Определение поршень – Поршень — это… Что такое Поршень?

Содержание

это деталь двигателя автомобиля. Устройство, замена, установка поршня

Поршень является одним из элементов кривошипно-шатунного механизма, на котором основан принцип работы многих двигателей внутреннего сгорания. В приведенной статье рассмотрена конструкция и особенности данных деталей.

Определение

Поршень — это деталь, выполняющая в цилиндре возвратно-поступательные движения и обеспечивающая преобразование в механическую работу изменения давления газа.

Назначение

С участием этих деталей реализуется термодинамический процесс работы мотора. Так как поршень — это один из элементов кривошипно-шатунного механизма, он воспринимает давление, производимое газами, и передает усилие на шатун. К тому же он обеспечивает герметизацию камеры сгорания и отвод от нее тепла.

Конструкция

Поршень — это трехсоставная деталь, то есть его конструкция включает три компонента, выполняющих различные функции, и две части: головку, в которую объединяют днище и уплотняющую часть, и направляющую часть, представленную юбкой.

Днище

Может иметь различную форму в зависимости от многих факторов. Например, конфигурация днища поршней двигателя внутреннего сгорания определяется расположением прочих конструктивных элементов, таких как форсунки, свечи, клапаны, формой камеры сгорания, особенностями протекающих в ней процессов, общей конструкцией двигателя и т. д. В любом случае она определяет особенности функционирования.

Выделяют два основных типа конфигурации днища поршней: выпуклая и вогнутая. Первый обеспечивает большую прочность, но ухудшает конфигурацию камеры сгорания. При вогнутой форме днища камера сгорания, наоборот, имеет оптимальную форму, однако более интенсивно откладывается нагар. Реже (в двухтактных двигателях) встречаются поршни с днищем, представленным выступом отражателя. Это нужно при продувке для направленного перемещения продуктов сгорания. Детали бензиновых двигателей обычно имеют днище плоской или почти плоской формы. Иногда в них присутствуют канавки для полного открытия клапанов. У моторов с непосредственным впрыском поршни характеризуются более сложной конфигурацией. У дизельных двигателей они отличаются наличием камеры сгорания в днище, обеспечивающей хорошее завихрение и улучшающей смесеобразование.

Большинство поршней односторонние, хотя встречаются и двусторонние варианты, которые имеют два днища.

Расстояние между канавкой первого компрессионного кольца и днищем носит название огневого пояса поршня. Очень важно значение его высоты, которое различно для деталей из разных материалов. В любом случае выход высоты огненного кольца за рамки минимально допустимого значения может повлечь прогар поршня и деформацию посадочного места верхнего компрессионного кольца.

Уплотняющая часть

Здесь находятся маслосъемные и компрессионные кольца. У деталей первого типа каналы имеют сквозные отверстия для поступления внутрь поршня удаленного с поверхности цилиндра масла, откуда оно попадает в поддон картера. Некоторые из них имеют ободок из коррозионностойкого чугуна с канавкой для верхнего компрессионного кольца.

Поршневые кольца, состоящие из чугуна, служат для создания плотного прилегания поршня к цилиндру. Поэтому они являются источником наибольшего трения в моторе, потери от которого составляют 25% от общего количества механических потерь в моторе. Количество и расположение колец определяются типом и назначением двигателя. Наиболее часто используют 2 компрессионных и 1 маслосъемное кольцо.

Компрессионные кольца выполняют задачу предотвращения поступления газов в картер из камеры сгорания. Наибольшие нагрузки приходятся на первое из них, поэтому в некоторых двигателях его канавку укрепляют стальной вставкой. Компрессионные кольца могут быть трапециевидной, конической, бочкообразной формы. Некоторые из них имеют вырез.

Маслосъемное кольцо служит для удаления лишнего масла с цилиндра и препятствует его попаданию в камеру сгорания. Для этого в нем есть отверстия. Некоторые варианты имеют пружинный расширитель.

Направляющая часть (юбка)

Имеет бочкообразную (криволинейную) либо конусообразную форму для компенсации температурного расширения. На ней находятся два прилива для поршневого пальца. На этих участках юбка имеет наибольшую массу. К тому же там наблюдаются наибольшие температурные деформации при нагреве. Для их снижения используют различные меры. В нижней части юбки может находиться маслосъемное кольцо.

Для передачи усилия от поршня или к нему применяют чаще всего кривошип либо шток. Поршневой палец служит для соединения данной детали с ними. Он состоит из стали, имеет трубчатую форму и может быть установлен несколькими способами. Чаще всего используют плавающий палец, который может проворачиваться в процессе работы. Для предотвращения смещения его фиксируют стопорными кольцами. Жесткое закрепление применяют значительно реже. Шток в некоторых случаях выполняет функцию направляющего устройства, заменяя юбку поршня.

Материалы

Поршень двигателя может состоять из различных материалов. В любом случае они должны обладать такими качествами, как высокая прочность, хорошая теплопроводность, антифрикционные свойства, сопротивляемость коррозии и низкие коэффициент линейного расширения и плотность. Для производства поршней используют сплавы алюминия и чугун.

Чугун

Отличается большой прочностью, износостойкостью и невысоким коэффициентом линейного расширения. Последнее свойство обеспечивает возможность работы таких поршней с малыми зазорами, благодаря чему достигается хорошее уплотнение цилиндра. Однако вследствие значительного удельного веса чугунные детали используют лишь в тех двигателях, где возвратно движущиеся массы имеют силы инерции, составляющие не более шестой части сил давления на днище поршня газов. Кроме того, из-за низкой теплопроводности разогрев днища чугунных деталей в процессе работы двигателя достигает 350-450 °С, что особо нежелательно для карбюраторных вариантов, так как приводит к калильному зажиганию.

Алюминий

Данный материал используют для поршней наиболее часто. Это объясняется небольшим удельным весом (алюминиевые детали легче чугунных на 30%), высокой теплопроводностью (в 3-4 раза больше, чем у чугуна), обеспечивающей разогрев днища не более чем до 250 °С, что предоставляет возможность увеличения степени сжатия и обеспечивает лучшее наполнение цилиндров, и высокими антифрикционными свойствами. При этом алюминий имеет больший в 2 раза, чем у чугуна, коэффициент линейного расширения, что вынуждает делать большие промежутки со стенками цилиндров, то есть размеры поршней из алюминия меньше, чем из чугуна, для одинаковых цилиндров. К тому же такие детали имеют меньшую прочность, особенно в нагретом состоянии (при 300 °С она снижается на 50-55%, тогда как у чугунных — на 10%).

Для снижения степени трения стенки поршней покрывают антифрикционным материалом, в качестве которого используют графит и дисульфид молибдена.

Нагрев

Как было упомянуто, в процессе работы двигателя поршни могут разогреваться до 250-450 °С. Поэтому необходимо принимать меры, направленные как на снижение нагрева, так и на компенсацию вызываемого им температурного расширения деталей.

Для охлаждения поршней используют масло, которое различными способами подают внутрь них: создают масляный туман в цилиндре, разбрызгивают его через отверстие в шатуне либо форсункой, впрыскивают в кольцевой канал, обеспечивают циркуляцию по трубчатому змеевику в днище поршня.

Для компенсации температурных деформаций на участках приливов юбки с двух сторон обтачивают металл на 0,5-1,5 мм в глубину в виде П- или Т-образных прорезей. Такая мера улучшает ее смазывание и предотвращает появление от температурных деформаций задиров, поэтому данные углубления называют холодильниками. Их используют в сочетании с конусо- или бочкообразной формой юбки. Это компенсирует ее линейное расширение за счет того, что при нагреве юбка принимает цилиндрическую форму. Кроме того, используют компенсационные вставки, чтобы диаметр поршня испытывал ограниченное тепловое расширение в плоскости качания шатуна. Также можно изолировать направляющую часть от головки, испытывающей наибольший нагрев. Наконец, стенкам юбки придают пружинящие свойства путем нанесения косого разреза по всей ее длине.

Технология производства

По способу изготовления поршни подразделяют на литые и кованые (штампованные). Детали первого типа применяют на большинстве автомобилей, а замена поршней на кованые используется при тюнинге. Кованые варианты отличаются повышенной прочностью и долговечностью, а также меньшей массой. Поэтому установка поршней такого типа повышает надежность и производительность двигателя. Это особо важно для моторов, работающих в условиях повышенных нагрузок, в то время как для повседневной эксплуатации достаточно литых деталей.

Применение

Поршень — это многофункциональная деталь. Поэтому его используют не только в двигателях. Например, существует поршень суппорта тормозной системы, так как она функционирует аналогичным образом. Также кривошипно-шатунный механизм применяют на некоторых моделях компрессоров, насосов и прочем оборудовании.

fb.ru

Слово ПОРШЕНЬ — Что такое ПОРШЕНЬ?

Слово поршень английскими буквами(транслитом) — porshen

Слово поршень состоит из 7 букв: е н о п р ш ь


Значения слова поршень. Что такое поршень?

Поршень

По́ршень — деталь цилиндрической формы, совершающая возвратно-поступательное движение внутри цилиндра и служащая для превращения изменения давления газа, пара или жидкости в механическую работу…

ru.wikipedia.org

Поршень, подвижная деталь поршневой машины, перекрывающая поперечное сечение её цилиндра и перемещающаяся в направлении его оси. В двигателях, силовых цилиндрах, прессах П. передаёт давление рабочего тела (газа, пара, жидкости) движущимся частям.

БСЭ. — 1969—1978

ПОРШЕНЬ — деталь машины, совершающая прямолинейное поступательно-возвратное движение в цилиндре машины и плотно прилегающая к его внутренним стенкам. П. приводится в движение каким-либо источником энергии…

Технический железнодорожный словарь. — 1941

РГ-1 «Поршень»

РГ-1 «Поршень» — украинский самозарядный 30-мм гранатомет под выстрел 30х29 мм ВОГ-17. Проект ручного гранатомета «Поршень» разрабатывался в 1990-х годах на производственном объединении «Южмаш» конструкторами Ю.Алексеевым, В.Сербиным…

ru.wikipedia.org

Русский язык

По́ршень/, р. мн. по́ршн/е́й (в насосе).

Морфемно-орфографический словарь. — 2002

  1. порченный
  2. порченый
  3. поршенек
  4. поршень
  5. поршневой
  6. поршни
  7. порыбачивший

wordhelp.ru

Поршень что это? Значение слова Поршень

Значение слова Поршень по Ефремовой:

Поршень — Подвижная деталь машины или прибора, плотно перекрывающая поперечное сечение цилиндра и перемещающаяся в направлении его оси.

Значение слова Поршень по Ожегову:

Поршень — Подвижная деталь, удлиненная или в форме диска, плотно двигающаяся внутри цилиндра и нагнетающая или выкачивающая жидкость, газ, пар

Поршень в Энциклопедическом словаре:

Поршень — подвижная деталь, перекрывающая цилиндр в поперечном сечении иперемещающаяся вдоль его оси. Служит для преобразования механическойработы в энергию давления жидкости (газа) или наоборот.

Значение слова Поршень по словарю Ушакова:

ПОРШЕНЬ
поршня, м. (тех.). Подвижное цилиндрическое тело, плотно примыкающее к стенкам цилиндра и служащее для нагнетания и выталкивания из цилиндра жидкостей, газов, пара. Поршни в насосах, компрессорах, двигателях.


ПОРШЕНЬ
поршня, чаще мн., м. (обл.). Род обуви из кожаных лоскутов, по форме сходной с лаптями. Крестьяне косили на болот в поршнях

Значение слова Поршень по словарю Даля:

Поршень
м. (от переть, пру?) поршни, астрах. порушни (рушать?), постолы, кожанцы, калиги, род сандалий. поршни вообще не шьются, а гнутся (загни поршни, сделай) из одного лоскута сырой кожи или шкуры (с шерстью), на вздержке, очкуре, ременной

Определение слова «Поршень» по БСЭ:

Поршень — подвижная деталь поршневой машины, перекрывающая поперечное сечение её цилиндра и перемещающаяся в направлении его оси. В двигателях, силовых цилиндрах, прессах П. передаёт давление рабочего тела (газа, пара, жидкости) движущимся частям. В некоторых типах двигателей (например, двухтактных двигателях внутреннего сгорания) П. выполняет также и газораспределительные функции. В Насосах и Компрессорах П., приводимый в возвратно-поступательное движение, производит засасывание, сжатие и подачу жидкости или газа. В зависимости от отношения длины П. к диаметру и его конструкции различают тронковый, дисковый и скальчатый П. Тронковый П., длина которого несколько превышает диаметр, имеет головку с днищем и канавками для поршневых колец и направляющую юбку. Высоту дискового П. определяет лишь размер уплотнительного устройства, направляющим элементом служит шток, на котором установлен П. Скальчатый П. (плунжер, скалка, ныряло) выполняют обычно с гладкой поверхностью, длина его в несколько раз превосходит диаметр.

В роторно-поршневых двигателях внутреннего сгорания (см. Ванкеля двигатель) функции П. по передаче давления рабочего тела движущимся частям выполняет ротор.



xn—-7sbbh7akdldfh0ai3n.xn--p1ai

Поршень

Поршень — деталь поршневой группы двигателя, находящаяся внутри цилиндра. При помощи шатуна поршень соединен с коленчатым валом. Конструкция спроектирована таким образом, что поршень во время работы двигателя постоянно совершает возвратно-поступательное движение, преобразуя энергию расширяющихся при сгорании газов во вращение коленчатого вала.  

Устройство поршня

Поршень состоит из трех частей, хотя и выполняется из единой заготовки: днища, уплотняющей части и юбки. К коленчатому валу поршень присоединяется при помощи шатуна. Поршень надевается на шатун и закрепляется поршневым пальцем, продетым сквозь деталь. Форма днища поршня двигателя внутреннего сгорания никогда не бывает плоской. В зависимости от конструкции днище может иметь сложную конфигурацию. Сверху над днищем могут быть расположены свечи, форсунки и клапаны.

Расстояние от днища поршня до первого компрессионного кольца называется огневым поясом поршня

Чаще всего в днище поршня можно видеть углубления, предназначенные для того, чтобы двигающиеся над ними клапана не соприкасались с поверхностью поршня. Углубления, как правило, имеют большую глубину с одного края, так как расположенные над ними клапаны установлены под углом. В целом, как правило, общую форму днища делают вогнутой. Это обусловлено тем, что поршень, поднимаясь вверх, является одновременно дном камеры сгорания, а для оптимального распространения пламени вогнутое днище подходит как нельзя лучше. У этой формы есть и свои недостатки — в нижней части впадины быстрее отлагается нагар.

Поршень

Расстояние от днища поршня до первого компрессионного кольца называется огневым поясом поршня. Поскольку поршень работает в условии экстремально высоких температур, огневой пояс имеет строго просчитанную высоту, которая зависит еще и от материала, из которого выполнен поршень. Снижение высоты ниже определенного предела может привести к преждевременному прогоранию поршня.

В прошлом поршень выполнялся из стали целиком, но в современных двигателях нередко применяются облегченные поршни из алюминиевых сплавов

Поршень — высокоточная деталь, так как одна из его задач — служить основой для компрессионных колец, уплотняющих камеру сгорания в момент сжатия. Со временем поршень изнашивается и обгорает, что приводит к снижению уплотнения — раскаленные газы начинают просачиваться между телом поршня и кольцом, и попадают в картер, а из картера в камеру сгорания просачивается масло.

Из этого следует, что повышенный расход масла может служить признаком износа поршней. Кроме того, об этом можно судить по появлению дыма в потоке выхлопных газов — дым образуется в результате сгорания попадающего в пространство над поршнем масла.

Поршень и поршневые кольца

Сочетание днища и уплотняющей части (служащей основой для колец) называется головкой поршня. В прошлом поршень выполнялся из стали целиком, но в современных двигателях нередко применяются облегченные поршни из алюминиевых сплавов. Алюминий уступает стали в прочности, поэтому для создания основы для верхнего компрессионного кольца его снабжают ободком из обладающего высокими антикорозионными и прочностными свойствами чугуна. В чугунном ободке, вплавленном в тело поршня, нарезают канавку, в которое и вставляется верхнее компрессионное кольцо. Этот вид чугуна называется нирезистом.

В нижней части головки расположены каналы для маслосъемных колец. Их нарезают на станке и снабжают сквозными отверстиями, через которое снятое с зеркала цилиндра масло по внутренней стенке поршня стекает в поддон картера блока цилиндров.

Поршневой палец

Юбка или направляющая часть поршня снабжена двумя приливами, или бобышками, в которых проделаны отверстия для установки поршневого пальца. Поскольку в месте расположения бобышек поршень имеет наибольшую толщину, в нем чаще всего возникают деформации под воздействием температуры. Для того, чтобы избежать риска деформации, часть метала с бобышек срезают на фрезеровочном станке. Служащие для охлаждения и повышающие интенсивность смазывания поршня углубления именуются на техническом сленге «холодильниками».

Материалы для производства поршней

К материалам, применяемым для изготовления поршней, предъявляются высокие требования. Прежде всего, материал должен обладать высокой механической прочностью при малой плотности и низком коэффициенте линейного расширения, высокой теплопроводностью и корозионной стойкостью, хорошими антифрикционными свойствами. Исходяиз этого, поршни делают либо из серого чугуна, либо из алюминиевого сплава, нередко с вкраплением чугуна.

Чугунные поршни отличаются прочностью и износостойкостью, работают с малыми зазорами. Недостаток чугуна — большой вес. Поэтому чугунные поршни применяются, как правило, в низкооборотистых, хорошо сбалансированных двигателях. У чугуна низкая теплопроводность, поэтому сильно нагревается днище. Это недостаток, так как высокая температура внутри камеры сгорания до зажигания может приводить к некорректному сгоранию топлива, которое называется калильным зажиганием. Особенно остро эта проблема стояла в прежние годы, когда преобладающим устройством впрыска был карбюратор.

Гораздо чаще в современных двигателях применяются поршни из алюминиевого сплава. В числе их достоинств малый вес, высокая теплопроводность (благодаря чему температура днища редко поднимается выше 250 °C). Именно благодаря этому фактору инженерам удалось в свое время найти способ существенно поднять степень сжатия в бензиновых двигателях. Основной недостаток алюминия — большой коэффициент линейного расширения, что заставляет делать большие зазоры, снижая способность поршня к уплотнению. Кроме того, механическая прочность алюминия при нагреве резко (до 50%) падает, чего с чугуном не происходит.  Тем не менее, недостатки не оказались фатальными, так как инженерам удалось придумать способы нивелировать отрицательные свойства материала. Например, чтобы уменьшить потери при сжатии, юбке поршня придают овально-конусную форму. Чтобы не допусать деформации от перегрева, юбку изолируют от головки при помощи материала с низкой теплопроводностью и тп.  

Интересные факты о поршне

Самые «крепкие» поршни — кованые, то есть сделаные из заготовок, полученных методом литья, а впоследствии подвергнутых ковке. Ковка — механическая обработка нагретого до ковочной температуры металла. Для каждого металла существует своя ковочная температура; у алюминия она не высока — всего лишь в районе 500 градусов.

blamper.ru

поршень двигателя

Поршень двигателя является одной из самых главных деталей и конечно же от материала и качества поршней зависит успешная эксплуатация мотора и его долгий ресурс. В этой статье, больше рассчитанной на новичков, будет описано всё (ну или почти всё), что связано с поршнем, а именно: назначение поршня, его устройство, материалы и технология изготовления поршней и другие нюансы.

Сразу хочу предупредить уважаемых читателей, что если какой то важный нюанс, связанный с поршнями, или с технологией их изготовления, я уже написал более подробно в другой статье, то разумеется мне нет смысла повторяться в этой статье. Я просто напросто буду ставить соответствующую ссылку, перейдя по которой уважаемый читатель при желании сможет перейти на другую более подробную статью и в ней ознакомиться с нужной информацией о поршнях более подробно.

На первый взгляд многим новичкам может показаться, что поршень довольно простая деталь и придумать уже что то более совершенное в его технологии производства, форме и конструкции невозможно. Но на самом деле всё не так просто и не смотря на внешнюю простоту формы, поршни и технологии их изготовления до сих пор совершенствуются, особенно на самых современных (серийных или спортивных) более высоко-оборотистых форсированных двигателях. Но не будем забегать вперёд и начнём от простого к сложному.

Для начала разберём для чего нужен поршень (поршни) в двигателе, как он устроен, какие формы поршней бывают для разных двигателей и далее уже плавно перейдём к технологиям изготовления.

Для чего нужен поршень двигателя.

Поршень, за счёт кривошипно-шатунного механизма (коленвала и шатуна — см. рисунок чуть ниже), перемещаясь возвратно-поступательно в цилиндре двигателя, например перемещаясь вверх — для засасывания в цилиндр и сжатия в камере сгорания рабочей смеси, а так же за счёт расширения сгораемых газов перемещаясь в цилиндре вниз, совершает работу, преобразуя тепловую энергию сгораемого топлива в энергию движения, которая способствует (через трансмиссию) вращению ведущих колёс транспортного средства.

Поршень двигателя и силы действующие на него: А — сила, прижимающая поршень к стенкам цилиндра; Б — сила, перемещающая поршень вниз; В — сила передаваемая усилие от поршня к шатуну и наоборот, Г — сила давления сгораемых газов, перемещающая поршень вниз.

 

То есть по сути без поршня в одноцилиндровом двигателе, или без поршней в многоцилиндровом двигателе — невозможно движение транспортного средства, на которое установлен двигатель.

 

Кроме того, как видно из рисунка, на поршень действуют несколько сил, (также на том же рисунке не показаны противоположные силы, давящие на поршень снизу вверх).

 

 

И исходя из того, что на поршень давят и довольно сильно несколько сил, у поршня должны быть некоторые важные свойства, а именно:

  • способность поршня двигателя противостоять огромному давлению газов, расширяющихся в камере сгорания.
  • способность сжать и противостоять большому давлению сжимаемого топлива (особенно на дизелях).
  • способность противостоять прорыву газов между стенками цилиндра и своими стенками.
  • способность передавать огромное давление на шатун, через поршневой палец, без поломок.
  • способность не изнашиваться долгое время от трения о стенки цилиндра.
  • способность не заклиниваться в цилиндре от теплового расширения материала, из которого он изготовлен.
  • поршень двигателя должен иметь способность противостоять высокой температуре сгорания топлива.
  • иметь большую прочность при небольшой массе, чтобы исключить вибрацию и инерционность.

И это далеко не все требования, предъявляемые к поршням, особенно на современных высоко-оборотистых моторах. О полезных свойствах и требованиях современных поршней мы ещё поговорим, а для начала давайте рассмотрим устройство современного поршня.

 

Как видно на рисунке, современный поршень можно разделить на несколько частей, каждая из которых имеет важное значение и свои функции. Но ниже будут описаны основные наиболее важные части поршня двигателя и начнём с наиболее важной и ответственной части — с днища поршня.

 

Донышко (днище) поршня двигателя.

Это самая верхняя и наиболее нагруженная поверхность поршня, которая обращена непосредственно к камере сгорания двигателя. И нагружено донышко любого поршня не только большой давящей силой от расширяющихся с огромной скоростью газов, но и высокой температурой сгорания рабочей смеси.

Кроме того, донышко поршня своим профилем определяет нижнюю поверхность самой камеры сгорания и также определяет такой важный параметр, как степень сжатия. Кстати, зависеть форма донышка поршня может от некоторых параметров, например от расположения в камере сгорания свечей, или форсунок, от расположения и величины открытия клапанов, от диаметра тарелок клапанов — на фото слева хорошо видны выемки для тарелок клапанов в донышке поршня, которые исключают встречу клапанов с донышком.

Так же форма и размеры донышка поршня зависят от объёма и формы камеры сгорания двигателя, или от особенностей подачи в нее топливно-воздушной смеси — например на некоторых старых двухтактных двигателях на донышке поршня делали характерный выступ-гребень, играющий роль отражателя и направляющий поток продуктов горения при продувке. Этот выступ показан на рисунке 2 (выступ на донышке также виден на рисунке выше, где показано устройство поршня). Кстати, на рисунке 2 так же показан рабочий процесс древнего двухтактного двигателя и то, как влияет выступ на донышке поршня на наполнение рабочей смесью и на выпуск отработанных газов (то есть на улучшение продувки).

Двухтактный двигатель мотоцикла — рабочий процесс

Но на некоторых двигателях (например на некоторых дизелях) на донышке поршня в центре наоборот имеется круглая выемка, благодаря которой увеличивается объем камеры сгорания и соответственно уменьшается степень сжатия.

Но, поскольку выемка небольшого диаметра в центре донышка является не желательной для благоприятного наполнения рабочей смесью (появляются нежелательные завихрения), то на многих двигателях на донышках поршней в центре перестали делать выемки.

А для уменьшения объема камеры сгорания приходится делать так называемые вытеснители, то есть изготавливать донышко с определенным объёмом материала, который располагают немного выше основной плоскости донышка поршня.

Ну и ещё один важный показатель — это толщина донышка поршня. Чем она толще, тем прочнее поршень и тем большую тепловую и силовую нагрузку он сможет выдержать довольно долго. А чем тоньше толщина донышка поршня, тем бóльшая  вероятность прогара, или физического разрушения донышка.

Но с увеличением толщины донышка поршня, соответственно увеличивается и масса поршня, что для форсированных высоко-оборотистых моторов очень нежелательно. И поэтому конструкторы идут на компромисс, то есть «ловят» золотую середину между прочностью и массой, ну и конечно же постоянно стараются усовершенствовать технологии производства поршней для современных моторов (о технологиях позже).

Жаровой пояс поршня.

Как видно на рисунке выше, где показано устройство поршня двигателя, жаровым поясом считается расстояние от донышка поршня до его самого верхнего компрессионного кольца. Следует учесть, что чем меньше расстояние от донышка поршня до верхнего кольца, то есть чем тоньше жаровой пояс, тем более высокую тепловую напряжённость будут испытывать нижние элементы поршня, и тем быстрее они будут изнашиваться.

Поэтому для высоко напряжённых форсированных двигателей желательно делать жаровой пояс потолще, однако это делают не всегда, так как это тоже может увеличить высоту и массу поршня, что для форсированных и высоко-оборотистых двигателей нежелательно. Тут так же как и с толщиной донышка поршня, важно найти золотую середину.

Уплотняющий участок поршня.

Этот участок начинается от нижней части жарового пояса до того места, где заканчивается канавка самого нижнего поршневого кольца. На уплотняющем участке поршня расположены канавки поршневых колец и вставлены сами кольца (компрессионные и масло-съёмные).

Канавки колец не только удерживают поршневые кольца на месте, но ещё и обеспечивают их подвижность (благодаря определённым зазорам между кольцами и канавками), что позволяет поршневым кольцам свободно сжиматься и разжиматься за счёт своей упругости (что очень важно если цилиндр изношен и имеет форму бочки). Это также способствует прижиму поршневых колец к стенкам цилиндра, что исключает прорыв газов и способствует хорошей компрессии, даже если цилиндр немного изношен.

Как видно на рисунке с устройством поршня, в канавке (канавках), предназначенной для маслосъёмного кольца имеются отверстия для обратного стока моторного масла, которое масло-съёмное кольцо (или кольца) снимает со стенок цилиндра, при движении поршня в цилиндре.

Кроме основной функции (не допустить прорыва газов) уплотняющего участка, у него есть ещё одно важное свойство — это отвод (точнее распределение) части тепла от поршня на цилиндр и весь двигатель. Разумеется для эффективного распределения (отвода) тепла и для предотвращения прорыва газов важно, что бы поршневые кольца довольно плотно прилегали к своим канавкам, но особенно к поверхности стенки цилиндра.

Головка поршня двигателя.

Головка поршня представляет из себя общий участок, который включает в себя уже описанные мной выше донышко поршня и его и уплотняющий участок. Чем больше и мощнее головка поршня, тем выше его прочность, лучше отвод тепла и соответственно больше ресурс, но и масса тоже больше, что как было сказано выше, нежелательно для высоко-оборотистых моторов. А снизить массу, без уменьшения ресурса, можно если увеличить прочность поршня путём усовершенствования технологии изготовления, но об этом я подробнее напишу позже.

Кстати, чуть не забыл сказать, что в некоторых конструкциях современных поршней, изготавливаемых из алюминиевых сплавов, в головке поршня делают нирезистовую вставку, то есть в головку поршня заливают ободок из нирезиста (специального прочного и стойкого к коррозии чугуна).

В этом ободке прорезают канавку для самого верхнего и наиболее нагруженного компрессионного поршневого кольца. И хотя благодаря вставке немного увеличивается масса поршня, зато существенно увеличивается его прочность и износостойкость (к примеру нирезистовую вставку имеют наши отечественные Тутаевские поршни, изготовленные на ТМЗ).

Компрессионная высота поршня.

Компрессионная высота — это расстояние в миллиметрах, которое отсчитывается от донышка поршня до оси поршневого пальца (или наоборот). У разных поршней компрессионная высота разная и разумеется чем больше расстояние от оси пальца до донышка, тем она больше, а чем она больше, тем лучше компрессия и меньшая вероятность прорыва газов, но и больше сила трения и нагрев поршня.

На старых тихоходных и мало-оборотистых моторах компрессионная высота поршня была больше, а на современных более высоко-оборотистых двигателях стала меньше. Здесь тоже важно найти золотую середину, которая зависит от форсировки мотора (чем выше обороты, тем меньше должно быть трение и меньшая компрессионная высота).

Юбка поршня двигателя.

Юбкой называют нижнюю часть поршня (её ещё называют направляющей частью). Юбка включает в себя бобышки поршня с отверстиями, в которые вставляется поршневой палец. Внешняя поверхность юбки поршня является направляющей (опорной) поверхностью поршня и эта поверхность также как и поршневые кольца трётся о стенки цилиндра.

Примерно в средней части юбки поршня имеются приливы, в которых имеются отверстия для поршневого пальца. А так как вес материала поршня у приливов тяжелее, чем в других местах юбки, то деформации от воздействия температуры в плоскости бобышек будут больше, чем в других частях поршня.

Поэтому для снижения температурных воздействий (и напряжений) на поршне с двух сторон с поверхности юбки снимают часть материала, примерно на глубину 0,5-1,5 мм и получаются небольшие углубления. Эти углубления, называемые холодильниками, не только способствуют устранению температурных воздействий и деформаций, но ещё и препятствуют образованию задиров, а так же улучшают смазку поршня при движении его в цилиндре.

Следует так же отметить, что юбка поршня имеет форму конуса (в верху у донышка уже, внизу шире), а в плоскости, перпендикулярной оси поршневого пальца имеет форму овала. Эти отклонения от идеальной цилиндрической формы минимальные, то есть имеют всего несколько соток мм (эти величины разные — чем больше диаметр, тем больше отклонения).

Конус нужен для того, что бы поршень расширялся от нагрева равномерно, ведь в верху температура поршня выше, а значит и тепловое расширение больше. А раз у донышка диаметр поршня чуть меньше, чем внизу, то при расширении от нагрева поршень примет форму, близкую к идеальному цилиндру.

Ну а овал предназначен для компенсации быстрого износа на стенках юбки, которые стираются быстрее там где трение выше, а выше оно в плоскости движения шатуна.

Благодаря юбке поршня (точнее её боковой поверхности) обеспечивается нужное и правильное положение оси поршня к оси цилиндра мотора. С помощью боковой поверхности юбки, к цилиндру двигателя передаются поперечные усилия от действия боковой силы А  (см. самый верхний рисунок в тексте, а так же рисунок справа) которая периодически воздействует на поршни и цилиндры, при перекладке поршней во время вращения коленвала (кривошипно-шатунного механизма).

Также благодаря боковой поверхности юбки осуществляется отвод тепла от поршня к цилиндру (так же как и от поршневых колец). Чем больше боковая поверхность юбки, тем лучше идёт отвод тепла, меньше утечка газов, меньше стук поршня при некотором износе втулки верхней головки шатуна (или при неточной обработке втулки — см. рисунок слева), впрочем как и при трёх компрессионных кольцах, а не двух (об этом я подробнее написал вот тут).

Но при слишком длинной юбке поршня больше его масса, больше трения возникает о стенки цилиндров (на современных поршнях для уменьшения трения и износа стали наносить антифрикционное покрытие на юбку), а лишняя масса и трение очень нежелательны в высоко-оборотистых форсированных современных (или спортивных) моторах и поэтому на таких двигателях юбку постепенно стали делать очень короткой (так называемая миниюбка) и постепенно почти от неё избавились — так и появился Т-образный поршень, показанный на фото справа.

Но и у Т-образных поршней есть недостатки, например у них опять же могут быть проблемы с трением о стенки цилиндра, из-за недостаточной смазываемой поверхности очень короткой юбки (причём на малых оборотах).

Более подробно об этих проблемах, а так же в каких случаях Т-образные поршни с мини юбкой нужны в некоторых двигателях, а в каких нет, я написал отдельную подробную статью вот здесь. Там же написано об эволюции формы поршня двигателя — советую почитать. Ну а мы думаю уже разобрались с устройством поршней и плавно переходим к технологиям изготовления поршней, чтобы понять какие поршни, изготовленные разными способами лучше, а какие хуже (менее прочные).

Поршни для двигателей — материалы изготовления.

При выборе материала для изготовления поршней предъявляют строгие требования, а именно:

  • материал поршня должен иметь отличные антифрикционные (антизадирные) свойства.
  • материал поршня двигателя должен иметь довольно высокую механическую прочность.
  • материал поршня должен иметь малую плотность и хорошую теплопроводность.
  • материал поршня должен быть стоек к коррозии.
  • материал поршня должен иметь малый коэффициент линейного расширения и быть по возможности близок или равен коэффициенту расширения материала стенок цилиндра.

Чугун.

Раньше, на заре двигателестроения, ещё со времён самых первых автомобилей, мотоциклов и самолётов (аэропланов), для материала поршней применяли серый чугун (кстати для поршней компрессоров тоже). Конечно же, как и у любого материала, у чугуна имеются как достоинства, так и недостатки.

Из достоинств следует отметить хорошую износостойкость и достаточную прочность. Но наиболее важное достоинство чугунных поршней, устанавливаемых в двигатели с чугунными блоками (или гильзами) — это такой же коэффициент теплового расширения, как и чугунного цилиндра двигателя. А значит тепловые зазоры можно сделать минимальными, то есть гораздо меньше, чем у алюминиевого поршня, работающего в чугунном цилиндре. Это позволяло существенно увеличить компрессию и ресурс поршневой группы.

Ещё один существенный плюс чугунных поршней — это небольшое (всего 10 %) снижение механической прочности при нагреве поршня. У алюминиевого поршня снижение механической прочности при нагреве ощутимо больше, но об этом ниже.

Но с появлением более оборотистых двигателей, при использовании чугунных поршней, на больших оборотах стал выявляться их главный недостаток — довольно большая масса, по сравнению с алюминиевыми поршнями. И постепенно перешли к изготовлению поршней из алюминиевых сплавов, даже в двигателях с чугунным блоком, или гильзой, хоть и пришлось делать алюминиевые поршни с гораздо бóльшими тепловыми зазорами, чтобы исключить клин алюминиевого поршня в чугунном цилиндре.

Кстати, раньше на поршнях некоторых двигателей делали косой разрез юбки, который обеспечивал пружинящие свойства юбки алюминиевого поршня и исключал его заклинивание в чугунном цилиндре — пример такого поршня можно увидеть на двигателе мотоцикла ИЖ-49).

А с появлением современных цилиндров, или блоков цилиндров, полностью выполненных из алюминия, в которых уже нет чугунных гильз (то есть покрытых никасилем или керонайтом) появилась возможность изготавливать алюминиевые поршни тоже с минимальными тепловыми зазорами, ведь тепловое расширение легкосплавного цилиндра стало практически таким же, как и у легкосплавного поршня.

Алюминиевые сплавы. Практически все современные поршни на серийных двигателях сейчас изготавливают из алюминиевых сплавов (кроме пластиковых поршней на дешёвых китайских компрессорах).

У поршней, выполненных из алюминиевых сплавов тоже имеются как достоинства, так и недостатки. Из основных достоинств следует отметить небольшой вес легкосплавного поршня, что очень важно для современных высокооборотистых двигателей. Вес алюминиевого поршня конечно же зависит от состава сплава и от технологии изготовления поршня, ведь кованный поршень весит значительно меньше, чем выполненный из того же сплава методом литья, но о технологиях я напишу чуть позже.

Ещё одно достоинство легкосплавных поршней, о которой мало кто знает — это довольно высокая теплопроводность, которая примерно в 3-4 раза выше, чем теплопроводность серого чугуна. Но почему достоинство, ведь при высокой теплопроводности и тепловое расширение довольно не малое и придётся и придётся и тепловые зазоры делать больше, если конечно цилиндр чугунный (но с современными алюминиевыми цилиндрами это стало не нужно).

А дело в том, что высокая теплопроводность не позволяет нагреваться донышку поршня более чем 250 °C, а это способствует гораздо лучшему наполнению цилиндров двигателей и конечно же позволяет ещё более повысить степень сжатия в бензиновых моторах и тем самым поднять их мощность.

Кстати, чтобы как то усилить отлитые из лёгкого сплава поршни, в их конструкцию инженеры добавляют различные усиливающие элементы — например делают стенки и донышко поршня толще, а бобышки под поршневой палец отливают более массивными. Ну или делают вставки из того же чугуна, я об этом уже писал выше. И конечно же все эти усиления увеличивают массу поршня, и в итоге получается, что более древний и прочный поршень, изготовленный из чугуна, проигрывает в весе легкосплавному поршню совсем чуть чуть, где то процентов на 10 — 15.

И тут любому напрашивается вопрос, а стоит ли овчинка выделки? Стóит, ведь у алюминиевых сплавов есть ещё одно отличное свойство — они раза в три лучше отводят тепло, чем тот же чугун. И это важное свойство незаменимо в современных высоко-оборотистых (форсированных и горячих) двигателях, у которых довольно высокая степень сжатия.

К тому же современные технологии производства кованных поршней (о них чуть позже) существенно повышают прочность и уменьшают вес деталей и уже не требуется усиление таких поршней различными вставками, или более массивными отливками.

К недостаткам поршней, выполненных из алюминиевых сплавов относятся такие как: довольно большой коэффициент линейного расширения алюминиевых сплавов, у которых оно составляет примерно в два раза больше, чем у поршней выполненных из чугуна.

Ещё одним существенным недостатком алюминиевых поршней является довольно большое снижение механической прочности, при повышении температуры поршня. К примеру: если легкосплавный поршень нагреть до трёхсот градусов, то это приведёт к снижению его прочности аж в два раза (примерно на 55 — 50 процентов). А у чугунного поршня при его нагреве прочность снижается ощутимо меньше — всего на 10 — 15%. Хотя современные поршни, выполненные из алюминиевых сплавов методом поковки, а не с помощью литья, при нагреве теряют прочность гораздо меньше.

На многих современных алюминиевых поршнях снижение механической прочности и слишком большое тепловое расширение устраняется более совершенными технологиями производства, которые заменили традиционное литьё (об этом ниже), а так же специальными компенсационными вставками (например упомянутые мной выше — вставки из нирезиста), которые не только увеличивают прочность, но и значительно уменьшают тепловое расширение стенок юбки поршня.

Поршень двигателя — технологии изготовления.

Ни для кого не секрет, что со временем, чтобы увеличить мощность двигателей, постепенно начали повышать степень сжатия и обороты моторов. А чтобы поднять мощность без особого ущерба для ресурса поршней, постепенно совершенствовались технологии их изготовления. Но начнём всё по порядку — с обычных литых поршней.

Поршни изготовленные методом обычного литья.

Эта технология самая простая и древняя, она применяется с самого начала истории авто и двигателестроения, ещё со времён первых чугунных поршней.

Технология производства поршней для самых современных двигателей обычным литьём уже почти не применяется. Ведь на выходе получается продукт имеющий изъяны (поры и т.д.) значительно снижающие прочность детали. Да и технология обычного литья в форму (кокиль) довольно древняя, она позаимствована ещё у наших древних предков, которые много веков назад отливали бронзовые топоры.

И залитый в кокиль сплав алюминия повторяет форму кокиля (матрицы), а потом деталь ещё нужно обработать термически и на станках, снимая лишний материал, что отнимает не мало времени (даже на станках с ЧПУ).

Литьё под давлением.

У поршня, изготовленного методом простого литья прочность не высока, из-за пористости детали и постепенно многие фирмы от этого способа отошли и начали отливать поршни под давлением, что значительно улучшило прочность, так как пористость почти отсутствует.

Технология литья под давлением, существенно отличается от технологии обычного литья топоров бронзового века и конечно же на выходе получается более аккуратная и прочная деталь, имеющая несколько лучшую структуру. Кстати, литьём алюминиевых сплавов под давлением в форму (ещё эту технологию называют жидкой штамповкой) отливают не только поршни, но и рамы некоторых современных мотоциклов и автомобилей.

Но всё же и эта технология не идеальна и если даже вы возьмёте в руки отлитый под давлением поршень и рассмотрев его, ничего не обнаружите на его поверхности, но это не значит, что и внутри всё идеально. Ведь в процессе литья, даже под давлением, не исключено появления внутренних пустот и каверн (мельчайших пузырьков), уменьшающих прочность детали.

Но всё же литьё поршней под давлением (жидкая штамповка) существенно лучше обычного литья и эта технология до сих пор применяется на многих заводах при изготовлении поршней, рам, деталей ходовой и других деталей автомобилей и мотоциклов. А кому интересно более подробно почитать о том, как делают жидко-штампованные поршни и о их преимуществах, то читаем о них вот здесь.

Кованные поршни автомобиля (мотоцикла).

Кованые поршни для отечественных автомобилей.

Эта наиболее прогрессивная на данный момент технология производства современных легкосплавных поршней, которые имеют множество преимуществ перед литыми и которые устанавливают на самые современные высоко-оборотистые моторы, с высокой степенью сжатия. У кованных поршней, изготовленных авторитетными фирмами, практически нет недостатков.

Но мне нет смысла писать о кованных поршнях подробно в этой статье, так как я написал о них две очень подробные статьи, которые каждый желающий сможет почитать, кликнув на ссылки ниже.

Кованные поршни 1

Кованные поршни 2

Вот вроде бы и всё, если что нибудь вспомню ещё о такой важной детали, как поршень двигателя, то обязательно допишу, успехов всем.

suvorov-castom.ru

3.3.1 Расчёт головки поршня

Головка поршня рассчитывается на сжатие.

Напряжения в сечении , ослабленном отверстиями для отвода масла [5, стр. 260]:

(67)

где площадь сечения X-X [5, стр. 260]:

(68)

где диаметр поршня по дну канавок,

(69)

площадь продольного диаметрального сечения масляного канала,

(70)

внутренний диаметр поршня,мм

число масляных отверстий в поршне,.

максимальная сила давления газов, на днище поршня

Напряжение не должны превышать для алюминиевых поршней 30…40 МПа. Напряжения от сжатияне превышает допускаемых. Прочность обеспечивается.

Растягивающие напряжения в сечении [5, стр. 260]:

(71)

где сила инерции части поршня с кольцами, расположенной выше сечения:

(72)

где масса головки поршня, она определяется по её геометрическим размерам (приближённо она составляет 0,4…0,8 от массы поршневой группы),.

частота вращения вала двигателя в режиме холостого хода.

(73)

где максимальная частота вращения вала двигателя в режиме холостого хода,, не более.

Напряжения не должны превышать для алюминиевых поршней 4…10 МПа. Напряжение от растяженияне превышает допустимые. Условия прочности обеспечиваются.

Напряжения при изгибе и срезе кольцевой перемычки [5, стр. 261]:

(74)

где – высота первой перемычки,.

Суммарные напряжения согласно третьей гипотезе прочности:

(75)

Напряжения не должны превышатьдля поршней из алюминиевых сплавов. Суммарные напряженияне превышают допускаемые. Условия прочности обеспечиваются.

3.3.2 Расчёт юбки поршня

Расчёт юбки поршня заключается в определении ее максимального удельного давления на стенку цилиндра.

Максимальное удельное давление на юбку поршня [5, стр. 261]:

(76)

где наибольшая нормальная сила, действующая на стенку цилиндра,, из динамического расчёта;

высота юбки,мм.

Удельное давление на стенку цилиндра .для автомобильных двигателей лежит в пределах. Удельное давлениене превышает допустимого. Условия прочности обеспечиваются.

3.3.3 Расчёт диаметров головки и юбки поршня

В целях предотвращения заклинивания поршней при работе двигателя необходимо наличие зазоров ,между стенками цилиндра и поршнем в нагретом состоянии [5, стр. 261]:

(77)

Диаметр головки поршня:

(78)

Диаметр юбки поршня:

(79)

Проверка правильности установленных размеров и:

(80)

(81)

где температура стенок цилиндра,

температура головки поршня,

температура юбки поршня,

температура окружающей среды,

коэффициенты линейного расширения, для алюминиевого поршня:для чугунной гильзы:

3.3.4 Расчёт поршневого кольца

Расчёт поршневых колец заключается:

а) в определении среднего давления кольца на стенку цилиндра, которое должно обеспечивать достаточную герметичность камеры сгорания и не должно резко увеличивать потери мощности двигателя на трение колец о стенки цилиндра;

б) в построении эпюры давлений кольца по окружности;

в) в определении напряжений изгиба, возникающих в сечении, противоположенном замку, при надевании кольца на поршень и в рабочем состоянии;

г) в установлении монтажных зазоров в прямом замке кольца.

Наибольшей работоспособностью (устойчивостью к радиальным вибрациям) и долговечностью обладают поршневые кольца, эпюра давлений колец на зеркало цилиндра которых имеет грушевидную форму.

Расчёт производим для компрессионного кольца. Материал колец СЧ 20.

Построение грушевидной эпюры давлений производится на основе среднего давления на стенку цилиндра определяемого по формуле [5, стр. 269]:

(82)

где – модуль упругости материала,МПа;

– диаметр поршня,=110 мм;

– толщина поршневого кольца,;

– раствор замка, т.е. разность зазоров в замке кольца в свободном состоянии и минимально допустимом во время работы двигателя,, отсюда следует, что.

Результаты расчёта , а такжедля различных угловприведены ниже:

Таблица 4.3.4 – Результаты расчёта давлений кольца на зеркало цилиндра

, град

0

30

60

90

120

150

180

, рад

1,051

1,047

1,137

0,896

0,454

0,67

2,85

, МПа

0,178

0,177

0,192

0,152

0,077

0,113

0,482

Максимальное напряжение при изгибе кольца в рабочем состоянии, возникающее в его поперечном сечении напротив замка [5, стр. 272]:

(83)

Напряжения должны находится в пределах.

Максимальные напряжения, возникающие при разведении замка в процессе надевания кольца на поршень [5, стр. 272]:

(84)

где коэффициент, зависящий от способа приложения усилий к кольцу при надевании его на поршень (в прочностном расчёте принимается).

Минимальный зазор в прямом замке холодного кольца после заведения последнего в цилиндр определяется из условия неодинакового нагрева кольца и гильзы в работающем двигателе[5, стр. 272]:

(85)

где минимальный допустимый зазор в замке кольца во время работы двигателя (), принимаем;

коэффициенты линейного расширения материалов кольца и цилиндра;

температуры соответственно кольца и цилиндра в рабочем состоянии двигателя и начальная температура (), принимаем,.

studfiles.net

Типы поршней

Не буду растягивать вступление, кратко расскажу, о чем будет этот большой пост. И так речь идет о типах поршней, четырех тактные бензиновые, дизельные и двух тактные, Основная задача всех рассмотренных типов поршней, это контролировать тепловое расширение и противостоять определенной нагрузке, ниже разберемся как это решается.

 

Поршни для четырехтактных бензиновых двигателей

В современных бензиновых двигателях используют поршни с симметричной или асимметричной юбкой
с различной толщиной днища и юбки поршня.

Поршни управляемого расширения

Поршни с кольцевой вставкой, которая управляет тепловым расширением.
Вставки выполнены из серого чугуна. Главная цель этого кольца уменьшить тепловое расширение алюминиевого сплава поршня, так как чугун имеет относительно небольшое расширение и малую теплопроводность, вставка тем самым сдерживает металл сохраняя форму. Производство таких поршней более затратное, соответственно и выше цена готового продукта. Основной недостаток, это невозможность изготовления кованного поршня, так необходимого для турбированых двигателей, большая масса поршня. Такой тип поршней больше уходит в далекое прошлое.

Авто термические поршни

Авто термические поршни, имеют разделение(пропил) между кольцевым поясом и юбкой в канавке маслосъемного кольца, юбка держится в районе бобышек. Это позволяет снизить теплопередачу от кольцевого пояса поршня к его юбке, тем самым достигается более стабильная форма юбки. Стальная вставка в районе бобышек, контролирует тепловое расширение и увеличивает прочность. Такие поршни не способны выдерживать огромные нагрузки из-за «пропила», в работе отличаются низким шумом и относятся к более современным типам.

 

Поршни Autothermatik

Действуют по такому же принципу, как и авто
термические поршни, но не имеют пропила в маслосъемной канавке. Так же имеют стальные пластины в районе бобышек. Более прочные из-за целостности кольцевого пояса и юбки, лучше выдерживают боковые нагрузки по сравнению с первым вариантом. Применяются как в бензиновых, так и частично в дизельных двигателях.

Поршни Duotherm

Чем- то похожи на авто термические, но вместо пропила в юбке имеют стальную вставку по всему диаметру. Таким образом ограничивая температурный переход от кольцевого пояса к юбке и контролирую форму по всей окружности.

Поршни с перегородками

Этот тип поршней имеет большой холодильник и узкую часто овальную форму юбки. Поршень спроектирован так что при тепловом расширении он меняет свою форму из овальной в правильную круглую.

В дополнение к такому типу поршней еще есть вариант со скошенной юбкой к вершине поршня. имеет более широкую часть юбки снизу сужаясь к кольцевому поясу.

У поршней для двигателей с очень высокой выходной мощностью (больше, чем 100 кВт/л) может быть выполнен охлаждающий канал.

 

Поршни EVOTEC®

Самый большой потенциал для того, чтобы уменьшить поршневую массу в четырехтактных бензиновых двигателях несут в себе поршни EVOTEC®, в котором прежде всего стоит отметить трапециевидные поддержки бобышек, что позволяет расположить палец особенно глубоко, близко к днищу, сократив всю длину и массу поршня. В посте Масса поршня мы уже говорили о достоинстве такого расположения пальца. Такое расположение стенок юбки позволяет очень хорошо усилить верхнюю часть бобышек имея небольшую толщину перегородок и облегчить нижнюю выполнив поршень асимметричной формы. Юбка достаточно узкая и на краях имеет прочные перегородки, переходящие к бобышкам, это тоже является большим плюсом. Такая компоновка поршня очень хорошо препятствует боковым нагрузкам, мала вероятность деформации юбки, при этом толщина юбки намного меньше чем в обычном поршне, что тоже сокращает общий вес. На всем фоне отмеченных выше достоинств поршень значительно похудел, это позволяет сделать бобышки тоньше, так как инерционная нагрузка на нижние стенки бобышек стала меньше.

Кованные алюминиевые поршни

В двигателях с очень большими удельными нагрузками — такими как турбонадув или впрыск закиси азота используют кованные поршни. Преимуществом несомненно является прочность кованного алюминиевого сплава. Выдерживают более высокую температуру и лучше противостоят детонации. Из недостатков отмечается более высокая цена, невозможность применения некоторых технологий, например, некоторые из тех что описаны выше из-за технологического процесса изготовления.

Кованный поршень для Формулы 1

В следующем посте поговорим о поршнях для двухтактных и дизельных двигателей, где нагрузки и температуры еще больше. Поршни дизельных двигателей

 

enginepower.pro

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *