами EPA:

  • Национальный стандарт выбросов опасных загрязнителей воздуха (NESHAP) — для поршневых двигателей внутреннего сгорания (RICE). 40 Свод федеральных правил, часть 63, подраздел ZZZZ. Также известно как правило RICE.
  • New Source Performance Standards (NSPS) — Стандарты производительности для стационарных двигателей с искровым зажиганием . 40 CFR, часть 60, подраздел JJJJ. Также известно как правило NSPS с искровым зажиганием.
  • Стандарты характеристик стационарных двигателей внутреннего сгорания с воспламенением от сжатия . 40 Свода федеральных правил, часть 60, подраздел IIII. Также известно как правило сжатия зажигания NSPS.

Хорошая новость заключается в том, что многие новые генераторы уже соответствуют стандартам выбросов от генераторов благодаря производственным усовершенствованиям. Старые генераторы могут быть заменены на устаревшие, что делает их освобожденными от федеральных правил и подчиняется только государственным и местным стандартам выбросов. Требования к контролю выбросов различаются в зависимости от производителя, размера генератора и даты производства, поэтому лучший способ определить ваши требования к выбросам — поговорить с продавцом или производителем генератора.

Для более глубокого изучения нормативов выбросов см. Этот официальный документ Cummins «Влияние нормативов выбросов Уровня 4 на энергетическую отрасль».

Панель управления генератора и автоматический переключатель резерва (АВР)

Одним из важнейших компонентов современных генераторов является панель управления генератором. Панель управления — это мозг генератора, а также пользовательский интерфейс генератора; точка, в которой вы будете получать доступ и управлять работой генератора.

Многие панели управления оснащены автоматическим переключателем резерва (АВР), который постоянно контролирует поступающую мощность. Когда уровень мощности падает или полностью отключается, ATS сигнализирует панели управления о запуске генератора.Аналогичным образом, когда поступающее питание восстанавливается, ATS сигнализирует панели управления о необходимости выключить генератор и повторно подключается к электросети.

В дополнение к круглосуточному мониторингу панель управления генератором предоставляет менеджерам сайта обширную информацию:

  • Датчики двигателя предоставляют важную информацию об уровнях масла и жидкости, напряжении аккумуляторной батареи, частоте вращения двигателя и часах работы. Во многих генераторах панель даже автоматически отключает двигатель, когда обнаруживает проблему с уровнями жидкости или другими аспектами работы генератора.
  • Генераторные датчики предоставляют ценную информацию о выходном токе, напряжении и рабочей частоте.

Какой вид обслуживания требует генератор?

Генераторы

представляют собой двигатели и требуют регулярного технического обслуживания двигателя для обеспечения надлежащей работы. Поскольку многие генераторы обеспечивают резервное питание в случае аварийных ситуаций, операторам крайне важно проводить регулярные проверки и инспекции своих генераторных установок, чтобы гарантировать, что машина будет работать по мере необходимости, когда это необходимо.

Лучшая программа обслуживания генератора — та, которую рекомендует производитель, но, как минимум, все планы обслуживания генератора должны включать регулярное и текущее:

  • Осмотр и снятие изношенных деталей.
  • Проверка уровней жидкости, включая охлаждающую жидкость и топливо.
  • Осмотр и чистка аккумуляторной батареи.
  • Проведение теста банка нагрузки на генераторе и автоматическом переключателе.
  • Проверка панели управления на точность показаний и индикаторов.
  • Замена воздушного и топливного фильтров.
  • Осмотр системы охлаждения.
  • Смазка деталей по мере необходимости.

Обязательно ведите журнал обслуживания для ведения записей. Включите все показания, уровни жидкости и т. Д., А также дату и показания счетчика моточасов генератора. Эти записи можно сравнить с будущими записями и использовать для помощи в обнаружении отклонений или изменений в работе, которые могут указать вам на скрытые проблемы, которые могут стать серьезными проблемами, если их не проверить.

Генераторы

могут прослужить десятилетия при правильном обслуживании. Эти простые небольшие вложения со временем окупятся за счет экономии на дорогостоящем ремонте или даже полной замене генератора. Если техническое обслуживание генератора не является делом, которым вы можете управлять самостоятельно, многие дилеры генераторов предлагают контракты на техническое обслуживание или могут порекомендовать квалифицированных специалистов по техническому обслуживанию, которые помогут вам поддерживать генератор в отличном состоянии год за годом. Это время и деньги, потраченные не зря, если они могут поддерживать ваш бизнес в рабочем состоянии при отключении электроэнергии.

Как работает генератор для производства электроэнергии?

Генератор преобразует механическую энергию в электрическую. Вы можете использовать свои генераторы во множестве приложений, включая портативные источники питания и резервные источники питания. Для питания фонарей на велосипеде можно использовать небольшие генераторы. А очень большие поставляют подавляющее большинство энергии в наши электрические сети.

Генераторы работают на дизельном топливе, бензине, пропане и даже на энергии человека. Несмотря на различные источники энергии, принцип работы большого дизельного генератора Caterpillar аналогичен принципу работы небольшого генератора.Но как генератор производит электричество?

Это может помочь понять, что генераторы не столько вырабатывают электроэнергию, сколько помогают ей. Это достигается за счет электромагнитных принципов, впервые открытых Майклом Фарадеем в начале 1830-х годов. Работа Фарадея считалась очень важной. Говорят, Альберт Эйнштейн держал его фотографию на стене в своем кабинете.

Фарадей обнаружил, что при намотке двух изолированных катушек проволоки вокруг кольца из железа и пропускании тока через одну из них ток вводился во вторую катушку проволоки.Это основной принцип двигателей и генераторов по сей день. Это электромагнитная индукция.

Как компоненты генераторной установки работают вместе?

Компоненты генератора работают вместе, чтобы преобразовать механическую энергию в электричество. Для простоты мы используем двигатель в качестве источника механической энергии.

  • Двигатель: Чем мощнее двигатель в генераторе, тем большую мощность он будет производить. Генераторы большего размера работают на дизельном топливе.
  • Генератор переменного тока: Генератор переменного тока включает в себя неподвижный компонент, называемый статором, и второй подвижный компонент, называемый ротором. Ротор создает вращающееся магнитное поле одним из нескольких способов. Обычно это зависит от размера генератора. Например, большие генераторы создают магнитное поле за счет индукции. В небольших генераторах можно использовать постоянный магнит. В генераторах переменного тока также может использоваться возбудитель, питаемый от небольшого источника постоянного тока (DC) с использованием колец и щеток.
  • Регулятор напряжения: Регулятор напряжения регулирует напряжение, создаваемое генератором.

Вы должны прочитать подробную информацию о том, как работают компоненты дизельного, переменного, постоянного, электрического и ветряного генератора.

Узнать больше о: Продажа бывших в употреблении генераторов

Как генераторы создают или производят электричество?

Когда двигатель вырабатывает механическую мощность, регулятор напряжения работает с генератором в четырехступенчатом цикле, который повторяется до тех пор, пока он не достигнет максимальной мощности.Сначала регулятор напряжения принимает небольшое количество переменного напряжения, затем преобразует его в постоянный ток, который он отправляет на вторичные обмотки возбудителя статора. Эти вторичные обмотки возбудителя теперь имитируют первичные обмотки статора, создавая дополнительное напряжение переменного тока. Между вторичными обмотками возбудителя и вращающимися выпрямителями существует связь. Он преобразует переменный ток из обмоток в постоянный, который подается на ротор. Это создает электромагнитное поле, которое является частью существующего вращающегося магнитного поля ротора.Ротор индуцирует это более высокое напряжение переменного тока на обмотках статора, что, в свою очередь, создает более высокое напряжение переменного тока от генератора.

Цикл продолжается до тех пор, пока не будет достигнута максимальная мощность генератора. По мере увеличения мощности регулятор напряжения будет производить все меньше и меньше постоянного тока. При оптимальной мощности генерации постоянного тока достаточно, чтобы поддерживать его работоспособность. Когда мощность уменьшается, происходит добавление нагрузки. Например, регулятор напряжения вступает в действие, снова создавая цикл для поддержания уровня мощности на допустимом уровне.Это будет продолжаться до тех пор, пока генератор не отключится намеренно из-за нехватки топлива или, возможно, из-за механической поломки.

Другие аспекты больших генераторов

Хотя выше описывается принцип работы генератора, в него не входят все компоненты большого генератора, такого как Caterpillar 3512C. Помимо двигателя, генератора переменного тока и регулятора напряжения, генераторам нужен источник топлива, такой как топливный бак вместе с топливной системой. Размер топливного бака определяет, как долго генератор будет вырабатывать энергию до заправки.Большим генераторам нужна система охлаждения и способ отвода выхлопных газов. Панель управления упрощает работу с генератором, а зарядное устройство для аккумуляторов будет держать генератор в готовности, когда это необходимо. Генераторы обычно устанавливаются на раму какого-либо типа, подходящую для его размера. При принятии решения о том, какой генератор подходит для вашего конкретного применения, важно учитывать не только мощность, и мы можем помочь.

Если вы ищете новый дизельный генератор или подержанный дизельный генератор, мы рекомендуем вам связаться с нами в компании Central States Diesel Generators.Будь то подержанный генератор Caterpillar 3412 или новый дизельный генератор, просмотрите наш инвентарь и свяжитесь с нами, если у вас возникнут вопросы. Получите необходимую мощность с помощью дизельных генераторов в Центральных Штатах.

Как работают генераторы? | BigRentz

Генераторы — это полезные устройства, которые обеспечивают электричеством без необходимости доступа к электросети. Они могут служить резервным источником питания для рабочих площадок, домов и предприятий, а также поддерживать работу критически важных систем при отключении электроэнергии.Итак, как работают генераторы?

Проще говоря, генераторы работают путем преобразования механической энергии в электрическую с помощью двигателя, генератора переменного тока и внешнего источника топлива. Современные генераторы работают по принципу электромагнитной индукции, термин, придуманный Майклом Фарадеем, когда он обнаружил, что проводник, движущийся в магнитном поле, может создавать и направлять электрические заряды.

Понимание того, как работают генераторы, может помочь вам выявить проблемы, выполнить текущее обслуживание и выбрать правильный генератор, соответствующий вашим конкретным потребностям.В этом руководстве мы шаг за шагом рассмотрим основные компоненты генератора и их работу.

8 основных компонентов генератора

Современные электрические генераторы могут различаться по размеру и применению, но их внутреннее устройство в целом одинаково. К основным компонентам электрогенератора относятся:

  • Рама: Рама содержит и поддерживает компоненты генератора. Это позволяет людям безопасно обращаться с генератором и защищает его от повреждений.
  • Двигатель: Двигатель вырабатывает механическую энергию, которая преобразуется в электрическую энергию. Размер двигателя определяет максимальную выходную мощность, и он может работать на различных типах топлива.
  • Генератор: Генератор содержит дополнительные компоненты, которые работают вместе для выработки электрической мощности. К ним относятся статор и ротор, которые отвечают за создание вращающегося магнитного поля и выработку переменного тока на выходе.
  • Топливная система: Генераторы поставляются с прикрепленным или внешним топливным баком, который снабжает двигатель топливом. Топливный бак подключается через подающий и возвратный трубопроводы и обычно содержит бензин или дизельное топливо.
  • Выхлопная система: Дизельные и бензиновые двигатели выделяют выхлопные газы, содержащие токсичные химические вещества. Выхлопная система безопасно управляет и удаляет эти газы через трубу, сделанную из железа или стали.
  • Регулятор напряжения: Этот компонент отвечает за регулирование выходного напряжения генератора.Регулятор напряжения запускает цикл преобразования переменного тока в переменное напряжение, когда генератор опускается ниже своего максимального рабочего уровня, и переходит в состояние равновесия, когда генератор достигает своей рабочей мощности.
  • Зарядное устройство: Генераторы запускаются от аккумулятора. Зарядное устройство для батареи отвечает за поддержание заряда батареи, обеспечивая постоянное напряжение 2,33 В на элемент.
  • Панель управления: Панель управления расположена снаружи генератора и содержит несколько датчиков и переключателей.Функции могут различаться в зависимости от генератора, но панель управления обычно включает в себя стартер, датчики управления двигателем и переключатель частоты.

Для чего используется электрический генератор?

Электрогенераторы предназначены как для личного, так и для коммерческого использования. Чаще всего они используются в качестве резервного источника питания в случае отключения электроэнергии или отключения электроэнергии, но они также могут функционировать в качестве основного источника питания для зданий или строительных площадок, находящихся вне электросети.

Резервные генераторы чаще всего используются для резервного питания в домах, офисах и медицинских учреждениях.Эти генераторы подключаются к электрической системе здания и автоматически запускаются при отключении электроэнергии. После установки они представляют собой постоянные приспособления, а их топливные баки обычно достаточно велики, чтобы обеспечивать питание в течение нескольких дней, прежде чем потребуется дозаправка.

Переносные генераторы

меньше по размеру и их легче перемещать, чем резервные модели, что делает их идеальными для питания бытовой техники, дорожного оборудования и строительной техники на рабочих площадках. Они бывают разных размеров и вариантов мощности для разных применений.Переносные генераторы меньшего размера могут приводить в действие только один или два инструмента одновременно, в то время как самые большие модели могут приводить в действие целые здания.

Как генераторы производят электроэнергию: поэтапная поломка

Генераторы фактически не производят электричество. Скорее они преобразуют механическую энергию в электрическую. Процесс можно разбить на следующие этапы:

Шаг 1: Двигатель использует бензин, дизельное топливо, пропан, природный газ или возобновляемые источники энергии для создания механической энергии.

Шаг 2: Генератор переменного тока использует механическую энергию, вырабатываемую двигателем, для проталкивания электрических зарядов, присутствующих в проводке генератора, через электрическую цепь.

Шаг 3: Движение создает движение между магнитным и электрическим полями. Во время этого процесса ротор создает движущееся магнитное поле вокруг статора, которое содержит неподвижные электрические проводники.

Шаг 4: Ротор преобразует постоянный ток в выходное переменное напряжение.

Шаг 5: Генератор подает этот электрический ток на приборы, инструменты или электрическую систему здания.

Преимущества современных генераторов Генераторы

существуют уже несколько десятилетий, но технологии постоянно развиваются, чтобы сделать их более эффективными и надежными. Современные генераторы теперь обладают множеством новых функций и возможностей.

Портативность

Достижения в области технологий часто приносят пользу более компактным деталям, и генераторы не являются исключением.Более компактные и эффективные батареи и двигатели позволяют переносным генераторам работать с более длительным временем работы и более высокой выходной мощностью. Даже некоторые промышленные генераторы можно буксировать и перевозить из одного места в другое.

Малое воздействие на окружающую среду

Популярность генераторов, работающих на возобновляемых источниках энергии, быстро растет. Некоторые люди предпочитают отказываться от газовых и дизельных генераторов в пользу более экологичных моделей, работающих от солнечных, ветряных или водяных турбин.Природный газ также является популярным вариантом энергии для домовладельцев и владельцев бизнеса, стремящихся уменьшить свой углеродный след.

Значительная выходная мощность

Хотя не всем нужна высокая выходная мощность, предприятиям и крупным строительным площадкам обычно требуется больше мощности от своих генераторов. К счастью, современные генераторы могут иметь мощность 300 киловатт и выше. Для работы самых больших и мощных генераторов обычно требуется дизельное топливо, но это, вероятно, изменится по мере развития технологий.

Функции шумоподавления

Чем больше генератор, тем больше шума он производит. Чтобы уменьшить шумовое загрязнение, производители начали включать в свои продукты высококачественные функции шумоподавления. Если в вашем генераторе нет этой функции, вы можете приобрести отдельный глушитель или глушитель для генератора и прикрепить его самостоятельно.

Наличие генератора под рукой позволяет продолжать работу в обычном режиме при отключении электроэнергии. Независимо от того, арендуете ли вы генератор для своего следующего строительного проекта или покупаете его для своего бизнеса, знание того, как работают генераторы, может помочь вам принять решение о следующей покупке и упростить обслуживание.

Похожие сообщения










Как работают генераторы и динамо-машины

Как работают генераторы и динамо-машины — объясните это Рекламное объявление

Нефть может быть любимым топливом в мире, но ненадолго. В современных домах в основном используется электричество. и скоро большинство из нас тоже станет водить электромобили.Электричество очень удобно. Вы можете производить его самыми разными способами, используя все, от угля и нефти до ветра и волн. Вы можете сделать это в в одном месте и используйте его на другом конце света, если хотите. И, как только вы его изготовите, вы можете хранить его в батареях и использовать это дни, недели, месяцы или даже годы спустя. Что делает электрический возможная мощность — и действительно практичная — это превосходный электромагнитный устройство, называемое электрогенератором: разновидность электродвигателя. работа в обратном направлении, которая преобразует обычную энергию в электричество.Давайте подробнее рассмотрим генераторы и узнаем, как они работают!

Фото: Дизельный электрогенератор середины 20-го века в музее электростанции REA недалеко от Хэмптона, штат Айова. Любезно предоставлены фотографиями в Кэрол М. Хайсмит Архив, Библиотека Конгресса, Отдел эстампов и фотографий.

Откуда берется электричество?

Лучший способ понять электричество — начать с того, что его собственное название: электрическая энергия. Если вы хотите запустить что-нибудь электрические, от тостера или зубную щетку MP3-плеер или телевидение, вам необходимо обеспечить его постоянным запасом электроэнергии.Откуда ты это возьмешь? Есть основной закон физики называется закон сохранения энергии, который объясняет, как можно получить энергия — и как вы не можете. Согласно этому закону существует фиксированный количество энергии во Вселенной и некоторые хорошие новости и некоторые плохие новости о том, что мы можем с этим сделать. Плохая новость в том, что мы не можем создавать больше энергии, чем у нас уже есть; хорошая новость в том, что мы не можем уничтожить любую энергию. Все, что мы можем сделать с энергией, это преобразовать из одной формы в другую.

Фото: Большой электрогенератор, приводимый в движение паром, на геотермальной электростанции «Кожа» компании CalEnergy в округе Империал, Калифорния.Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Если вы хотите найти электричество для питания своего телевизора, вы не будет производить энергию из воздуха: сохранение энергии говорит нам, что это невозможно. Вы будете использовать энергию преобразуется из какой-либо другой формы в необходимую вам электрическую энергию. Обычно это происходит на электростанции. на некотором расстоянии от вашего дома. Подключите телевизор к розетке, и электрическая энергия течет в него через кабель.Кабель намного длиннее, чем вы думаете: на самом деле он проходит от вашего телевизора — под землей или по воздуху — до электростанция, на которой для вас подготавливается электроэнергия из богатое энергией топливо, такое как уголь, нефть, газ или атомное топливо. В этих экологически чистые времена, часть вашей электроэнергии также будет поступать из ветряные турбины, гидроэлектростанции (которые вырабатывают энергию, используя энергию плотин рек) или геотермальную энергию (внутренняя нагревать). Откуда бы ни пришла ваша энергия, она почти наверняка будет превратился в электричество с помощью генератора.Только солнечные элементы и топливные элементы производить электричество без использования генераторов.

Рекламные ссылки

Как мы можем производить электричество?

Фото: Типичный электрогенератор. Он может вырабатывать до 225 кВт электроэнергии и используется для испытаний прототипов ветряных турбин. Фото Ли Фингерша любезно предоставлено Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Если вы читали нашу подробную статью о электродвигатели, вы уже довольно много знают, как работают генераторы: генератор — это просто электродвигатель, работающий в обратном направлении.Если ты не прочтите эту статью, вы можете быстро взглянуть, прежде чем читать на — но вот краткое изложение в любом случае.

Электродвигатель — это, по сути, просто плотный моток медной проволоки, намотанный на железный сердечник, который свободно вращается с высокой скоростью внутри мощного постоянного магнита. Когда вы подаете электричество в медную катушку, она становится временный магнит с электрическим приводом — другими словами, электромагнит — и создает вокруг себя магнитное поле. Этот временное магнитное поле противодействует магнитному полю, которое постоянный магнит создает и заставляет катушку вращаться.Немного продуманная конструкция, катушка может непрерывно вращаться в в том же направлении, вращаясь по кругу и питая что угодно из электрическая зубная щетка к электричке.

Фотография: Вращающаяся часть (ротор) типичного небольшого электродвигателя. Электрогенератор имеет точно такие же компоненты, но работает противоположным образом, превращая движение в электрическую энергию.

Так чем же генератор отличается? Предположим, у вас есть электрический зубная щетка с аккумулятором внутри.Вместо того, чтобы позволить батарее питать двигатель, который толкает щетку, что, если бы вы сделали противоположный? Что, если вы несколько раз поворачиваете щетку вперед и назад? То, что вы делали бы, было бы вручную крутить электродвигатель. ось вокруг. Это заставит медную катушку внутри двигателя повернуться постоянно внутри его постоянного магнита. Если вы переместите электрический провод внутри магнитного поля, вы заставляете течь электричество через провод — по сути, вы производите электричество. Так что держи поворачивая зубную щетку достаточно долго, и теоретически вы получите электричества достаточно для подзарядки аккумулятора.По сути, вот как генератор работает. (На самом деле, это немного сложнее, чем это и вы не можете зарядить зубную щетку таким образом, хотя добро пожаловать!)

Как работает генератор?

Изображение: такой простой генератор вырабатывает переменный ток (электрический ток, который периодически меняет направление на противоположное). Каждая сторона генератора (зеленая или оранжевая) движется вверх или вниз. Когда он движется вверх, он будет генерировать односторонний ток; когда он движется вниз, ток течет в обратном направлении.Если вы измеритель, подключенный к проводу, вы не знаете, в какую сторону движется провод: все, что вы видите, — это то, что направление тока периодически меняется на противоположное: вы видите переменный ток.

Возьмите кусок провода и подсоедините его к амперметру (то, что измеряет ток) и поместите его между полюсами магнита. Теперь резко проведите проволокой сквозь невидимое магнитное поле, создаваемое магнитом, и через провод на короткое время протекает ток (регистрируемый на измерителе). Это фундаментальная наука, лежащая в основе электрогенератора, продемонстрированная в 1831 году британским ученым Майклом Фарадеем. (прочитать краткая биография или длинная биография).Если вы переместите провод в противоположном направлении, вы создадите ток, который течет в обратном направлении. (Если вам интересно, вы можете выяснить направление, в котором течет ток, используя то, что называется правило правой руки или правило генератора, которое является зеркальным отображением правила левой руки, используемого для определения того, как работают двигатели.)

Важно отметить, что вы генерируете ток только тогда, когда вы перемещаете провод через магнитное поле (или когда вы перемещаете магнит мимо провода, что равносильно тому же).Недостаточно просто поднести провод к магниту: для выработки электричества провод должен пройти мимо магнита или наоборот. Предположим, вы хотите производить много электроэнергии. Поднимать и опускать провод в течение всего дня не будет особенным удовольствием, поэтому вам нужно придумать способ, как провести провод мимо магнита, установив один или другой из них на колесо. Затем, когда вы поворачиваете колесо, проволока и магнит перемещаются друг относительно друга, и возникает электрический ток.

А теперь самое интересное.Предположим, вы сгибаете проволоку в петлю, помещаете ее между полюсами магнита и размещаете так, чтобы она постоянно вращалась, как на схеме. Вероятно, вы увидите, что при повороте петли каждая сторона провода (оранжевая или зеленая) иногда будет двигаться вверх, а иногда — вниз. Когда он движется вверх, электричество будет течь в одну сторону; когда он движется вниз, ток будет течь в другую сторону. Таким образом, базовый генератор, подобный этому, будет производить электрический ток, который меняет направление каждый раз, когда петля провода переворачивается (другими словами, переменный ток или переменный ток).Однако большинство простых генераторов на самом деле вырабатывают постоянный ток — так как же им управлять?

Генераторы постоянного тока

Так же, как простой электродвигатель постоянного тока использует электричество постоянного тока (DC) для создания непрерывного вращательного движения, так и простой генератор постоянного тока производит стабильную подачу электричества постоянного тока, когда он вращается. Как двигатель постоянного тока, Генератор постоянного тока использует коммутатор. Звучит технически, но это всего лишь металлическое кольцо с трещинами в нем, которое периодически меняет местами электрические контакты катушки генератора, одновременно меняя направление тока.Как мы видели выше, простая проволочная петля автоматически меняет направление тока, которое он производит каждые пол-оборота, просто потому, что он вращается, а задача коммутатора — нейтрализовать эффект вращения катушки, обеспечивая создание постоянного тока.

Иллюстрация: Сравнение простейшего генератора постоянного тока с простейшим генератором переменного тока. В этой конструкции катушка (серая) вращается между полюсами постоянного магнита. Каждый раз, когда он поворачивается на пол-оборота, ток, который он генерирует, меняется на противоположный.В генераторе постоянного тока (вверху) коммутатор меняет направление тока на противоположное каждый раз, когда катушка перемещается на пол-оборота, отменяя реверсирование тока. В генераторе переменного тока (внизу) нет коммутатора, поэтому выходная мощность просто поднимается, опускается и меняет направление вращения при вращении катушки. Вы можете увидеть выходной ток от каждого типа генератора на диаграмме справа.

Генераторы переменного тока

Что делать, если вы хотите генерировать переменный ток (AC) вместо постоянного тока? Тогда вам понадобится генератор, который представляет собой просто генератор переменного тока.Самый простой вид генератора переменного тока похож на генератор постоянного тока без коммутатора. Когда катушка или магниты вращаются мимо друг друга, ток естественным образом растет, падает и меняет направление, давая на выходе переменный ток. Так же, как есть Асинхронные двигатели переменного тока, в которых для создания вращающегося магнитного поля используются электромагниты, а не постоянные магниты, поэтому существуют генераторы, которые работают за счет индукции аналогичным образом.

Генераторы в основном используются для выработки электроэнергии от двигателей транспортных средств. В автомобилях используются генераторы, приводимые в движение их бензиновые двигатели, которые заряжают свои аккумуляторов во время движения (переменный ток преобразуется в постоянный диоды или выпрямительные схемы).

Генераторы в реальном мире

Фотография: Генератор переменного тока — это генератор, который вырабатывает переменный ток (переменный ток) вместо постоянного (постоянного). Здесь мы видим, как механик снимает генератор с двигателя подвесной моторной лодки. Фото Есении Росас любезно предоставлено ВМС США.

Производство электричества звучит просто — и это так. Сложность в том, что нужно приложить огромное количество физических усилий. для выработки даже небольшого количества энергии. Вы поймете это, если у вас есть велосипед с динамо-машиной. фары, работающие от колес: вам нужно немного крутить педали, чтобы фары загорелись — и это просто для производства крошечного количества электричества, необходимого для питания пара лампочек.Динамо — это просто очень маленькое электричество генератор. Напротив, на реальных электростанциях гигантские генераторы электричества приводятся в действие паровыми турбинами. Это немного похоже на вращающиеся пропеллеры или ветряные мельницы, приводимые в движение паром. Пар производится путем кипячения воды с использованием энергии, выделяемой при сжигании угля, масло или другое топливо. (Обратите внимание, как применяется сохранение энергии здесь тоже. Энергия, питающая генератор, поступает от турбина. Энергия, питающая турбину, поступает от топлива.А также топливо — уголь или нефть — изначально поступало с заводов, работающих на энергия Солнца. Суть проста: энергия всегда должна исходить от где-то.)

Какую мощность вырабатывает генератор?

Генераторы указаны в ваттах (измерение мощности, указывающее, сколько энергии производится каждую секунду). Как и следовало ожидать, чем больше генератор, тем большую мощность он производит. Вот приблизительное руководство от самого маленького до самого большого:

Тип Мощность (Вт)
Велосипед динамо 3
Генератор USB с ручным приводом 20
Ветряная микро турбина 500
Малый дизельный генератор 5000 (5 кВт)
Ветряная турбина 2 000 000 (2 МВт)

Переносные генераторы

Фото: Переносной электрогенератор, работающий от дизель.Фото Брайана Рида Кастильо любезно предоставлено ВМС США.

В большинстве случаев мы принимаем электричество как должное. Мы включаем фонари, телевизоры или стиральные машины, не переставая думать, что электрическая энергия, которую мы используем, должна откуда-то поступать. Но что, если вы работаете на улице, в глуши, и нет источник электричества, который вы можете использовать для питания вашей бензопилы или вашего электрическая дрель?

Одна из возможностей — использовать аккумуляторные инструменты с аккумуляторы. Другой вариант — использовать пневматические инструменты, такие как отбойные молотки.Они полностью механические и питаются от сжатый воздух вместо электричества. Третий вариант — использовать портативный электрогенератор. Это просто небольшой бензиновый двигатель (бензиновый двигатель), похожий на компактный двигатель мотоцикла, с прилагается электрогенератор. Когда двигатель пыхтит, дожигая бензин, он толкает поршень взад и вперед, поворачивая генератор и вырабатывающий на выходе постоянный электрический ток. С участием с помощью трансформатора вы можете использовать такой генератор для производите практически любое напряжение, которое вам нужно, в любом месте, где оно вам нужно.В качестве пока у вас достаточно бензина, вы можете производить собственное электричество поставка на неопределенный срок. Но помните о сохранении энергии: кончится газа, и у вас кончится электричество!

Artwork: Генераторные технологии быстро развивались в 19 веке. Английский химик и физик Майкл Фарадей построил первый примитивный генератор в 1831 году. В течение нескольких десятилетий многочисленные изобретатели создавали практические электрические генераторы. Эта («динамо-электрическая машина») была разработана Эдвардом Уэстоном в 1870-х годах как способ «преобразовывать механическую энергию в электрическую с большей эффективностью, чем прежде.«Он имеет статическое внешнее кольцо магнитов (синий) и вращающийся якорь (катушки) в центре (красный). Коммутатор (зеленый) преобразует генерируемый ток в постоянный. Из патента США 180 082 переиздание 8 141 Эдварда Уэстона, любезно предоставленного Управлением по патентам и товарным знакам США.

Рекламные ссылки

Узнать больше

На этом сайте

Возможно, вам понравятся эти другие статьи на нашем сайте по связанным темам:

Видео

  • Демонстрация электрического генератора ?: Превосходное короткое видео доктора Джонатана Хэра и Vega Science Trust очень ясно показывает, как перемещение катушки через магнитное поле может производить электричество.
  • Простой генератор: электрический генератор для научной выставки: Уильям Бити дает пошаговое руководство по созданию простого генератора с использованием простых для поиска компонентов (эмалированный провод, магниты, картон и т. Д.).
  • Велогенератор: Как привести в действие кухонный комбайн с помощью велосипеда, приводящего в действие генератор переменного тока (разновидность электрогенератора). Довольно изящный эксперимент, хотя комментарий мог бы быть немного яснее.

Книги

Для читателей постарше
Для младших читателей

Статьи

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Медиа-запросы?

Вы журналист, у вас есть вопрос для СМИ или просьба об интервью? Вы можете связаться со мной для получения помощи здесь.

Цитировать эту страницу

Вудфорд, Крис. (2009/2020) Генераторы. Получено с https://www.explainthatstuff.com/generators.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают генераторы | Компания по благоустройству долины Висконсин

Как работает электрический генератор

Электрогенератор — это устройство, используемое для преобразования механической энергии в электрическую.

Генератор основан на принципе «электромагнитной индукции», открытом в 1831 году Майклом Фарадеем. Британский ученый. Фарадей обнаружил, что если электрический провод, например медный провод, провести через магнитное поле, поле, электрический ток будет течь (индуцироваться) в проводнике. Таким образом, механическая энергия движущегося провода равна преобразуется в электрическую энергию тока, протекающего в проводе.

Интерактивный электрический генератор

Воспользуйтесь нашим интерактивным онлайн-генератором

Обратите внимание: наш интерактивный генератор лучше всего просматривать на компьютере, и его загрузка может занять некоторое время.


Интерактивная электрическая анимация

На анимации ниже показан простой электрический генератор. В анимации механическая энергия, необходимая для поворота Генератор исходит от коричневой рукоятки на передней части генератора. На гидроэлектростанции Механическая энергия для вращения генератора исходит от водяной турбины, которая вращается под действием падающей воды.

Кривошипная рукоятка в анимации заставляет красный провод вращаться внутри магнитного поля (синие линии).Как Фарадей научившись, перемещение провода через магнитное поле вызывает электрический ток, протекающий в проводе. Красный провод подключен к вольтметру, который показывает количество вырабатываемого электрического тока. На гидроэлектростанции, Генератор подключен к линиям электропередачи, по которым электроэнергия доставляется в ваш дом или офис.

Элементы управления анимацией позволяют управлять скоростью и направлением генератора, а также поворачивать части включение и выключение анимации для большей наглядности.Вы также можете использовать переключатели, чтобы показать постоянный ток или генератор постоянного тока. (с коммутатором) или переменного тока, или генератора переменного тока (без коммутатора).

Вот два изображения реальных генераторов на гидроэлектростанциях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *