Инжекторная система питания
На всех современных автомобилях с бензиновыми моторами используется инжекторная система подачи топлива, поскольку она является более совершенной, чем карбюраторная, несмотря на то, что она конструктивно более сложная.
Инжекторный двигатель – не новь, но широкое распространение он получил только после развития электронных технологий. Все потому, что механически организовать управление системой, обладающей высокой точностью работы было очень сложно. Но с появлением микропроцессоров это стало вполне возможно.
Инжекторная система отличается тем, что бензин подается строго заданными порциями принудительно в коллектор (цилиндр).
Устройство ДВСОсновным достоинством, которым обладает инжекторная система питания, является соблюдение оптимальных пропорций составных элементов горючей смеси на разных режимах работы силовой установки. Благодаря этому достигается лучший выход мощности и экономичное потребление бензина.
Устройство системы
Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.
К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:
- лямбда-зонд;
- положения коленвала;
- массового расхода воздуха;
- положения дроссельной заслонки;
- детонации;
- температуры ОЖ;
- давления воздуха во впускном коллекторе.
Датчики системы инжектора
На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ
Что касается механической части, то в ее состав входят такие элементы:
- бак;
- электрический топливный насос;
- топливные магистрали;
- фильтр;
- регулятор давления;
- топливная рампа;
- форсунки.
Простая инжекторная система подачи топлива
Как все работает
Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.
Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).
Первый инжекторный двигатель Toyota 1973 года
Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.
Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.
Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.
К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.
Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.
Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.
Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.
Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.
Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.
Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.
По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.
Виды и типы инжекторов
Инжекторы бывают двух видов:
- С одноточечным впрыском. Такая система является устаревшей и на автомобилях уже не используется. Суть ее в том, что форсунка только одна, установленная во впускном коллекторе. Такая конструкция не обеспечивала равномерного распределения топлива по цилиндрам, поэтому ее работа была сходной с карбюраторной системой.
- Многоточечный впрыск. На современных авто используется именно этот тип. Здесь для каждого цилиндра предусмотрена своя форсунка, поэтому такая система отличается высокой точностью дозировки. Устанавливаться форсунки могут как во впускной коллектор, так и в сам цилиндр (инжекторная система непосредственного впрыска).
На многоточечной инжекторной системе подачи топлива может использовать несколько типов впрыска:
- Одновременный. В этом типе импульс от ЭБУ поступает сразу на все форсунки, и они открываются вместе. Сейчас такой впрыск не используется.
- Парный, он же попарно-параллельный. В этом типе форсунки работают парами. Интересно, что только одна из них подает топливо непосредственно в такте впуска, у второй же такт не совпадает. Но поскольку двигатель – 4-тактный, с клапанной системой газораспределения, то несовпадение впрыска по такту на работоспособность мотора влияния не оказывает.
- Фазированный. В этом типе ЭБУ подает сигналы на открытие для каждой форсунки отдельно, поэтому впрыск происходит с совпадением по такту.
Примечательно, что современная инжекторная система подачи топлива может использовать несколько типов впрыска. Так, в обычном режиме используется фазированный впрыск, но в случае перехода на аварийное функционирование (к примеру, один из датчиков отказал), инжекторный двигатель переходит на парный впрыск.
Обратная связь с датчиками
Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.
Эволюция датчика лямбда-зонд от Bosch
Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.
Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.
На разных режимах обратная связь работает так:
- Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
- Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
- Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
- Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
- Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
- Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.
Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.
Напоследок отметим, что инжектор хоть и конструктивно сложная система и включает множество элементов, поломка которых сразу же сказывается на функционировании силовой установки, но она обеспечивает более рациональный расход бензина, а также повышает экологичность автомобиля. Поэтому альтернативы этой системе питания пока нет.
autoleek.ru
Инжекторная система подачи топлива
Собственно, какая разница, что там происходит под капотом у нашего автомобиля? Едет, и слава богу. А если говорить о системе питания в принципе, то по большому счету, и карбюратор, и инжектор выполняют одну и ту же функцию, только несколько другими средствами. Не факт, что инжектор справляется лучше, он просто дешевле в изготовлении и проще в настройках, чем карбюратор. Его величество карбюратор — это интеллигентная и изящная металлическая конструкция, которая без посторонней помощи способна обеспечивать двигатель топливом. Инжектор — разбалованный принц, которому то топливом не угодили, то давление ему не то. Но обо всем по порядку.
Содержание:
- Когда появился инжектор
- Что такое инжекторная система питания
- Принцип работы инжекторной системы подачи топлива
- Особенности системы впрыска
- Диагностика инжекторных систем
- Промывка инжекторной системы
Когда появился инжектор
Карбюратор, судя по всему, уже смешал отведенное ему количество топлива с воздухом в XX веке и его время стремительно подходит к концу. Несмотря на то что инжекторная система подачи топлива появилась гораздо раньше, чем карбюратор, она только начинает обживаться под капотами автомобилей. Своим происхождением впрыск обязан итальянскому физику и изобретателю Джованни Вентури, который изобрел форсунку с переменным сечением и скромненько назвал ее Труба Вентури.
Использовать ее в автомобилях начали ребята из гаража Леона Левассора. Что-то наподобие современного впрыска они ставили на свои автомобили еще в 1902 году. После этого автомобильные системы питания метались в поисках лучшего устройства, а инжектор нашел себе применение в авиационных двигателях. К концу 40-х годов все военные истребители поголовно пользовались инжекторной системой питания до тех пор, пока военная авиация не перешла на реактивную тягу.
Что такое инжекторная система питания
Самым первым инжекторным автомобилем стал Mercedes-Benz 300 SL. Это тот самый легендарный МВ с дверями «крыло чайки», только он имел механический моновпрыск, который уже лет 30, как не применяется. Резюмируя эту историческую справку, скажем, что инжекторная система питания — это комплект устройств и элементов, которые обеспечивают дозированную подачу топлива в камеру сгорания.
Простейший инжекторный автомобиль в обязательном порядке имеет на борту:
- форсунку-распылитель;
- насос высокого давления;
- топливный фильтр;
- впускной коллектор;
- воздушный фильтр;
- систему управления, которая может быть механической или электронной.
Принцип работы инжекторной системы подачи топлива
Инжектор, в принципе, это распылитель-форсунка, поэтому логичнее и правильнее было бы называть систему впрысковой. Система впрыска работает точно так же, как и карбюратор, только ее элементы разбросаны по всей машине, а карбюратор компактно собрал все системы в своем корпусе. Ему не нужны никакие дополнительные устройства, карбюратор может обойтись (это не значит, что обходится) без насосов, фильтров и электроники. Принцип работы системы впрыска чрезвычайно прост: топливо из бака поступает в магистраль под давлением, которое создал бензонасос. Как правило, в современных автомобилях он находится прямо в баке, но есть исключения.
После этого бензин поступает в топливную рампу, где уже распределяется по форсункам. Форсунка дозировано, по мере необходимости, впрыскивает топливо или прямо в камеру сгорания, тогда такая система называется непосредственным впрыском, или во впускной коллектор, где смешивается с воздухом и подается в камеру сгорания через впускной клапан.
Особенности системы впрыска
Основным преимуществом системы впрыска считают точную дозировку топлива, необходимую для оптимальной работы двигателя в определенный момент и под определенной нагрузкой. Этого позволила добиться только электронная система управления. Старые инжекторные системы имели механическое управление и подавали бензин по средним потребностям мотора. Современный инжектор способен точно вычислить сколько топлива необходимо и в какой момент его нужно подать. Синхронизация системы питания с зажиганием позволяет оперативно менять как угол опережения подачи искры, так и момент подачи бензина, поэтому теоретически, инжекторные системы должны быть эффективнее и экономичнее карбюраторных.
Диагностика инжекторных систем
Действительно, с применением электроники и распределенной системы впрыска моторы стали немного экономичнее, но против физики не попрешь, и без нужного количества бензина камера сгорания просто не выдаст ту энергию, которая необходима. С усложнением систем впрыска стали появляться новые проблемы, особенно на дешевых машинах, поскольку система впрыска очень требовательна к материалам топливной аппаратуры и особенно, к качеству топлива. Это вообще больной вопрос для всех инжекторов. Количество серы в отечественном бензине не укладывается ни в какие нормы, поэтому даже на недорогих системах впрыска очень часто требуется вмешательство механика.
Неисправности системы впрыска проявляются по-разному, но методы диагностики на современных СТО позволяют довольно точно определить нерабочий элемент. Чаще всего, это страдают от топлива насосы и форсунки. Определить неисправность просто, для этого даже не нужно ехать в сервис:
- тяжелый пуск;
- высокий расход;
- провалы в работе на средних оборотах и отсутствие холостых;
- сбои в переходных режимах.
Все это свидетельствует о недостаточном количестве бензина в камере сгорания. Насосы, как правило, не ремонтируют, по крайней мере, на официальных сервисах, а форсунки приходится мыть и прочищать.
Промывка инжекторной системы
Есть несколько способов очистки инжекторной системы. Если двигатель находится еще не в критическом состоянии, тогда может помочь промывка при помощи топливных присадок. Они растворяют отложения в насосе, топливопроводе, а главное, в форсунках, и в некоторой степени чистят систему от грязи и шлаков. не всегда это удается и не всегда это безопасно для двигателя, поэтому наиболее эффективным способом прочистки форсунок считают ультразвуковые ванны. Это не механический способ очистки и процесс проходит довольно эффективно.
Инжекторная система подачи топлива продолжает совершенствоваться, полностью вытесняя карбюраторы. Системы вполне работоспособны, только для того, чтобы избежать лишних проблем с очисткой и регулировками, стоит следить за качеством топлива ровно настолько, насколько это позволяют наши нефтеперерабатывающие комбинаты. Чистого всем бензина, и удачи в дороге!
Читайте также:
avtoshef.com
его достоинства, виды, конструктивные особенности
Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену карбюратору. Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.
Немного истории
Содержание статьи
Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.
Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.
Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.
Что такое инжектор и чем он хорош
Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска с помощью специальной форсунки. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то в инжекторном моторе бензин подается принудительно. Это самое кардинальное различие между карбюратором и инжектором.
Достоинствами инжекторного двигателя, относительно карбюраторных, такие:
- Экономичность расхода;
- Лучший выход мощности;
- Меньшее количество вредных веществ в выхлопных газах;
- Легкость пуска мотора при любых условиях.
И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора. Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях. В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.
Видео: Принцип работы системы питания инжекторного двигателя
Виды инжекторов
Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.
Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.
Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:
- Центральная;
- Распределенная;
- Непосредственная.
1. Центральная
Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.
Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.
2. Распределенная
Распределенный впрыск топлива
Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.
Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.
К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.
3. Непосредственная
Система непосредственного впрыска топлива
Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.
Конструкция и принцип работы инжектора
Поскольку система распределенного впрыска – самая распространенная, то на именно на ее примере рассмотрим конструкцию и принцип работы инжектора.
Условно эту систему можно разделить на две части – механическую и электронную. Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры. Электронная же часть обеспечивает контроль и управление системой.
Механическая составляющая инжектора
Система питания автомобилей ВАЗ 2108, 2109, 21099
К механической части инжектора относится:
- топливный бак;
- электрический бензонасос;
- фильтр очистки бензина;
- топливопроводы высокого давления;
- топливная рампа;
- форсунки;
- дроссельный узел;
- воздушный фильтр.
Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.
Видео: Инжектор
Принцип работы инжектора
Что касается назначения каждого из них, то все просто. Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.
Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.
Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.
Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.
Устройство электромагнитной форсунки
Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.
С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.
Электронная составляющая
Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.
Для своей работы ЭБУ использует показания датчиков:
- Лямбда-зонд . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
- Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
- Датчик положения дроссельной заслонки (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
- Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
- Датчик положения коленчатого вала (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
- Датчик детонации. Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
- Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
- Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;
Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.
Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.
При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.
avtomotoprof.ru
Как работает инжекторная система подачи топлива. » Хабстаб
Subaru Justy 1990 года выпуска, был последним автомобилем, выпущенным в США, в котором использовался карбюратор, в следующей модели уже применялась инжекторная система подачи топлива. Однако инжекторная система подачи топлива известна с 50-х годов прошлого столетия, а управляемая электроникой, начиная примерно с 1980 года. На данный момент все автомобили, продаваемые в США, оснащены инжекторной системой подачи топлива.
Почему не прижился карбюратор?
Карбюратор — устройство, которое подаёт топливо в двигатель. Например, в газонокосилках и бензопилах, до сих пор используется карбюратор. Автомобиль эволюционировал и карбюратор становился всё больше и сложнее.
Ему необходимо было выполнять пять различных функций:
- Главная функция — обеспечить малое потребление топлива во время езды в “спокойном режиме”;
- Функция холостого хода — обеспечить контролируемую подачу топлива для поддержания холостого хода;
- Функция ускорительного насоса — обеспечить дополнительный впрыск топлива, когда нажата педаль газа;
- Функция обогащения питания — обеспечить дополнительное топливо, когда автомобиль едет в гору или буксирует прицеп;
- Функция подсоса — обеспечить дополнительное топливо, когда двигатель холодный;
В целях уменьшения количества вредных выбросов, были введены каталитические нейтрализаторы. Кислородный датчик определяет количество кислорода в выхлопе, а блок управления двигателем использует эту информацию, для того чтобы регулировать соотношение воздух-топливо в режиме реального времени.
Это называется замкнутый цикл управления. Этого невозможно было добиться с карбюратором. До появления инжекторной системы впрыска топлива был короткий период электрически управляемых карбюраторов, но эти карбюраторы были ещё более сложными чем чисто механические. Сначала карбюратор заменили на моноинжектор, он представлял собой дроссельную заслонку, совмещённую с форсункой. Следующим этапом после моноинжекторов стала система распределенного впрыска топлива. В отличие от моноинжектора в системе распределенного впрыска количество форсунок равно количеству цилиндров.
Что происходит когда мы жмём на газ?
Педаль газа в автомобиле подключена к дроссельной заслонке. Дроссельная заслонка — это клапан, который регулирует количество воздуха, поступающего в двигатель. Когда мы нажимаем на педаль газа, дроссельная заслонка открывается, позволяя большему количеству воздуха попадать в двигатель. Блок управления двигателем, который управляет всеми электронными компонентами двигателя, “видит”, что дроссельная заслонка открылась и увеличивает расход топлива, в ожидании того, что в двигатель поступит больше воздуха.
Важно, что бы расход топлива увеличивался как только откроется дроссельная заслонка, иначе при нажатии на педаль газа будет некоторое запаздывание.
Датчики также регистрируют массу воздуха, поступающего в двигатель, и количество кислорода в выхлопе. Опираясь на эту информацию, блок управления двигателем регулирует подачу топлива.
Форсунка.
Форсунка — это не что иное, как электромагнитный клапан, к которому подводится топливо и способный открываться множество раз в секунду. Когда на форсунку подаётся напряжение, электромагнитный клапан открывается и топливо под давлением распыляется через крошечные сопла. Сопла необходимы для того чтобы топливо превратить в мелкий туман, в таком состоянии оно лучше горит. Количество топлива, подаваемого в двигатель, определяется временем, когда топливная форсунка открыта. Это время зависит от ширины импульса, который подаёт электронный блок управления двигателем (ЭБУ). Форсунки установлены во впускном коллекторе и распыляют топливо прямо на клапана. Топливо подводится к форсункам через трубку, которая называется топливной рампой.
Датчики двигателя.
В целях обеспечения необходимого количества топлива на всех режимах работы двигателя, ЭБУ должен контролировать большое количество входных параметров, с различных датчиков.
Вот только некоторые из них:
- Датчик массового расхода воздуха — сообщает ЭБУ массу воздуха, поступающего в двигатель;
- Датчики кислорода — определяют количество кислорода в выхлопных газах, на основе этих данных ЭБУ корректирует качество смеси;
- Датчик положения дроссельной заслонки — контролирует положение дроссельной заслонки, которая определяет какое количество воздуха попадёт в двигатель, это позволяет ЭБУ быстрее реагировать, уменьшая или увеличивая расход топлива. Дело в том, что массовый расходомер воздуха (который по сути определяет массу воздуха поступающего в двигатель) инерционен, то есть при изменении потока воздуха он реагирует с некоторым опозданием.
Информация с дроссельной заслонки приходит раньше чем с массового расходомера воздуха, что позволяет нам не чувствовать его инерционности; - Датчик температуры охлаждающей жидкости — предоставляет данные ЭБУ о температуре охлаждающей жидкости;
- Датчик абсолютного давления — контролирует давление воздуха во впускном коллекторе.
По известному количеству воздуха, поступающего в двигатель, можно посчитать какая энергия образуется в двигателе. Чем больше воздуха поступает в двигатель, тем меньше разряжение во впускном коллекторе; - Вольтметр — контролирует напряжение сети, ЭБУ может поднять обороты холостого хода если напряжение сети упало, что указывает на высокую электрическую нагрузку;
Распределенный впрыск или как его ещё называют многоточечный, бывает четырёх видов:
- Одновременный впрыск — все форсунки открываются одновременно;
- Попарно-параллельный впрыск — форсунки открываются парами, только в одном цилиндре в это время впускной такт и топливо попадёт в цилиндр, а в другом выпускной. Но так как за попадание топлива в цилиндр отвечают клапана, это не мешает работе двигателя.
В современных моторах попарно-параллельный впрыск используется в аварийном режиме, когда неисправен датчик распредвала, также называемый датчиком фаз; - Фазированный впрыск — каждая форсунка открывается непосредственно перед впускным тактом;
- Прямой впрыск — тот же фазированный впрыск, только топливо впрыскивается прямо в камеру сгорания;
Микросхемы, управляющие работой двигателя.
Алгоритмы с помощью которых ЭБУ контролирует работу двигателя очень сложны.
Программное обеспечение должно позволить автомобилю удовлетворить все требования по токсичности выбросов. ЭБУ использует формулы и большое количество таблиц, чтобы определить длительность импульса, подаваемого на форсунки.
Давайте рассмотрим как это примерно происходит. Есть уравнение с помощью которого можно вычислить длительность импульса, для управления форсункой. В это формула входит множество переменных, некоторые из них берутся из таблиц. Мы пойдём по упрощённой схеме расчёта, будем считать что уравнение, которое описывает длительность импульса, состоит из двух коэффициентов и базовой длительности импульса, в реальной системе коэффициентов более сотни.
Выглядит формула следующим образом:
Длительность импульса = (базовая длительность импульса) х (коэффициент А) х (коэффициент B)
Для того чтобы вычислить длительность импульса, ЭБУ сначала смотрит базовую длительность импульса в справочной таблице. Базовая длительность импульса зависит от частоты вращения двигателя (RPM) и нагрузки (которая может быть вычислена из абсолютного давления в коллекторе). Предположим обороты двигателя 2000 оборотов в минуту и нагрузка равна 4. Находим значение на пересечении 2000 и 4, оно составляет 8 миллисекунд.
Далее, рассмотрим параметры А и B, которые приходят с датчиков. Давайте предположим, что параметр А это температура охлаждающей жидкости, а параметр В это показания датчика кислорода. Если температура охлаждающей жидкости равна 100 и уровень кислорода равен 3, из справочных таблиц находим что коэффициент А равен 0,8 а коэффициент В равен 1.
Теперь по известным данным рассчитаем длительность импульса:
Длительность импульса = 8 х 0,8 х 1,0 = 6,4 мс
Из этого примера, видно, как ЭБУ регулирует длительность импульса.
Системы реального контроля может иметь более 100 параметров, каждому параметру соответствует собственная таблица. И в зависимости от оборотов двигателя, ЭБУ, приходится производить расчёты более ста раз в минуту.
Производительность чипов.
Теперь когда мы понимаем как работает ЭБУ, можем поговорить о том как увеличить мощность двигателя. В ЭБУ есть чип в котором располагаются все справочные таблицы. Этот чип можно заменить на аналогичный, с другими таблицами. Эти таблицы будут содержать в себе значения, которые будут увеличивать подачу топлива на определённых этапах езды.
Например, можно увеличить количество топлива поступающего в двигатель как на полном газу, так и на любых оборотах. Поскольку производители таких прошивок для чипов, не озабочены количеством вредных выбросов, они используют более агрессивные настройки подачи топлива, при написании прошивки.
hubstub.ru
Принцип работы инжектора для начинающих
С целью сокращения вредных выбросов и повышения экономичности двигателей автомобильная топливная система в последние годы серьезно изменилась. Например, в США от карбюраторов отказались ещё в 1990 году. Системы впрыска топлива появились ещё в середине ХХ века, а на серийных автомобилях европейских производителей их начали применять примерно с 1980-х.
На сегодняшний день все новые автомобили оснащаются именно инжекторными двигателями. В этой познавательной статье мы рассмотрим принцип работы инжектора и его устройство. Вы сможете узнать, как топливо попадает в цилиндр двигателя. Устройство двигателя с системой впрыска – очень актуальная тема для современного автолюбителя, поэтому устраивайтесь поудобнее и начинаем!
Карбюратор «сдаёт позиции»
После появления двигателя внутреннего сгорания карбюратор использовался для подачи топлива в двигатель. В такой технике как бензопилы и газонокосилки это устройство применяется до сих пор. Но в процессе эволюции автомобиля карбюратору становилось всё сложнее и сложнее удовлетворять многим требованиям к эксплуатации.
Например, для того чтобы соответствовать ужесточающимся экологическим нормам были введены каталитические нейтрализаторы (катализаторы). Катализатор эффективен лишь в случае тщательного контроля топливно-воздушной смеси. Кислородные датчики (как их проверяют мы уже писали – https://avtopub.com/proverka-kislorodnogo-datchika-lyambda-zonda-svoimi-silami/) отвечают за контроль количества кислорода в выхлопных газах. Эта информация используется и электронным блоком управления двигателем (ЭБУ) для регулировки пропорции воздух/топливо в режиме реального времени.
В итоге получается замкнутая система управления, которую невозможно было реализовать с использованием карбюраторов. В течение короткого периода времени выпускались карбюраторы с электронным управлением, но они были ещё более сложными, чем чисто механические устройства.
Сначала карбюраторы были заменены системой впрыска топлива в корпусе дроссельной заслонки (также известна как одноточечная система впрыска или система центрального впрыска топлива). В них форсунки были расположены в корпусе дроссельной заслонки. Это было простое решение для замены карбюратора, поэтому автопроизводителям не пришлось вносить изменения в конструкцию двигателей.
Со временем, в процессе появления новых двигателей, система центрального впрыска топлива была заменена многоточечной системой впрыска топлива (также известна как система последовательного впрыска). В этих системах используется отдельная топливная форсунка для каждого цилиндра. Как правило, они расположены так, чтобы распылять топливо прямо на впускной клапан. Эти системы обеспечивают более точное дозирование топлива и быструю реакцию. Пришло время подробнее изучить принцип работы инжектора.
Когда вы давите на газ
Педаль газа в вашем автомобиле подключена к дроссельной заслонке. Речь идет о клапане, который регулирует количество воздуха, поступающего в двигатель. Так что педаль газа на самом деле является педалью воздуха.
Когда вы нажимаете на педаль газа, дроссельная заслонка открывается больше, в результате чего двигатель получает больше воздуха. Блок управления двигателем (ЭБУ, компьютер, управляющий всеми электронными компонентами двигателя) «замечает» открытую дроссельную заслонку и увеличивает подачу топлива для приготовления оптимальной топливно-воздушной смеси. Очень важно, чтобы подача топлива увеличивалась сразу после открытия дроссельной заслонки. В противном случае, некоторая часть воздуха окажется в цилиндрах без достаточного количества топлива.
Датчики контролируют содержание кислорода в выхлопных газах, а также количество воздуха, поступающего в двигатель. ЭБУ использует эти данные для максимально точного выбора соотношения воздуха и топлива. Как работает инжектор на современных автомобилях?
Форсунка
Топливная форсунка (инжектор) – это клапан с электронным управлением. Подачу топлива к этому клапану обеспечивает топливный насос. Форсунка может открываться/закрываться много раз в секунду.
Когда форсунка находится под напряжением, электромагнит перемещает поршень, открывающий клапан, в результате чего происходит впрыск топлива под давлением через крошечное сопло. Насадка предназначена для распыления топлива. Появляется мелкий туман, который легко сгорает.
Количество топлива, которое подается в двигатель, зависит от того, сколько времени форсунка остается в открытом положении. Данный показатель называют длительностью или шириной импульса, он управляется ЭБУ.
Форсунки установлены во впускном коллекторе таким образом, чтобы распылять топливо прямо на впускные клапана. Трубка, которая поставляет топливо к каждой из форсунок под определенным давлением, называется топливной рампой.
Для того чтобы определить оптимальное количество топлива, блок управления двигателя получает сигналы от множества датчиков. Рассмотрим самые важные из них.
Устройство инжекторного двигателя – основные датчики
Для выбора оптимального количества топлива в различных условиях эксплуатации ЭБУ двигателя следит за показаниями различных датчиков. Вот лишь несколько основных:
- Датчик массового расхода воздуха (ДМРВ). Сообщает блоку управления массу воздуха, поступающего в двигатель.
- Датчик (-и) кислорода (лямбда-зонд). Контролирует содержание кислорода в выхлопных газах. С помощью полученной от него информации ЭБУ может выявить богатую или бедную топливную смесь и внести соответствующие коррективы.
- Датчик положения дроссельной заслонки. Следит за положением дроссельной заслонки (она влияет на подачу воздуха в двигатель), благодаря чему блок управления может оперативно реагировать на изменения, увеличивая либо сокращая расход топлива по мере необходимости.
- Датчик температуры охлаждающей жидкости. Помогает ЭБУ определить, когда двигатель достиг оптимальной рабочей температуры.
- Датчик напряжения. Следит за напряжением бортовой сети автомобиля. В зависимости от показаний датчика блок управления может увеличить число оборотов холостого хода двигателя, если напряжение падает (такое бывает при высоких электрических нагрузках).
- Коллекторный датчик абсолютного давления. Анализирует давление воздуха во впускном коллекторе. Количество воздуха, поступающего в двигатель, является хорошим показателем того, сколько энергии он вырабатывает. Чем больше воздуха поступает в двигатель, тем ниже давление в коллекторе. Этот показатель используется для определения количества производимой энергии.
- Датчик скорости вращения коленчатого вала. Скорость вращения коленвала – один из факторов, влияющих на расчет требуемой длительности импульса.
Существует два основных типа управления многоточечными системами впрыска: топливные форсунки могут открываться одновременно или каждая из них может открываться только перед открытием впускного клапана соответствующего цилиндра (это называется последовательный многоточечный впрыск топлива).
Преимущество последовательного впрыска топлива заключается в том, что система может реагировать на любые действия водителя быстрее, поскольку с момента выполнения действия она ждет лишь очередного открытия впускного клапана. Системе не нужно ждать полного вращения двигателя. Разобраться в работе инжектора мы смогли, но кто всем этим «руководит»?
Управление работой двигателя
Алгоритмы, управляющие двигателем, являются довольно сложными. Существует множество требований, которым силовой агрегат должен удовлетворять. Например, это касается показателя вредных выбросов или требований топливной экономичности.
Блок управления двигателем использует формулу и множество таблиц соответствия для установки длительности импульса в определенных условиях эксплуатации. Формула представляет собой сочетание многих факторов, умноженных друг на друга. Мы рассмотрим упрощенную формулу определения длительности импульса топливной форсунки. В этом примере наша формула будет состоять лишь из трех показателей, в то время как в реальности обычно учитывается свыше сотни параметров.
Длительность импульса = (Длительность базового импульса) x (Фактор A) x (Фактор B)
Для расчета длительности импульса электронный блок сначала выполняет поиск длительности базового импульса в соответствующей справочной таблице. Базовая длительность импульса – это функция от частоты вращения двигателя (RPM) и нагрузки (она вычисляется из абсолютного давления в коллекторе). Например, частота вращения двигателя 2000 оборотов в минуту, а показатель нагрузки равен 4. В таблице необходимо найти число в месте пересечения показателей 2000 и 4. Получается 8 миллисекунд.
Частота вращения двигателя | Нагрузка | ||||
1 | 2 | 3 | 4 | 5 | |
1,000 | 1 | 2 | 3 | 4 | 5 |
2,000 | 2 | 4 | 6 | 8 | 10 |
3,000 | 3 | 6 | 9 | 12 | 15 |
4,000 | 4 | 8 | 12 | 16 | 20 |
В следующих примерах А и В представляют собой параметры, которые блок управления получает от датчиков. Допустим, что А – это температура охлаждающей жидкости, а B – уровень содержания кислорода. Если температура охлаждающей жидкости равна 100, а уровень кислорода – 3, справочные таблицы свидетельствуют о том, что фактор А = 0,8, а фактор B = 1,0.
A | Фактор A | B | Фактор B | |
0 | 1.2 | 0 | 1.0 | |
25 | 1.1 | 1 | 1.0 | |
50 | 1.0 | 2 | 1.0 | |
75 | 0.9 | 3 | 1.0 | |
100 | 0.8 | 4 | 0.75 |
Таким образом, поскольку нам известно, что длительность базового импульса – это функция от нагрузки и частоты вращения двигателя, а длительность импульса = (длительность базового импульса) x (фактор A) x (фактор B), общая длительность импульса в нашем примере равна:
8 х 0,8 х 1,0 = 6,4 мс
На этом примере видно, как система управления выполняет настройку. Так как параметр В отображает содержание кислорода в выхлопных газах, согласно данным с таблицы, можно сделать вывод, что выхлопные газы содержат слишком много кислорода, в результате чего ЭБУ сокращает подачу топлива.
Реальные системы управления учитывают свыше 100 параметров, для каждого из которых составлена собственная таблица соответствия. Некоторые параметры даже корректируются с течением времени с целью компенсации изменений производительности компонентов, к примеру, каталитического нейтрализатора (о проверке катализатора читайте по ссылке). И в зависимости от количества оборотов двигателя, блок управления может выполнять эти расчеты более 100 раз в секунду.
Если наша статья о том, как работает инжектор, и какие существуют системы впрыска топлива, вам понравилась, поделитесь ссылкой с друзьями в социальных сетях, используя соответствующие кнопочки ниже. Спасибо за внимание, оставайтесь с нами!
avtopub.com
Инжекторная система подачи топлива и ее работа
Инжекторная система подачи топлива в автомобилях стала массово распространяться с 80-х годов минувшего века. В их двигателях горючее в результате сжатия посредством форсунок-инжекторов под давлением впрыскивается в цилиндр или в коллектор впуска.
Инжекторная система подачи топлива
Чем хороша инжекторная система подачи топлива?
Время показало ее преимущества в сравнении с моторами, где топливо подается посредством карбюратора. Инжекторная схема мотора имеет немалые достоинства:
- Расход горючего в двигателях внутреннего сгорания меньше, что подтверждается инжекторной системой подачи топлива ВАЗ 2109;
- ДВС запускается проще, улучшаются его эксплуатационный режим;
- Система впрыска регулируется автоматически с помощью датчика кислорода;
- Отработанные газы содержат меньше углеводородов;
- При одинаковых объемах карбюраторного и инжекторного мотора у последнего мощность выше примерно на 10 %;
- В 2016 году производители автомобилей полностью отказались от карбюраторов в легковых и малых грузовых машинах.
Как работает инжектор?
Чтобы понять, как подается топливная смесь в инжекторный двигатель, необходимо представить себе устройство инжектора.
Обычно он состоит из:
- Электробензонасоса;
- Контроллера или электронного блока управления;
- Регулятора давления;
- Различных датчиков;
- Собственно инжектора или форсунок.
Схема устройства инжекторной системы подачи топлива
Принцип работы инжектора достаточно прост. Контроллер анализирует поступающую от датчиков информацию и запускает бензонасос. Тот закачивает топливо в систему. С помощью регулятора давления обеспечиваются нужные параметры давления во впускном коллекторе и в инжекторах. Эти элементы хорошо работают в инжекторной системе подачи топлива ВАЗ 2107. Учитываются данные о положении и скорости вращения коленвала, расходе воздуха и другие. Электроника принимает решение о запуске двигателя и о том, как должен работать инжектор.
Принцип работы его основывается на четкой работе контроллера, который включает электромагнитный клапан форсунки с иглой. Он обеспечивает хорошее функционирование систем зажигания, подачи топлива, диагностики, охлаждения двигателя и других. В результате впрыск происходит точно в нужный момент. При этом топливовоздушная эмульсия подается в нужном количестве и составе.
Какими бывают инжекторы?
От форсунок в решающей степени зависит подача топлива в инжекторном двигателе. Долгое время весьма распространенной была система моновпрыска, при которой через одну форсунку можно осуществлять впрыск во все цилиндры. Определенное время она существовала наряду с многоточечным впрыском.
Эти виды инжекторов развивались по-разному. Моновпрыск не соответствовал Евро-3, быстро устарел и встречается не часто. Сегодня доминирует более совершенная система, с помощью которой осуществляется распределенный впрыск топлива.
Здесь на коллектор впуска цилиндра ставится отдельная форсунка или посредством нее топливная смесь попадает непосредственно в камеру сгорания. Распределенный впрыск топливной смеси может быть:
- Одновременным;
- Попарно-параллельным;
- Фазированным или последовательным.
Особого внимания требуют машины, на которые ставятся несовершенные инжекторные системы подачи топлива. «Газель» является одним из примеров тому. Замена карбюраторного двигателя на инжекторный порой не уменьшала большой расход топлива.
Особенности устройства инжекторного двигателя
Для того чтобы грамотно эксплуатировать автомобиль, у которого имеется система питания бензинового двигателя с впрыском топлива, необходимо иметь представление о его работе. Особенно когда речь идет об отечественных автомобилях, инжекторной системе подачи топлива ВАЗ 2114 и других машин.
Без этого будет сложно самому понимать и устранять возможные неисправности машины. Усвоив особенности конструкции, принцип работы, устройство инжекторного двигателя можно разобраться в неисправности и даже устранить ее, не обращаясь на СТО.
Инжекторным двигателем управляет контроллер. В отечественных машинах его обычно размещают справа под приборной панелью. Задача этого прибора — непрерывно обрабатывать информацию о состоянии мотора и обеспечивать надежную работу его систем. Блок управления включает различные реле, форсунки, датчики.
С помощью встроенной системы диагностики происходит распознавание неполадки в двигателе, сигнализируя контрольной лампой, хранит коды диагностики неисправностей. Она располагает тремя запоминающими устройствами, позволяющими оперативно анализировать техническое состояние за разные периоды времени.
Принципиальной особенностью двигателя является наличие форсунок, которые обеспечивают дозированный впрыск топливовоздушной смеси во впускную трубу после получения команды от управляющего блока. При этом необходимый воздух подается при помощи дроссельного узла и регулятора холостого хода. Форсунки крепятся к рампе, которая установлена на впускной трубе.
Форсунка представляет собой электромеханический клапан, который при помощи пружины запирается иглой. Когда от блока управления подается на обмотку электромагнита форсунки импульс, игла поднимается, открывая сопло распылителя. Через него смесь подается во впускную трубу мотора. Форсунки требуют постоянного контроля. Малейшее их засорение может негативно сказаться на работе двигателя.
Устройство электромагнитной форсунки бензинового двигателя
Также важной частью этого двигателя является нейтрализатор, который преобразует вредные компоненты отработанных газов.
Основные системы
Сегодня большинство легковых автомобилей имеют инжекторный двигатель. Устройство его помимо блока управления и нейтрализатора предполагает наличие некоторых других важных систем. Среди них системы зажигания, подачи топлива и улавливания паров бензина.
Первая предусматривает наличие расположенного в топливном баке двухступенчатого электробензонасоса, фильтра для очистки топлива, топливопроводов и форсунок вместе с регулятором давления топлива. Фильтр расположен на топливной магистрали между топливной рампой и бензонасосом.
Например, в инжекторной системе подачи топлива ВАЗ 2110 не предполагаются наличия обычной катушки зажигания и распылителя в системе зажигания. В ней используется модуль и две катушки зажигания. Управляется она контроллером. Искра образуется одновременно в двух цилиндрах методом «холостой искры». Система не нуждается в обслуживании и регулировках.
Пары бензина улавливаются при помощи угольного адсорбера, устанавливаемого в моторном отсеке и соединенным с бензобаком и патрубком дросселя трубопроводами. Сверху этого устройства смонтирован электромагнитный клапан. При неработающем двигателе он закрыт.
Когда мотор запускается, он открывается. Блок управления посылает сигнал, воздухом продувается адсорбер. Бензиновые пары попадают в дроссельный патрубок, после чего сжигаются в цилиндрах.
Зачем нужны датчики?
Работа инжектора невозможна без наличия различных датчиков, которые сообщают контроллеру необходимую информацию. Работа датчиков инжекторного двигателя позволяет контролировать параметры работы мотора, предупредить его поломки.
Так, эти приборы различного назначения подают информацию:
- О частоте, направлении вращения и положении коленвала;
- Объеме всасываемого воздуха и его температуре;
- О нагреве охлаждающей жидкости, что позволяет управлять впрыском и зажиганием;
- О степени открытости дроссельной заслонки позволяет определить нагрузку двигателя;
- О наличии кислорода в выхлопных газах, что помогает корректировать время впрыска и зажигание;
- О появлении детонации, что предупреждает поломки мотора;
- О состоянии распредвала для обеспечения синхронного впрыска.
В двигатель могут устанавливаться и другие датчики, обеспечивающие его надежную работу. Они помогают четко выявить причину, почему нет подачи топлива в двигатель.
blog-mycar.ru
Инжекторная система подачи топлива — это… Что такое Инжекторная система подачи топлива?
Двигатель АШ-82 в музее в ПрагеСистема впрыска топлива (англ. Fuel Injection System) — система подачи топлива, устанавливаемая на современных бензиновых двигателях. Основное отличие от карбюраторной системы — подача топлива осуществляется путем непосредственного впрыска топлива с помощью форсунок во впускной коллектор или в цилиндр. Автомобили с данной системой питания часто называют инжекторными.
Устройство
В инжекторной системе подачи впрыск топлива в воздушный поток осуществляется специальными форсунками — инжекторами (англ. Injector).
Классификация
По точке установки и количеству форсунок:
- Моновпрыск или центральный впрыск (нем. Ein Spritz) — одна форсунка на все цилиндры, расположенная, как правило, на месте карбюратора (на впускном коллекторе). В настоящее время непопулярна.
- Распределённый впрыск — каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе. В то же время различают несколько типов распределённого впрыска:
- Одновременный — все форсунки открываются одновременно.
- Попарно-параллельный — форсунки открываются парами, причём одна форсунка открывается непосредственно перед циклом впуска, а вторая перед тактом выпуска. В связи с тем, что за попадание топливо-воздушной смеси в цилиндры отвечают клапаны, это не оказывает сильного влияния. В современных моторах используется фазированный впрыск, попарно-параллельный используется только в момент запуска двигателя и в аварийном режиме при поломке Датчика Положения Распределительного Вала ДПРВ (так называемой Фазы).
- Фазированный впрыск — каждая форсунка управляется отдельно, и открывается непосредственно перед тактом впуска.
- Прямой впрыск — форсунки расположены непосредственно возле цилиндров и впрыск топлива происходит прямо в камеру сгорания.
Управление системой подачи топлива
В настоящее время системами подачи топлива управляют специальные микроконтроллеры, этот вид управления называется электронным. Принцип работы такой системы основан на том, что решение о моменте и длительности открытия форсунок принимает микроконтроллер, основываясь на данных, поступающих от датчиков.
В прошлом, на ранних моделях системы подачи топлива, в роли контроллера выступали специальные механические устройства.
Принцип работы
В контроллер, при работе системы, поступает, со специальных датчиков, следующая информация:
- о положении и частоте вращения коленчатого вала,
- о массовом расходе воздуха двигателем,
- о температуре охлаждающей жидкости,
- о положении дроссельной заслонки,
- о содержании кислорода в отработавших газах (в системе с обратной связью),
- о наличии детонации в двигателе,
- о напряжении в бортовой сети автомобиля,
- о скорости автомобиля,
- о положении распределительного вала (в системе с последовательным распределенным впрыском топлива),
- о запросе на включение кондиционера (если он установлен на автомобиле),
- о неровной дороге (датчик неровной дороги),
- о температуре входящего воздуха.
На основе полученной информации контроллер управляет следующими системами и приборами:
- топливоподачей (форсунками и электробензонасосом),
- системой зажигания,
- регулятором холостого хода,
- адсорбером системы улавливания паров бензина (если эта система есть на автомобиле),
- вентилятором системы охлаждения двигателя,
- муфтой компрессора кондиционера (если он есть на автомобиле),
- системой диагностики.
Изменение параметров электронного впрыска может происходить буквально «на лету», так как управление осуществляется программно, и может учитывать большое число программных функций и данных с датчиков. Также, современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения и многие другие характеристики и спецификации.
Ранее использовалась механическая система управления впрыском.
Достоинства двигателей, оборудованных системой впрыска с микропроцессорным управлением
Преимущества, по сравнению с двигателями, оборудованными карбюраторной системой подачи топлива:
- Уменьшение расхода топлива.
- Упрощается запуск двигателя.
- Приближенная к линейной характеристика крутящего момента (улучшаются динамические и мощностные характеристики двигателя).
- Не требует ручной регулировки системы впрыска, т.к. выполняет самостоятельную настройку на основе данных, передаваемых датчиками кислорода.
- Поддерживает примерно стехиометрический состав рабочей смеси, что несколько уменьшает выброс несгоревших углеводородов и повышает экологичность (альфа ~ 0.98-1.2).
Недостатки
Основные недостатки двигателей с блоком управления по сравнению с карбюраторными:
- Высокая стоимость узлов,
- Низкая ремонтопригодность элементов,
- Высокие требования к фракционному составу топлива,
- Необходимость в специализированном персонале и оборудовании для диагностики, обслуживания и ремонта, высокая стоимость ремонта.
- Зависимость от электропитания и критически важное требование к постоянному наличию напряжения питания
- Уязвимость электронной системы от атомного излучения
История
Появление и применение систем впрыска в авиации
Карбюраторные системы для работы под углом к горизонту необходимо дополнять множеством устройств, либо применять специально спроектированные карбюраторы. Система непосредственного впрыска авиационных двигателей — удобная альтернатива карбюраторной, так как инжекционной системе впрыска в силу конструкции безразлично рабочее положение (подача топлива осуществляется независимо от положения двигателя относительно земной поверхности).
Первый мотор с системой впрыска был изготовлен в России в 1916 году Микулиным и Стечкиным. Он же стал первым авиационным двигателем, перешагнувшим 300-сильный рубеж мощности.
К 1936 году на фирме Robert Bosch были готовы первые комплекты топливной аппаратуры для непосредственного впрыска бензина в цилиндры, которую через год стали серийно ставить на V-образный 12-цилиндровый двигатель Daimler-Benz DB 601. Именно этими моторами объёмом 33,9 л оснащались, в частности, основные истребители Люфтваффе Messerschmitt Bf 109. И если карбюраторный двигатель DB 600 развивал на взлетном режиме 900 л.с., то «шестьсот первый», с впрыском, позволял поднять мощность до 1100 л.c. и более. Чуть позже, в серию пошла девятицилиндровая «звезда» BMW 132 с подобной системой питания — тот самый лицензионный авиадвигатель Pratt & Whitney Hornet, который на BMW производили с 1928 года, он же устанавливался, к примеру, на транспортные самолеты Junkers Ju-52. Авиационные двигатели в Англии, США и СССР в те времена были исключительно карбюраторными. Японская же система впрыска на истребителях «Зеро» требовала промывки после каждого полета и поэтому не пользовалась популярностью в войсках.
Лишь к 1940 году, когда Советскому Союзу удалось закупить образцы новейших германских авиационных двигателей с впрыском, работы по созданию отечественных систем непосредственного впрыска получили новый импульс. Однако серийное производство советских насосов высокого давления и форсунок, созданных на основе немецких, началось лишь к середине 1942 года — первенцем стал звездообразный мотор АШ-82ФН, который ставили на истребители Ла-5, Ла-7 и бомбардировщики Ту-2. Мотор со впрыском — АШ-82ФН оказался настолько удачным, что выпускался ещё долгие десятилетия, использовался на вертолете Ми-4 и до сих пор используется на самолетах Ил-14.
К концу войны довели до серии свой вариант впрыска и американцы. Например, двигатели «летающей крепости» Boeing B-29 тоже питались бензином через форсунки.
Применение систем впрыска в автомобилестроении
Системы управления двигателем в автомобилестроении начали применяться с 1951 года, когда механической системой непосредственного впрыска бензина производства западногерманской фирмы Bosch был оснащён двухтактный двигатель микролитражного купе 700 Sport, выпущенного небольшой фирмой Goliath из Бремена. В 1954 году появилось легендарное купе Mercedes-Benz 300 SL («Крыло чайки»), двигатель которого оснащался аналогичной механической системой впрыска Bosch.[1] Тем не менее, до эпохи появления дешёвых микропроцессоров и введения в странах Запада жёстких требований к экологической безопасности автомобилей идея непосредственного впрыска популярностью не пользовалась и только с конца 1970-х их массовым внедрением занялись все ведущие мировые автопроизводители.
Первой серийной моделью с электронным управлением системы впрыска бензина стал седан Rambler Rebel («Бунтарь») 1957 модельного года, который выпускала фирма Nash, входившая в качестве отделения в состав концерна AMC. Нижневальная V-образная «восьмерка» Rebel объёмом 5,4 л в карбюраторном варианте развивала 255 л.с., а в заказной версии Electrojector уже 290 л.с. Разгон до 100 км/ч у такого седана занимал менее 8 с.
К концу первого десятилетия 21 века системы распределённого и прямого электронного впрыска практически вытеснили карбюраторы на легковых и легких коммерческих автомобилях.
См. также
Примечания
- ↑ Electrojector и его потомки
Ссылки
dic.academic.ru