Крутящий момент и мощность электродвигателя: Как рассчитать крутящий момент электродвигателя

Содержание

Как рассчитать крутящий момент электродвигателя

Крутящий момент электродвигателя – это сила вращения его вала. Именно момент вращения определяет мощность Вашего двигателя. Измеряется в ньютонах на метр Н*м или в килограмм-силах на метр кгс*м.

Виды крутящих моментов:

  • Номинальный – значение момента при стандартном режиме работы и стандартной номинальной нагрузке на двигатель.
  • Пусковой – это табличное значение. Сила вращения, которую в состоянии развивать электродвигатель при пуске. При подборе электродвигателя убедитесь, что данный параметр выше, чем статический момент Вашего оборудования — насоса, либо вентилятора и т.д. В противном случае электродвигатель не сможет запуститься, что чревато перегревом и перегоранием обмотки.
  • Максимальный – предельное значение, по достижении которого нагрузка уравновесит двигатель и остановит его.

Таблица крутящих моментов электродвигателей

В данной таблице собраны крутящие моменты наиболее распространенных в Украине электродвигателей АИР, а также требуемый при пуске – пусковой, максимально допустимый для данного типа электродвигателя – максимальный крутящий момент и момент инерции двигателей АИР (усилие важное при подборе электромагнитного тормоза, например)

Двигатель
кВт/об
Мном, Нм
Мпуск, Нм
Ммакс, Нм
Минн, Нм
АИР56А2
0,18/2730
0,630
1,385
1,385
1,133
АИР56В2
0,25/2700
0,884
1,945
1,945
1,592
АИР56А4
0,12/1350
0,849
1,868
1,868
1,528
АИР56В4
0,18/1350
1,273
2,801
2,801
2,292
АИР63А2
0,37/2730
1,294
2,848
2,848
2,330
АИР63В2
0,55/2730
1,924
4,233
4,233
3,463
АИР63А4
0,25/1320
1,809
3,979
3,979
3,256
АИР63В4
0,37/1320
2,677
5,889
5,889
4,818
АИР63А6
0,18/860
1,999
4,397
4,397
3,198
АИР63В6
0,25/860
2,776
6,108
6,108
4,442
АИР71А2
0,75/2820
2,540
6,604
6,858
4,064
АИР71В2
1,1/2800
3,752
8,254
9,004
6,003
АИР71А4
0,55/1360
3,862
8,883
9,269
6,952
АИР71В4
0,75/1350
5,306
13,264
13,794
12,733
АИР71А6
0,37/900
3,926
8,245
8,637
6,282
АИР71В6
0,55/920
5,709
10,848
12,560
9,135
АИР71В8
0,25/680
3,511
5,618
6,671
4,915
АИР80А2
1,5/2880
4,974
10,943
12,932
8,953
АИР80В2
2,2/2860
7,346
15,427
19,100
13,223
АИР80А4
1,1/1420
7,398
16,275
17,755
12,576
АИР80В4
1,5/1410
10,160
22,351
24,383
17,271
АИР80А6
0,75/920
7,785
16,349
17,128
12,457
АИР80В6
1,1/920
11,418
25,121
26,263
20,553
АИР80А8
0,37/680
5,196
10,393
11,952
7,275
АИР80В8
0,55/680
7,724
15,449
16,221
10,814
АИР90L2
3/2860
10,017
23,040
26,045
17,030
АИР90L4
2,2/1430
14,692
29,385
35,262
29,385
АИР90L6
1,5/940
15,239
30,479
35,051
28,955
АИР90LА8
0,75/700
10,232
15,348
20,464
15,348
АИР90LВ8
1,1/710
14,796
22,194
32,551
22,194
АИР100S2
4/2850
13,404
26,807
32,168
21,446
АИР100L2
5,5/2850
18,430
38,703
44,232
29,488
АИР100S4
3/1410
20,319
40,638
44,702
32,511
АИР100L4
4/1410
27,092
56,894
65,021
43,348
АИР100L6
2,2/940
22,351
42,467
49,172
35,762
АИР100L8
1,5/710
20,176
32,282
40,352
30,264
АИР112М2
7,5/2900
24,698
49,397
54,336
39,517
АИР112М4
5,5/1430
36,731
73,462
91,827
58,769
АИР112МА6
3/950
30,158
60,316
66,347
48,253
АИР112МВ6
4/950
40,211
80,421
88,463
64,337
АИР112МА8
2,2/700
30,014
54,026
66,031
42,020
АИР112МВ8
3/700
40,929
73,671
90,043
57,300
АИР132М2
11/2910
36,100
57,759
79,419
43,320
АИР132S4
7,5/1440
49,740
99,479
124,349
79,583
АИР132М4
11/1450
72,448
173,876
210,100
159,386
АИР132S6
5,5/960
54,714
109,427
120,370
87,542
АИР132М6
7,5/950
75,395
150,789
165,868
120,632
АИР132S8
4/700
54,571
98,229
120,057
76,400
АИР132М8
5,5/700
75,036
135,064
165,079
105,050
АИР160S2
15/2940
48,724
97,449
155,918
2,046
АИР160М2
18,5/2940
60,094
120,187
192,299
2,884
АИР180S2
22/2940
71,463
150,071
250,119
4,288
АИР180М2
30/2940
97,449
214,388
341,071
6,821
АИР200М2
37/2950
119,780
275,493
383,295
16,769
АИР200L2
45/2940
146,173
380,051
584,694
19,003
АИР225М2
55/2955
177,750
408,824
710,998
35,550
АИР250S2
75/2965
241,568
628,078
966,273
84,549
АИР250М2
90/2960
290,372
784,003
1161,486
116,149
АИР280S2
110/2960
354,899
887,247
1171,166
212,939
АИР280М2
132/2964
425,304
1233,381
1488,563
297,713
АИР315S2
160/2977
513,268
1231,844
1693,786
590,259
АИР315М2
200/2978
641,370
1603,425
2116,521
962,055
АИР355SMA2
250/2980
801,174
1281,879
2403,523
2163,171
АИР160S4
15/1460
98,116
186,421
284,538
7,457
АИР160М4
18,5/1460
121,010
229,920
350,930
11,375
АИР180S4
22/1460
143,904
302,199
402,932
15,110
АИР180М2
30/1460
196,233
470,959
588,699
27,276
АИР200М4
37/1460
242,021
532,445
847,072
46,952
АИР200L4
45/1460
294,349
647,568
941,918
66,229
АИР225М4
55/1475
356,102
997,085
1317,576
145,289
АИР250S4
75/1470
487,245
1218,112
1559,184
301,605
АИР250М4
90/1470
584,694
1461,735
1871,020
467,755
АИР280S4
110/1470
714,626
2072,415
2429,728
578,847
АИР280М4
132/1485
848,889
1697,778
2886,222
1612,889
АИР315S4
160/1487
1027,572
2568,931
3802,017
2363,416
АИР315М4
200/1484
1287,062
3217,655
4247,305
3603,774
АИР355SMA4
250/1488
1604,503
3690,356
4492,608
8985,215
АИР355SMВ4
315/1488
2021,673
5054,183
5862,853
12534,375
АИР355SMС4
355/1488
2278,394
5012,466
6151,663
15493,078
АИР160S6
11/970
108,299
205,768
314,067
12,021
АИР160М6
15/970
147,680
339,665
443,041
20,675
АИР180М6
18,5/970
182,139
400,706
546,418
29,324
АИР200М6
22/975
215,487
517,169
711,108
50,209
АИР200L6
30/975
293,846
617,077
881,538
102,846
АИР225М6
37/980
360,561
721,122
1081,684
186,050
АИР250S6
45/986
435,852
784,533
1307,556
440,210
АИР250М6
55/986
532,708
1012,145
1811,207
633,922
АИР280S6
75/985
727,157
1454,315
2326,904
1090,736
АИР280М6
90/985
872,589
1745,178
2792,284
1657,919
АИР315S6
110/987
1064,336
1809,372
2873,708
4044,478
АИР315М6
132/989
1274,621
2166,855
3696,400
5735,794
АИР355МА6
160/993
1538,771
2923,666
3539,174
11848,540
АИР355МВ6
200/993
1923,464
3654,582
4423,968
17118,832
АИР355MLA6
250/993
2404,330
4568,228
5529,960
25485,901
AИР355MLB6
315/992
3032,510
6065,020
7278,024
40029,133
АИР160S8
7,5/730
98,116
156,986
235,479
13,246
АИР160М8
11/730
1007,329
1712,459
2417,589
181,319
АИР180М8
15/730
196,233
333,596
529,829
41,994
АИР200М8
18,5/728
242,685
509,639
606,714
67,952
АИР200L8
22/725
289,793
579,586
724,483
88,966
АИР225М8
30/735
389,796
701,633
1052,449
214,388
АИР250S8
37/738
478,794
861,829
1196,985
481,188
АИР250М8
45/735
584,694
1052,449
1520,204
695,786
АИР280S8
55/735
714,626
1357,789
2143,878
1071,939
АИР280М8
75/735
974,490
1754,082
2728,571
1851,531
АИР315S8
90/740
1161,486
1509,932
2671,419
4413,649
АИР315М8
110/742
1415,768
2265,229
3964,151
6370,957
АИР355SMA8
132/743
1696,635
2714,616
3902,261
12215,774
AИР355SMB8
160/743
2056,528
3496,097
4935,666
18097,443
AИР355MLA8
200/743
2570,659
4627,187
6940,781
26991,925
AИР355MLB8
250/743
4498,654
7647,712
10796,770
58032,638
Расчет крутящего момента – формула

Примечание: при расчете стоит учесть коэффициент проскальзывания асинхронного двигателя. Номинальное количество оборотов двигателя не совпадает с реальным. Точное количество оборотов вы сможете найти, зная маркировку, в таблице выше.


Где, Р — мощность электродвигателя в киловаттах (кВт). N — количество оборотов вала в минуту. 



График мощности и крутящего момента

График мощности и крутящего момента — о чем он говорит?


Пример графика мощности и крутящего момента, полученный со стенда для испытания двигателей PowerTest.

Начнем с определений:

МОЩНОСТЬ (POWER, HORSEPOWER)  — это работа, проделанная за единицу времени. Речь идет в данном случае о механической мощности, которая при вращении вала вокруг своей оси описывается выражением:


Где

  • ω — угловая скорость вращения вала
  • M — крутящий момент
  • π — число ~ 3.1416
  • n — частота вращения, измеряемая в оборотах в единицу времени (в данном случае  одна минута).

Важно отметить что  мощность в этой формуле получается в ваттах, для получения результата   в  лошадиных силах мощность в кВт необходимо умножить на коэффициент 0,735499.

КРУТЯЩИЙ МОМЕНТ (TORQUE) — это произведение  силы в Н, которая приложена к валу не напрямую, а через рычаг (плечо)  длиной 1 м, прикрепленный к валу (точка измерения крутящего момента), отсюда и единица измерения Н*м. При такой нагрузке происходит деформация вала ,только не изгиб, который был бы при нулевой длине плеча, а скручивание, при котором отдельные сечения вала не повторяют друг друга, а оказываются повернутыми друг относительно друга  на определённые углы, тем большие, чем больше   приложенная сила, или чем больше рычаг при одной и той же силе. По этой причине момент называют крутящим. Не следует ожидать, что вы увидите эту закрутку стального вала диаметром, например, 20 мм, нанеся перед нагрузкой на поверхность вала линии, параллельные его оси. Величина закрутки будет в реальности настолько мала, что её непросто измерить даже с помощью специальных приборов, измерителей крутящего момента.


ОБОРОТЫ (RPM — Revolutions Per Minute) — здесь все еще проще, это число оборотов, которое совершает ВАЛ за одну минуту. Измеряется в об/мин.

Часто кажется, что люди не вполне понимают разницу между МОЩНОСТЬЮ и МОМЕНТОМ, тем более, последние связаны друг с другом через еще один ключевой параметр, как на стенде испытаний двигателя, так и в условиях реальной эксплуатации. Это угловая скорость вращения вала.


Ответить на этот вопрос можно, но это не гарантирует что заказчик получит желаемый результат. Потому что в вопросе отсутствует информация о скоростных режимах испытываемого на стенде двигателя.

И вопрос обычно задается так, как будто мощность и крутящий момент понятия  если не взаимоисключающие, то по меньшей мере не связанные друг с другом.


На самом деле, все наоборот, и необходимо принимать во внимание данные факты:
  • МОЩНОСТЬ (скорость выполнения РАБОТЫ) зависит от МОМЕНТА и СКОРОСТИ  ВАЛА(ОБОРОТОВ В МИНУТУ).
  • МОМЕНТ и ОБОРОТЫ В МИНУТУ — ИЗМЕРЕННЫЕ параметры, однозначно определяющие мощность двигателя.
  • Мощность рассчитывается из крутящего момента и оборотов, по следующей формуле:
  • МОЩНОСТЬ в Л.с. = КРУТЯЩИЙ МОМЕНТ х ОБОРОТЫ ÷ 5252

Почему это важно?

При выборе нагружающего устройства это критически важно, так как одну и ту же мощность  двигатель может выдавать на стенде как при 1500 об/мин (дизельный двигатель), так  и на 20 000 об/мин (двигатель гоночного мотоцикла). Для каждого типа двигателя необходимо подбирать соответствующее нагружающее устройство. А иногда даже не одно, а тандем из двух, первое из которых работает при низких оборотах, а второе при высоких. Если речь идет об испытаниях вновь создаваемых двигателей с широким скоростным диапазоном  вращения вала.

Дизельный двигатель и двигатель гоночного мотоцикла.

Двигатель внутреннего сгорания (ДВС) превращает энергию, выделившуюся при сгорании топлива в работу движения поршня, тот в свою очередь передает ее на коленчатый вал, который может создавать определенный КРУТЯЩИЙ МОМЕНТ при заданных оборотах. Величина крутящего момента, который может создать двигатель, обычно существенно зависит от оборотов. 

Для разных двигателей эти параметры будут разными в зависимости от геометрических параметров КШМ (кривошипно-шатунного механизма), типа топлива, массы деталей, формы распределительных валов, системы впрыска топлива и управления зажиганием и т.д.

Для маленьких и мощных двигателей необходимо использовать высокооборотистые гидротормоза и индуктивные тормоза

Ниже представлены графики различных гидротормозов для испытания двигателей.

Кривая нагружения для высокооборотистого гидротормоза.

А для больших дизельных двигателей используются гидротормоза, выдающие максимальное тормозное усилие и мощность на низких оборотах

Кривая нагружения гидротормоза для испытания мощных дизельных двигателей.

Что это означает на практике?

Если отойти от теории, то график мощности и крутящего момента — это основные характеристики двигателя. Когда вы въезжаете на своем автомобиле в горку и пытаетесь поддерживать одну и ту же скорость, вам приходится сильнее нажимать на педаль газа. Многим при этом кажется, что мощность останется та же, т.к. скорость не меняется. Но это не так!

При движении в горку двигатель выдает большую мощность при тех же оборотах.
(при неизменной передаче). Это легко проверить, взглянув на текущий расход топлива.

Также это объясняет, зачем двигателю нужна коробка передач, ведь для эффективного разгона  и преодоления подъёмов нам необходимо поддерживать обороты в диапазоне максимальной мощности двигателя.

А вот электромобили обходятся без нее. Кривая крутящего момента и мощности у электродвигателя намного более линейна, и  к тому же электродвигатель выдает куда большую мощность на низких оборотах.

Зачем измерять мощность и крутящий момент?

Во-первых это необходимая процедура при разработке и сертификации любого нового двигателя.

Во-вторых эти данные помогут  при дальнейшей настройке и доработке двигателя, чтобы добиться наилучших эксплуатационных характеристик.

В третьих кривая мощности и крутящего момента, если её сравнить с паспортной — это прямой показатель технического состояния любого двигателя.

Графики мощности дизельного двигателя до ремонта и после ремонта, полученные с испытательного стенда на базе гидротормоза, который можно приобрести в нашей компании.

Крутящий момент и зависимость крутящего момента

Как рассчитать крутящий момент, зная обороты и мощность двигателя?

Крутящий момент напрямую зависит от мощности и числа оборотов двигателя в минуту. Имеется общепринятая формула расчета крутящего момента, выражаемого в Ньютон-метрах ( русское обозначение Н·м, международное N·m ) 

 

M = P х 9550 / N

 

Где P — это мощность двигателя в киловаттах (кВт)

N — обороты вала в минуту

 

 

Как рассчитать мощность двигателя, зная крутящий момент и обороты?


Для такого расчета существует формула:

 

P = M х N / 9550

 

Где M — это крутящий момент двигателя

N — это обороты двигателя

 

Для скорости и простоты расчета воспользуйтесь удобным калькулятором крутящего момента. Впишите в ячейки калькулятора имеющиеся значения и калькулятор автоматически проставит результаты расчета.

 

Калькулятор крутящего момента

Мощность и вращающий момент электродвигателя. Что это такое?


Мощность и вращающий момент электродвигателя

Данная глава посвящена вращающему моменту: что это такое, для чего он нужен и др. Мы также разберём типы нагрузок в зависимости от моделей насосов и соответствие между электродвигателем и нагрузкой насоса.

Вы когда-нибудь пробовали провернуть вал пустого насоса руками? Теперь представьте, что вы поворачиваете его, когда насос заполнен водой. Вы почувствуете, что в этом случае, чтобы создать вращающий момент, требуется гораздо большее усилие.



А теперь представьте, что вам надо крутить вал насоса несколько часов подряд. Вы бы устали быстрее, если бы насос был заполнен водой, и почувствовали бы, что потратили намного больше сил за тот же период времени, чем при выполнении тех же манипуляций с пустым насосом. Ваши наблюдения абсолютно верны: требуется большая мощность, которая является мерой работы (потраченной энергии) в единицу времени. Как правило, мощность стандартного электродвигателя выражается в кВт.



Вращающий момент (T) — это произведение силы на плечо силы. В Европе он измеряется в Ньютонах на метр (Нм).



Как видно из формулы, вращающий момент увеличивается, если возрастает сила или плечо силы — или и то и другое. Например, если мы приложим к валу силу в 10 Н, эквивалентную 1 кг, при длине рычага (плече силы) 1 м, в результате, вращающий момент будет 10 Нм. При увеличении силы до 20 Н или 2 кг, вращающий момент будет 20 Нм. Таким же образом, вращающий момент был бы 20 Нм, если бы рычаг увеличился до 2 м, а сила составляла 10 Н. Или при вращающем моменте в 10 Нм с плечом силы 0,5 м сила должна быть 20 Н.




Работа и мощность

Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила — любая сила — вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.

Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).



Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.



Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.

Приведем единицы измерения к общему виду.



Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.



Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.



Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.

Как образуется вращающий момент и частота вращения?

Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.

В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.



Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.

Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:



Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.




Потребляемая мощность электродвигателя

Ток ротора индуцируется через источник питания, к которому подсоединён электродвигатель, а магнитное поле частично создаётся напряжением. Входную мощность можно вычислить, если нам известны данные источника питания электродвигателя, т.е. напряжение, коэффициент мощности, потребляемый ток и КПД.



В Европе мощность на валу обычно измеряется в киловаттах. В США мощность на валу измеряется в лошадиных силах (л.с.).

Если вам необходимо перевести лошадиные силы в киловатты, просто умножьте соответствующую величину (в лошадиных силах) на 0,746. Например, 20 л.с. равняется (20 • 0,746) = 14,92 кВт.

И наоборот, киловатты можно перевести в лошадиные силы умножением величины в киловаттах на 1,341. Это значит, что 15 кВт равняется 20,11 л.с.


Момент электродвигателя

Мощность [кВт или л.с.] связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.

Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.



Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.

Графическое представление вращающего момента электродвигателя изображено на рисунке.



Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.

Пусковой момент (Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.

Минимальный пусковой момент (Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.

Блокировочный момент (Мблок): Максимальный вращающий момент — момент, который создаёт электродвигатель переменного тока с номинальным напряжением, подаваемым при номинальной частоте, без резких скачков скорости вращения. Его называют предельным перегрузочным моментом или максимальным вращающим моментом.

Вращающий момент при полной нагрузке (Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.


Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.



Постоянный вращающий момент

Как видно из названия — «постоянный вращающий момент» — подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.



Переменный вращающий момент и мощность

«Переменный вращающий момент» — эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.



Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.



На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения — мал, а потребный вращающий момент при высокой частоте вращения — велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность — кубу скорости вращения.



Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.



В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.


Соответствие электродвигателя нагрузке

Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.

Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.



Если мы посмотрим на характеристику , то увидим, что при ускорении электродвигателя его пуск производится при токе, соответствующем 550% тока полной нагрузки.



Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.

Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности.

Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.



Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.


Время пуска электрдвигателя

Если нам необходимо подобрать типоразмер электродвигателя для определённой нагрузки, например для центробежных насосов, основная наша задача состоит в том, чтобы обеспечить соответствующий вращающий момент и мощность в номинальной рабочей точке, потому что пусковой момент для центробежных насосов довольно низкий. Время пуска достаточно ограниченно, так как вращающий момент довольно высокий.



Нередко для сложных систем защиты и контроля электродвигателей требуется некоторое время для их пуска, чтобы они могли замерить пусковой ток электродвигателя. Время пуска электродвигателя и насоса рассчитывается с помощью следующей формулы:



tпуск = время, необходимое электродвигателю насоса, чтобы достичь частоты вращения при полной нагрузке

n = частота вращения электродвигателя при полной нагрузке

Iобщ = инерция, которая требует ускорения, т.е. инерция вала электродвигателя, ротора, вала насоса и рабочих колёс.

Момент инерции для насосов и электродвигателей можно найти в соответствующих технических данных.



Мизб = избыточный момент, ускоряющий вращение. Избыточный момент равен вращающему моменту электродвигателя минус вращающий момент насоса при различных частотах вращения.

Мизб можно рассчитать по следующим формулам:







Как видно из приведённых вычислений, выполненных для данного примера с электродвигателем мощностью 4 кВт насоса CR, время пуска составляет 0,11 секунды.


Число пусков электродвигателя в час

Современные сложные системы управления электродвигателями могут контролировать число пусков в час каждого конкретного насоса и электродвигателя. Необходимость контроля этого параметра состоит в том, что каждый раз, когда осуществляется пуск электродвигателя с последующим ускорением, отмечается высокое потребление пускового тока. Пусковой ток нагревает электродвигатель. Если электродвигатель не остывает, продолжительная нагрузка от пускового тока значительно нагревает обмотки статора электродвигателя, что приводит к выходу из строя электродвигателя или сокращению срока службы изоляции.

Обычно за количество пусков, которое может выполнить электродвигатель в час, отвечает поставщик электродвигателя. Например, Grundfos указывает максимальное число пусков в час в технических данных на насос, так как максимальное количество пусков зависит от момента инерции насоса.


Мощность и КПД (eta) электродвигателя

Существует прямая связь между мощностью, потребляемой электродвигателем от сети, мощностью на валу электродвигателя и гидравлической мощностью, развиваемой насосом.

При производстве насосов используются следующие обозначения этих трёх различных типов мощности.



P1 (кВт) Входная электрическая мощность насосов — это мощность, которую электродвигатель насоса получает от источника электрического питания. Мощность P! равна мощности P2, разделённой на КПД электродвигателя.

P2 (кВт) Мощность на валу электродвигателя — это мощность, которую электродвигатель передает на вал насоса.

Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию.

Р4 (кВт) Гидравлическая мощность насоса.

Что такое крутящий момент электродвигателя

Одним из важных параметров электродвигателя, который так же важен при его выборе, является крутящий момент. Эта величина определяется произведением приложенной к плечу рычага силы и зависит исключительно от степени нагрузки. Если в двигателях внутреннего сгорания данную нагрузку задаётся коленчатым валом, то асинхронные электродвигатели получают величину крутящего момента от токов возбуждения. При этом величина этого момента будет зависеть от скорости вращающегося в магнитном поле статора устройства, называемого ротор. В зависимости от периода и способа определения, крутящий момент разделяют на:

  • статический (пусковой) – минимальный момент холостого хода;
  • промежуточный – развивает значение при работе двигателя от 0 величины оборотов до максимального значения в номинальной величине напряжения;
  • максимальный – развивающийся при эксплуатации двигателя;
  • номинальный – соответствует номинальным значениям мощности и оборотов.

Для вычисления величины крутящего момента, определяющегося в «кгм» (килограмм на метр) или «Нм» (ньютон на метр), многие электротехнические пособия предлагают специальные формулы, учитывающие кроме основного действия вращающегося магнитного поля ряд всевозможных факторов, например:

  • напряжения сети;
  • величину индуктивного и активного сопротивления;
  • зависимость от увеличения скольжения.

Но, рост скольжения не всегда приносит высокий момент. Зачастую, при достижении критических значений, наблюдается его резкое снижение. Такое явление обозначается как опрокидывающий момент. Одним из устройств, стабилизирующих скорость вращения ротора, а значит и величину момента кручения является частотный преобразователь, применение которого сейчас очень распространено во всех сферах, где от контроля работы двигателя зависит и успешность выполнения множественных производственных задач.

Выбираем электродвигатель по крутящему моменту

Для выбора, требуемого к выполнению тех или иных задач электродвигателя, берут в учёт практически все его характеристики, начиная от показателей мощности и заканчивая массогабаритными параметрами. Каждый из элементов по-своему важен в решении нюансов. Не меньшее значение припадает и на крутящий момент. Благодаря тому, что момент кручения напрямую связан с оборотами в соотношении: чем больше сами обороты, тем меньше будет момент, выбор электродвигателя будет исходить из следующих нюансов:

  • из скоростных требований. В этом случае, более полезным будет выбор двигателя по малому моменту для работающих со слабыми усилиями и на большой скорости, и со средними либо высокими показателями моментов пуска для работающих в усиленных режимах. На малых скоростях;
  • по пусковым напряжениям. Здесь учитывается первичное усилие, например, для управления лифтом следует подбирать двигатели высокого пускового момента, способного поднимать большие грузы со старта. Хотя, многие статьи про электродвигатели рекомендуют так же применять устройства плавного пуска, умеющие обезопасить от нежелательных перегрузов.

Стоит помнить, что выбор осуществляется не по одному из показателей, даже при ориентировании относительно крутящего момента, ведь каждый из показателей ориентируется по рабочей предрасположенности электротехнического приводного устройства и его рабочих нагрузок в статистических и динамических эксплуатационных условиях, задаваемых самим предприятием.

Электродвигатели

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Выбор электродвигателя для промышленных применений

При выборе электродвигателя следует учитывать множество факторов, в том числе целевое назначение, требующиеся эксплуатационные и механические характеристики, а также предполагаемые внешние воздействия. Возможные варианты таковы: электродвигатель переменного тока, электродвигатель постоянного тока (рис. 1) или серводвигатель (шаговый электродвигатель). Конечный выбор в основном зависит от того, для какого промышленного изделия подбирается электродвигатель, и от наличия особых потребностей.

Рис. 1. Электродвигатели постоянного тока хорошо подходят для применения в изделиях с невысокой стоимостью, низкой частотой вращения ротора или постоянным крутящим моментом — например, таких, как этот ленточный транспортер

В зависимости от характера нагрузки это может быть электродвигатель с постоянной или переменной частотой вращения и мощностью. Крутящий момент и мощность определяются величиной нагрузки, необходимой частотой вращения, а также разгоном и торможением (особенно если они быстрые и/или частые). Кроме того, следует учитывать требования к регулированию частоты вращения и управлению положением ротора.

 

Типы нагрузок электродвигателей

Существует четыре типа нагрузок электродвигателей промышленной автоматики:

  • переменная мощность и постоянный крутящий момент;
  • переменный крутящий момент и постоянная мощность;
  • переменные мощность и крутящий момент;
  • управление положением ротора или регулирование крутящего момента.

К изделиям с переменной мощностью и постоянным крутящим моментом относятся транспортеры, краны и редукторные насосы. Крутящий момент у них постоянен, так как нагрузка не меняется. Требующаяся мощность может различаться в зависимости от типа изделия, поэтому хорошим выбором в этом случае будут электродвигатели постоянного тока с постоянной частотой вращения ротора.

Пример изделия с переменным крутящим моментом и постоянной мощностью — станок для перемотки бумаги. Скорость подачи материала постоянна, поэтому мощность не меняется. Нагрузка, однако, меняется по мере увеличения диаметра рулона. Для небольших систем такого рода хорошо подойдут электродвигатели постоянного тока или серводвигатели. Другой важный фактор в этом случае — энергия рекуперации, которую следует учитывать при выборе размера электродвигателя или метода регулирования мощности. В более крупных системах, возможно, целесообразнее будет использовать электродвигатели переменного тока с датчиками перемещений, регулирование с обратной связью и приводы, работающие в четырех квадрантах.

Для вентиляторов, центробежных насосов и мешалок требуются переменные мощность и крутящий момент. С увеличением частоты вращения ротора электродвигателя растет и мощность на нагрузке, а с нею требующиеся номинальная мощность и крутящий момент. При нагрузках такого типа начинает играть важную роль КПД двигателя. В подобных изделиях применяются электродвигатели переменного тока с инверторным управлением и частотно-регулируемые приводы.

В линейных приводах, которые должны обеспечивать точное перемещение во множество положений, требуется управление положением или регулирование крутящего момента ротора с малой погрешностью, а зачастую и обратная связь для проверки правильности положения. Для этих целей лучше всего подходят серводвигатели и шаговые двигатели, но наряду с ними часто применяются электродвигатели постоянного тока с обратной связью или электродвигатели переменного тока с инверторным управлением и датчиком перемещения, которые позволяют с малой погрешностью регулировать крутящий момент на металлургических и бумагоделательных линиях, а также в других аналогичных применениях.

 

Типы электродвигателей

Электродвигатели бывают двух основных разновидностей — переменного и постоянного тока, но они, в свою очередь, разделяются более чем на три десятка типов.

Несмотря на большое разнообразие, промышленные применения электродвигателей имеют между собой много общего, и под влиянием рыночных механизмов практический ассортимент типов электродвигателей в большинстве применений сузился. Шесть наиболее распространенных типов электродвигателей, которые можно использовать в подавляющем большинстве изделий, — это бесколлекторные и коллекторные электродвигатели постоянного тока, электродвигатели переменного тока с короткозамкнутым и фазным ротором, серводвигатели и шаговые электродвигатели. Прочие типы электродвигателей применяются только в изделиях специального назначения.

 

Три основных типа изделий по режиму работы электродвигателя

Три основных типа изделий по режиму работы электродвигателя — это изделия с постоянной частотой вращения, переменной частотой вращения и управлением положением (или регулированием крутящего момента) ротора. В различных изделиях промышленной автоматики требуются разные режимы, и набор вопросов, на который приходится отвечать при выборе электродвигателя, может также различаться (рис. 2).

Рис. 2. Асинхронные электродвигатели переменного тока часто выбирают для промышленных машин с вращательным движением рабочего органа

Например, если требующаяся максимальная частота вращения ротора меньше номинальной, может понадобиться редуктор. Возможно, для этой цели удастся подобрать более компактный электродвигатель, частота вращения ротора которого будет обеспечивать более высокий КПД. В Интернете есть большое количество информации о том, как выбирать электродвигатель по размеру, но пользователям необходимо принимать во внимание и другие факторы. Для расчета момента инерции нагрузки, крутящего момента и частоты вращения ротора требуется знать такие параметры, как полная масса и размер (радиус) нагрузки, а также коэффициент трения, потери на редукторе и цикл работы машины. Кроме того, во избежание перегрева электродвигателя необходимо учитывать изменение нагрузки, темп разгона или торможения и рабочий цикл изделия.

Определившись с типом и размером электродвигателя, пользователю нужно также учесть влияние внешних факторов и выбрать исполнение — например, открытое или в кожухе из нержавеющей стали для работы во влажной среде.

 

Выбор электродвигателя: три вопроса

Даже после того, как все эти решения приняты, пользователю необходимо ответить на следующие три вопроса, прежде чем сделать окончательный выбор.

Требуется ли постоянная частота вращения ротора?

В изделиях с постоянной частотой вращения ротора электродвигатель часто работает на приблизительно установленной частоте, а характеристики разгона и торможения роли практически не играют. В этом случае обычно применяется релейное управление с питанием непосредственно от сети. Цепи управления часто состоят из ответвления с предохранителем и контактором, устройства защиты от перегрузки при пуске и ручного регулятора электродвигателя или устройства плавного пуска.

Для изделий с постоянной частотой вращения ротора подходят электродвигатели переменного и постоянного тока. Электродвигатели постоянного тока обеспечивают номинальный крутящий момент при нулевой частоте вращения; этот тип электродвигателей очень популярен. Электродвигатели переменного тока — тоже хороший выбор, так как они характеризуются высоким коэффициентом мощности и нетребовательны в обслуживании. Серво­двигатель или шаговый двигатель с высокими эксплуатационными характеристиками был бы излишним для простого изделия.

Требуется ли переменная частота вращения ротора?

Изделия с переменной частотой вращения ротора обычно требуют изменения линейной скорости и частоты вращения с малой погрешностью, а также четко определенных характеристик разгона и ускорения. Уменьшение частоты вращения ротора в таких изделиях, как вентиляторы и центробежные насосы, часто позволяет повысить КПД за счет согласования мощности с нагрузкой вместо работы на максимальной частоте с пропорциональным регулированием или демпфированием. Это важно для конвейерных систем, например линий бутылочного розлива.

Электродвигатели как переменного, так и постоянного тока с приводами соответствующего типа эффективно работают в изделиях с переменной частотой вращения ротора. На протяжении длительного времени привод с электродвигателем постоянного тока был единственным вариантом для изделий с переменной частотой вращения ротора, и компоненты для этой комбинации хорошо отработаны и проверены временем. Даже сейчас электродвигатели постоянного тока широко применяются в маломощных (менее 1 л. с.) изделиях этого типа, а также оказываются полезными в изделиях с низкой частотой вращения ротора, так как обеспечивают номинальный крутящий момент на низкой частоте вращения и постоянный крутящий момент в широком диапазоне частот.

Слабой стороной электродвигателей постоянного тока может быть обслуживание, так как во многих из них для коммутации используются щетки, которые со временем изнашиваются от контакта с подвижными частями. Бесколлекторные электродвигатели постоянного тока свободны от этого недостатка, но дороже в приобретении, а их ассортимент — уже.

Избавлены от этой проблемы и асихронные электродвигатели переменного тока, а вкупе с частотно-регулируемым приводом (рис. 3) они позволяют получить более высокий КПД в изделиях мощностью более 1 л. с., таких как вентиляторы и насосы. Некоторые типы приводов предусматривают обратную связь по положению. Если этого требует характер изделия, можно дополнить электродвигатель датчиком перемещений и выбрать привод, использующий сигнал от этого датчика для обратной связи. Такая конфигурация может обеспечить такое же регулирование частоты вращения ротора, как в серводвигателе.

Рис. 3. Сочетание электродвигателя постоянного тока с частотно-регулируемым приводом широко применяется для повышения КПД и эффективно работает в разнообразных изделиях с переменной частой вращения ротора

Требуется ли управление положением ротора?

Управление положением ротора электродвигателя с малой погрешностью обеспечивается путем непрерывной проверки его положения в процессе вращения. В изделиях, где требуется, например, задавать положение линейного привода, можно применять шаговый электродвигатель с обратной связью или без таковой, а также серводвигатель со встроенной обратной связью.

Шаговый электродвигатель предназначен для перемещения в заданное положение на умеренной скорости с последующим сохранением этого положения. Шаговый электродвигатель без обратной связи по положению обеспечивает весьма точное управление положением ротора, если правильно выбрать его размер, а также перемещение на точно заданное число шагов (если только он не столкнется с изменением нагрузки, превышающим его возможности).

С ростом требуемой частоты вращения и динамических нагрузок шаговый привод без обратной связи может уже не обеспечить нужных характеристик системы, и тогда понадобится шаговый привод с обратной связью или сервопривод.

Система с обратной связью обеспечивает точное высокоскоростное перемещение по заданному профилю и регулирование положения ротора. Серводвигатель обеспечивает больший крутящий момент на высоких частотах вращения в сравнении с шаговым электродвигателем, а также эффективнее работает в изделиях, характеризующихся высокими динамическими нагрузками или сложным характером перемещения.

Для быстрого и/или резкого перемещения с малым перерегулированием по положению момент инерции нагрузки должен быть как можно лучше согласован с моментом инерции серводвигателя. Рассогласование в пропорции до 10:1 приемлемо в некоторых применениях, но оптимальным является согласование 1:1.

Уменьшение частоты вращения посредством редуктора — оптимальный способ решить проблему рассогласования моментов инерции, поскольку момент инерции нагрузки обратно пропорционален квадрату передаточного отношения редуктора. При этом в расчетах необходимо учитывать момент инерции редуктора.

 

Знание особенностей изделия и электродвигателя

Производители предлагают широкий ассортимент электродвигателей для промышленных применений. Шаговые электродвигатели, серводвигатели, электродвигатели переменного и постоянного тока пригодны для использования в большинстве типов изделий промышленной автоматики, но оптимальный выбор электродвигателя зависит от характера изделия. Пользователям следует выбирать электродвигатель для своего изделия, учитывая, какой требуется режим работы — постоянная частота вращения, переменная частота вращения или управление положением ротора, — и в тесном взаимодействии с поставщиками электродвигателя и привода.

Facebook

Twitter

Вконтакте

Google+

Что важнее для разгона – мощность или крутящий момент

Этот вопрос – одна из главных тем «холиваров» на автомобильных форумах. Оппоненты готовы порвать друг друга, приводя десятки аргументов. А ведь все просто: мощность — это и есть момент! Как так? Сейчас объясним.

В детстве многие люди постарше собирали фантики «Турбо», на них почти обязательно указывались мощность и максимальная скорость машины. Чем больше цифры, тем больше почтения модели авто. Похоже, так и продолжается до сих пор — лишние несколько лошадиных сил часто становятся решающим аргументом «за» или «против» какой-либо машины.

Но вот уже слышны голоса познавших дизельный Дзен о том, что важен только Крутящий Момент, да и подозрительно хорошая динамика более слабых бензиновых моторов со всякими турбинами или разными там системами VVT-i заставляет иногда водителей усомниться в верности принципа «чем мощнее, тем быстрее», а уж про налоги, которые почему-то зависят от мощности, и так все наслышаны.

Так что же такое мощность и как она связана с динамикой?

В паспортных характеристиках машины и на тех самых вкладышах «Турбо» указана максимальная мощность двигателя. Но что она дает машине? И как с ней связан крутящий момент? Постараемся объяснить максимально просто эту важную истину.

Крутящий момент, напомним, есть произведение силы на плечо рычага. А для двигателя — это сила, с которой вращается коленчатый вал двигателя. Измеряется обычно в ньютонах на метр или в килограмм-силах на метр.


График внешней характеристики двигателя

Собственно, момент возникает, если тормозить вращение коленчатого вала каким-то способом — гидротормозом, генератором или заставить тянуть машину. Именно так его и замеряют — тормозят сам двигатель или колеса машины гидротормозом. Для двигателя обычно указывается максимальный крутящий момент, который развивает мотор при полностью нажатой педали газа, с чьей помощью водитель как раз регулирует, какую часть момента может дать двигатель. Осталось понять, как этот самый момент изменяется. Крутящий момент зависит от величины оборотов двигателя и в начале невелик, потом растет до определенного момента, а затем падает. Почему же?


Пики и спады на графике

В реальной эксплуатации полный момент бывает нужен редко, как раз в тех случаях, когда вы прожимаете педаль газа в пол и надеетесь, что двигатель «вытянет», всё остальное время он меньше максимального на этих оборотах. Но мы уже знаем, что момент меняется не только под воздействием нажатия на педаль газа (механической или электронной), но и с оборотами. На различных оборотах процессы, происходящие в камере сгорания мотора, различны. Дополнительные системы, такие как наддув, системы регулировки фаз ГРМ и прочие, еще сильнее изменяют наполнение камеры сгорания, количество топлива и момент зажигания, и в результате качество и сила рабочего хода зависят от оборотов мотора. Даже если нет никаких систем электронного регулирования, всё равно количество воздуха, попадающего в цилиндр, количество оставшегося выхлопа и оптимальный угол опережения зажигания меняются с оборотами. На самых малых оборотах в цилиндре слишком много остаточных газов или слишком вероятна детонация, потому крутящий момент на малых оборотах обычно намного меньше максимального. На средних оборотах мотор «оживает» — за счет пульсаций во впускном трубопроводе больше воздуха поступает в цилиндры, меньше остаточных газов, потому и растет крутящий момент. Если у машины есть турбина или нагнетатель, то они начинают работать в полную силу. Но с ростом оборотов растут и механические потери на трение поршневых колец, трение и инерционные потери в ГРМ, на разогрев масла в подшипниках и т.д. и т.п., а качество рабочего процесса не улучшается или даже начинает падать. В результате на высоких оборотах момент начинает уменьшаться за счет возрастающих потерь. А у турбонаддувного двигателя в какой-то момент перестает хватать производительности турбины и момент тоже начинает снижаться. Теперь взглянем на график типичного атмосферного (то есть безнаддувного) мотора времен 90-х годов, где есть кривые не только момента, но и мощности.


А вот турбомотор схожего объема, у него момент в зоне средних оборотов ограничен электроникой, часто на пределе прочности цилиндро-поршневой группы, и график мощности тоже очень «гладкий». Хорошо заметно, на сколько выше у него мощность в начале и середине графика.


Обратите внимание именно на кривую мощности. Она круто идет вверх там, где момент большой, и почти не растет там, где он падает. Объяснение этому очень простое: Мощность это то, сколько работы может выполнить мотор за секунду. Для двигателя внутреннего сгорания мощность в киловаттах в каждой точке графика можно получить, умножив момент двигателя в ньютонах на число оборотов в минуту и разделив на 9549, то есть примерно так:


Следовательно, мощность мотора на любых оборотах зависит только от крутящего момента на этих оборотах, а максимальная мощность получается в точке, в которой момент уже уменьшается, но при этом произведение мощности и оборотов пока еще увеличивается. И чтобы увеличить максимальную мощность, можно просто увеличить момент на высоких оборотах или сделать так, чтобы он уменьшался не так быстро. Взгляните на типичный график высокооборотного мотора Honda — японцы поступили именно так.


Надеюсь, достаточно понятна точка зрения тех, кто говорит, что «мощность не важна — важен только момент»? Еще раз: мощность как таковая зависит напрямую от момента и сама по себе является математической, расчетной величиной, которую невозможно измерить отдельно от момента. Крутящий момент, по сути, отражает ту мощность, которая будет доступна на «неполных» оборотах двигателя, а просто при нажатии на газ при обгоне. И чем момента больше, тем лучше! Ведь и мощность на этих оборотах будет выше. А чем больше мощности, тем больше энергии можно придать машине, тем лучше динамика разгона. А максимальная мощность в первую очередь влияет на максимальную скорость машины. Ведь при правильно рассчитанных передаточных числах главной передачи и КПП получается, что максимальная скорость достигается тогда, когда затрачиваемая мощность будет равна мощности мотора. А мощность всех потерь как раз зависит от скорости движения, в первую очередь от сопротивления воздуха и сопротивления качению колес, и в какой-то момент она обязательно совпадет с мощностью мотора, именно эта скорость и будет максимальной. Бывают, конечно, просчеты, когда двигатель или не может развить обороты максимальной мощности, или уже «упирается» в ограничитель, но это бывает не так уж часто.

Дизельный момент

Теперь отвечу на типичный, но простой вопрос: «Почему на дизельных моторах традиционно большой крутящий момент, но при этом сравнительно с бензиновыми у них невысокая мощность?». Всё потому, что у дизеля ограничены рабочие обороты. Из-за высокой степени сжатия дизельных моторов и более медленно горящего топлива дизели хуже работают на больших оборотах, зато у них нет риска детонации, да и турбину можно поставить более эффективную и сложную из-за более низкой температуры газов на выпуске, так что можно подать очень много воздуха и топлива, и момент на малых оборотах получится очень большой. А иногда по мощности они даже будут не так уж далеки от турбонаддувных бензиновых, но момент будет не просто большим, а огромным. Для сравнения приведем характеристики двух трехлитровых моторов от современной BMW 5 series, где будет видно, что дизели эффективны в более низких оборотах. Дизель можно сделать мощнее бензинового мотора, но тогда и так большой момент будет больше еще на четверть, а это означает, что понадобится новая коробка передач и новые карданные валы, способные выдерживать такую мощность. Да и сам двигатель придется сделать еще прочнее и тяжелее. Или можно его «раскрутить», но тогда сложнее будет работать топливной аппаратуре, а допускать дымления и неполного сгорания топлива нельзя.


Так как же правильно разгоняться?

Тут важно уметь работать с коробкой передач. Для максимального разгона нужно переключаться так, чтобы обороты упали примерно на пик крутящего момента или выше него, но чтобы оставался запас по увеличению оборотов — разгон выше оборотов максимальной мощности будет идти медленнее. Идеальный вариант на гражданских машинах — разгон «от пика момента до пика мощности». Впрочем, обычно на современных моторах электроника просто не даст «перекрутить» мотор сильно выше пика мощности — это называется отсечкой. Можно попробовать представить себе это визуально. Посмотрите на график внешней скоростной характеристики. Мотор при разгоне должен как можно больше работать в зоне, где его мощность максимальна, то есть на высоких оборотах вблизи точки максимальной мощности. И при переключении передач попадать в зону с как можно большей достижимой мощностью. Внизу — графики мощности и момента уже знакомых нам атмосферного Honda Accord Type R и турбированного Saab 9-3. На графиках мы выделили диапазоны оборотов, в которых будет работать двигатель, если включить вторую или третью передачу на скорости около 50 км/ч. Чем больше площадь фигуры под кривой мощности, тем эффективнее разгон.


Если коробка умеет переключаться очень быстро, то идеальным случаем будет КПП с очень «короткой» первой передачей с большим-пребольшим передаточным числом для очень высокого момента. А кроме того, очень большим количеством передач «на все случаи жизни». Короткая первая позволит практически сразу со старта поднимать обороты до необходимых для уверенного разгона, а затем мотор всё время будет работать вблизи своего эффективного максимума. Есть одна проблема. К сожалению, таких коробок передач не бывает. Лучше всего была бы электрическая передача, но ее масса и невысокий КПД (то есть потери мощности при «пропускании» через такую трансмиссию) при мощности меньше нескольких тысяч киловатт делают ее применение нерациональным, если только на гибридах, как например на «Мицубиши Аутлендер PHEV». Казалось бы, есть почти идеальный вариатор, где передаточных чисел бесконечное множество, так как они меняются плавно. Но он тоже страдает низким КПД при больших передаточных отношениях и не умеет менять его очень быстро… И в итоге разгон не лучше, чем у других трансмиссий. Гидротрансформатор на традиционных АКПП еще хуже, но в сочетании с механической коробкой передач обеспечивает и надежность, и приличную скорость. А механические коробки и особенно «роботы», несмотря на неизбежные потери мощности на старте при трении дисков в сцеплении, всё равно оказываются быстрее всех! Нужно лишь очень много передач. Например, десять, как в новой версии коробки DSG. Впрочем, половина из них нужна не для разгона, а для экономичного движения, но об этом в другой раз.


Какой мотор предпочесть — с высоким моментом или высокой мощностью?

Если мощность двух моторов, между которыми вы выбираете, отличается не слишком значительно, то выбирайте более «моментный». Особенно если вы пользуетесь механической коробкой передач. Показатель максимального момента и мощности на промежуточных режимах в данном случае важнее. Если же двигаться приходится постоянно «на пределе», то более тяговитый мотор, да еще и более слабый, преимущества иметь не будет, посмотрите хотя бы на мотоциклы, высокооборотные, но не моментные легко выигрывают у более тяговитых низкооборотных. Но показатели надо оценивать в комплексе. Вернемся к нашим «пятеркам» BMW. Бензиновая 535i разгоняется до 100 км/ч за 5,6 секунды, а дизельная 530d — за 5,7, потому что мощность у бензиновой почти на 50 л.с. выше, причем это — турбонаддувный мотор с хорошей мощностью в зоне средних оборотов тоже и многоступенчатая АКПП, быстрая и современная. Мощности должно быть много, но не только на максимальных оборотах, а величина крутящего момента говорит нам именно о том, на сколько много мощности двигатель выдает при обычном движении. Насколько удобно ускоряться без переключений передач. И абсолютная величина крутящего момента говорит даже меньше, чем указание диапазона оборотов, на которых момент близок к своему максимуму и насколько близки эти обороты к оборотам максимальной мощности. И лучше всего с этим справляется график внешней скоростной характеристики. А вот сама величина момента не толкает вас, ведь у более моментного мотора просто будут другие передаточные числа главной передачи и на колесах будет ровно та же мощность.

<a href=»http://polldaddy.com/poll/8627239/»>Какой мотор предпочтете?</a>


Читайте также:


Электродвигатели

— крутящий момент в зависимости от мощности и об / мин

Движущая сила электродвигателя составляет крутящего момента — не лошадиных сил.

Крутящий момент — это крутящая сила, которая заставляет двигатель работать, а крутящий момент активен от 0% до 100% рабочей скорости.

Мощность, производимая двигателем, зависит от скорости двигателя и составляет

  • ноль при 0% скорости и
  • обычно на максимальной скорости при рабочей скорости

Примечание ! — полный крутящий момент с нулевой скорости является большим преимуществом для электромобилей.

Для полного стола — поворот экрана!

126 9017 3 41 900 900 900 900 9017 314244 900 9 0173210 675
Мощность Скорость двигателя (об / мин)
3450 2000 1750 1000 500
Крутящий момент
л.с. кВт (фунт f дюйм)
(фунт f фут)
(Нм) (фунт f дюйм) (фунт) f фут) (Нм) (фунт f дюйм) (фунт f фут) (Нм) (фунт на дюйм) (фунт на фут) (Нм) (фунт на дюйм) (фунт на фут) (Нм)
1 0.100 1,5 1,1 27 2,3 3,1 47 3,9 5,3 54 4,5 6,1 95 7.9 10,7 189 15,8 21,4
2 1,5 37 3,0 4,1 63 5,3 7,1 10,5 14,2 252 21,0 28,5
3 2,2 55 4,6 6,2 95 7.9 10,7108 9,0 12 189 15,8 21,4 378 31,5 42,7
5 158 13,1 18 180 15 20 315 26,3 36 630 52,5 71
7.5 5,6137 11 15 236 20 27 270 23 31 473 39
10 7,5 183 15 21 315 26 36 360 30 41 630 142
15 11 274 23 31 473 39 53 540 45 61 158214
20 15 365 30 630 53 71 720 60 81 1260 105 142 2521 210 285 38 52 788 66 89 900 75 102 1576 131 178 3151 263 263 263 548 46 62 945 79 107 1080 90 122 1891 158 214 30 731 61 83 1260 105 1441 120 163 2521 210 285 5042 420 570
50 37 131 178 1801150 204 3151 263 356 6302 525 712
712
1891 158 214 2161 180 244 3781 315 427 7563 630
  • 4
  • 145 2206 184 249 2521 285 4412 368 499 8823 735 997
    80 60 1461 165173 1461 165174 165174 2881 240 326 5042 420 570 10084 840 1140
    90 67 1644 1644 321 3241 270 366 5672 473 641 11344 945 1282
    100 75173 263 356 3601 300 407 6302 525712 12605 1050 1425
    125 93 2283 190 258 190 258 258 258 509 7878 657 891 15756 1313 1781
    150 112 2740 3103 6302 525 712 1 1029 919 1247 22058 1838 2494
    200 149 3654 304 413 7203 7203 413 6302 7203 814 12605 1050 1425 25210 2101 2850
    225 168 4110 343 916 14180 1182 1603 28361 2363 3206
    250 187 4567 9003 750 1018 15756 90 174 1313 1781 31512 2626 3562
    275 205 5024 419 568 86625 17332 1444 1959 34663 2889 3918
    300 224 5480 457 62017 1221 18907 1576 2137 37814 3151 4275
    350 261 6394 12173 12173 12173 1050 1425 22058 1838 2494 44117 3676 4987
    400 298 7307 609 7307 609 826 14173 25210 2101 2850 50419 4202 5699
    450 336 8221 685 929 1832 28361 2363 3206 56722 4727 6412
    550 410 10047 837 173 837 174 10047 837 174 1651 2239 34663 2889 3918 69326 5777 7837
    600 448 10961 913 1239 2443 37814 3151 4275 75629 6302 8549

    Мощность электродвигателя, скорость и крутящий момент Уравнения

    Imperial

    дюйм-фунт = P л.с. 63025 / n (1)

    , где

    T дюйм-фунт = крутящий момент (фунт f )

    P л.с. двигатель (л.с.)

    n = число оборотов в минуту (об / мин)

    Альтернативно

    T фут-фунт = P л.с. 5252 / n (1b)

    где

    T фут-фунт = крутящий момент 3 фунт = крутящий момент 74 фунт

    Крутящий момент в единицах СИ можно рассчитать как

    T Нм = P W 9.549 / n (2)

    где

    T Нм = крутящий момент (Нм)

    P W = мощность (Вт)

    n = обороты в минуту (об / мин)

    Электродвигатель — зависимость крутящего момента от мощности и скорости

    мощность (кВт)

    скорость (об / мин)

    Электродвигатель — мощность от крутящего момента и скорости

    крутящий момент (Нм)

    скорость (об / мин)

    Электродвигатель — Зависимость скоростиМощность и крутящий момент

    мощность (кВт)

    крутящий момент (Нм)

    Пример — крутящий момент электродвигателя

    крутящий момент, передаваемый электродвигателем мощностью 0,75 кВт (750 Вт) при скорости вращения 2000 об / мин можно рассчитать как

    T = ( 750 Вт ) 9,549 / (2000 об / мин)

    = 3,6 (Нм) Пример

    от электродвигателя

    Крутящий момент, передаваемый от электродвигателя мощностью 100 л.с. при скорости 1000 об / мин можно рассчитать как

    T = (100 л.с.) 63025 / (1000 об / мин)

    = 6303 (фунт f дюйм)

    Для преобразования в фунт-сила-фут — разделите крутящий момент на 12 .

    В чем разница между скоростью и крутящим моментом?

    Целью роторного двигателя является обеспечение желаемой выходной скорости вращения при одновременном преодолении различных вращательных нагрузок, сопротивляющихся этому вращательному выходу (крутящий момент). Скорость и крутящий момент напрямую связаны и являются двумя основными факторами производительности при правильном выборе двигателя для конкретного применения или использования. Чтобы узнать, как выбрать правильный двигатель для вашего применения, первым делом необходимо понять взаимосвязь между скоростью, крутящим моментом и выходной мощностью двигателя.

    Скорость в зависимости от крутящего момента

    Выходная мощность двигателя устанавливает границы характеристик скорости и крутящего момента двигателя на основе уравнения:
    Мощность (P) = Скорость (n) x Крутящий момент (M)

      • Мощность: Механическая выходная мощность двигателя определяется как выходная скорость, умноженная на выходной крутящий момент, и обычно измеряется в ваттах (Вт) или лошадиных силах (л.с.).
      • Скорость: Скорость двигателя определяется как скорость, с которой двигатель вращается.Скорость электродвигателя измеряется в оборотах в минуту или об / мин.
      • Крутящий момент: Выходной крутящий момент двигателя — это величина силы вращения, которую развивает двигатель. Крутящий момент небольшого электродвигателя обычно измеряется в дюймах-фунтах (дюймах-фунтах), ньютон-метрах (Н-м) или в других напрямую преобразованных единицах измерения.

    Поскольку номинальная выходная мощность двигателя является фиксированным значением, скорость и крутящий момент обратно пропорциональны. По мере увеличения выходной скорости доступный выходной крутящий момент пропорционально уменьшается.По мере увеличения выходного крутящего момента выходная скорость пропорционально уменьшается. Это соотношение мощности, скорости и крутящего момента обычно иллюстрируется кривой производительности двигателя, которая часто включает потребляемый двигателем ток (в амперах) и КПД двигателя (в%).

    Скорость и крутящий момент при выборе электродвигателя

    Ключом к выбору правильного двигателя для конкретной функции является сначала понимание требований приложения. Поскольку большинство приложений с двигателями являются динамическими, а это означает, что требования к крутящему моменту и скорости меняются внутри приложения, очень важно определить различные рабочие точки в приложении.Знание или расчет требований к скорости и крутящему моменту в каждой рабочей точке приложения определит общие требования к скорости и крутящему моменту для соответствующего двигателя. Выбор двигателя можно проверить путем нанесения различных рабочих точек приложения на характеристическую кривую выбранного двигателя, чтобы убедиться, что каждая точка зависимости скорости от крутящего момента попадает в соответствующую зону кривой (непрерывные или прерывистые зоны).

    Во многих случаях прикладные требования вынуждают выбирать стандартный двигатель значительно большего размера, чтобы обеспечить охват всех рабочих точек.Применение двигателей, размер которых больше не подходит для конкретной области применения, приводит к ненужным расходам, а также к более крупной и тяжелой конструкции всего продукта. К счастью, поставщики двигателей на заказ могут разработать двигатели с оптимизированными характеристиками, которые точно соответствуют требованиям приложения. Это делается путем изменения электромагнитных характеристик двигателя путем изменения либо размера провода, либо количества витков провода в обмотке, либо того и другого. Чем больше витков провода меньшего диаметра, тем выше крутящий момент и меньше скорость, тогда как меньшее количество витков провода большего диаметра обеспечивает более высокую скорость, но меньший крутящий момент.В некоторых приложениях добавление зубчатой ​​передачи к выходной мощности двигателя обеспечивает идеальное соотношение скорости и крутящего момента, при этом стоимость и размер всего решения сводятся к минимуму.

    какие они и в чем их отличие? — Блог CLR

    В проектах электромеханической инженерии все чаще спорят о том, что важнее: для двигателя крутящего момента или максимальной мощности . Эти концепции не совсем понятны для большинства профессионалов или менеджеров по закупкам.В этой статье мы постараемся ответить, что такое каждое из них. Записать!

    Возможно, вас заинтересует: Что такое серводвигатель и когда он используется?

    Во-первых, чтобы различать их, мы должны сначала четко указать их определение.

    Что такое крутящий момент?

    Крутящий момент — это сила, создаваемая двигателем. Каждый раз, когда в цилиндре происходит взрыв, высвобождается энергия, которая заставляет двигатель вращаться.Крутящий момент используется для измерения этой силы, которая выражается во вращении.

    В практическом смысле можно сказать, что крутящий момент — это движущая сила, которую будет иметь выходной вал , которая полностью не зависит от времени, необходимого для передачи этой силы — это будет сила .

    В целом, применительно к мотор-редуктору, когда мы говорим о крутящем моменте (М) , мы имеем в виду силу, прилагаемую к выходному валу. Это зависит от каждого двигателя и будет увеличиваться в зависимости от передаточного числа (передаточное число коробки передач ).

    Механическая мощность и электрическая мощность

    Теперь, когда мы можем определить понятие крутящего момента, давайте более точно проанализируем концепцию мощности . Мощность напрямую зависит от крутящего момента и скорости вращения. Если бы какой-то из двух увеличился, то увеличилась бы и мощность. Но если углубиться, можем ли мы определять, рассчитывать и различать механическую и электрическую мощность?

    — Механическая мощность (Вт): Эту мощность можно сравнить с крутящим моментом (M).Как видно из приведенных ниже формул, для расчета этих данных необходимо знать крутящий момент и угловую скорость (w) (последняя рассчитывается с использованием выходной скорости в выбранной точке крутящего момента).

    W = M (Нм) x w (рад / с).

    W = 16,4 Нм (M при максимальной отдаче в Нм) x скорость (при максимальной отдаче в рад / с).

    10 об / мин = 10 × (1 оборот) / мин × (1 мин) / (60 с) × (2π рад) / (1 оборот) = (10 x 2 x π) / 60 = 1047 рад / с

    W = 16,4 Нм x 1047 рад / с = 17 Вт.

    — Электрическая мощность (Вт): эта мощность зависит от потребления электроэнергии и напряжения. Как видно из формул, он рассчитывается с использованием напряжения (В) и потребления электроэнергии (I).

    W = V x I.

    W = 24V x 1,4 = 33,6 Вт

    Наиболее частой ошибкой в ​​этих случаях является смешение механической и электрической мощности. Как мы видели, обе части данных совершенно не связаны с информацией, которую они предоставляют.

    Как мы можем использовать параметр крутящего момента, чтобы помочь нам при покупке небольшого электродвигателя

    После определения концепций мощности и крутящего момента мы можем ответить на этот вопрос. В этом случае решение зависит от покупателя, поскольку мощность и крутящий момент являются двумя взаимосвязанными параметрами . Крутящий момент и мощность — это две характеристики электродвигателя , поскольку они говорят нам, какую силу он может генерировать и с какой скоростью он может работать.Анализ потребностей приложения поможет вам получить общее представление о технических характеристиках, которым должен соответствовать наш электродвигатель.

    У вас остались вопросы? Вам нужно больше информации? Команда CLR по проектированию и связям разработала для вас подробное руководство . Загрузите бесплатно наше руководство «Как выбрать лучший электродвигатель для малых приводов » и начинайте покупать двигатели с полной уверенностью.

    Как электромобили развивают мгновенный крутящий момент?

    Электромобили известны своей мгновенной передачей крутящего момента, которая приводит к резкому ускорению с места. Как они создают этот моментальный крутящий момент и почему старое доброе внутреннее сгорание не может приблизиться?

    Передача крутящего момента — это аспект двигателей, который в последние годы стал одним из главных приоритетов для высокопроизводительных автомобилей.Клиенты хотят получить максимальный крутящий момент как можно быстрее и в течение как можно более длительного времени, что вынуждает производителей искать различные способы манипулирования старой технологией двигателя внутреннего сгорания.

    Появление на рынке электромобилей поставило под угрозу репутацию даже самых крутящих двигателей внутреннего сгорания. С такими компаниями, как Tesla со своими смехотворными режимами и даже с BMW i3, превосходящим предыдущий M3 с конвейера, давайте посмотрим, как автомобили нового поколения сумели создать такое огромное преимущество в передаче крутящего момента и почему мы, бензиновые автомобилисты, должны определенно уважать электродвигатель.

    Подача крутящего момента внутреннего сгорания

    13 КБ

    Вы все знакомы с видом кривой крутящего момента: медленно поднимается вверх, затем достигает пика и снова падает; небольшой холм по сравнению с крутым наклоном кривой мощности.Чтобы представить себе, что происходит на этом графике, нам, вероятно, следует изучить создание крутящего момента двигателем.

    Крутящий момент в своей основной форме представляет собой крутящее усилие и рассчитывается как сила (F), умноженная на расстояние (x). В случае поршневого двигателя «F» — это направленная вниз сила, толкающая поршень вертикально и вращающая коленчатый вал после зажигания. «X» — это горизонтальное расстояние между шатунной шейкой и коленчатым валом под углом 270 градусов в рабочем цикле двигателя. Взгляните на диаграмму ниже:

    Это означает, что по мере увеличения размера взрыва внутри цилиндров, направленная вниз сила поршня также увеличивается, таким образом увеличивая крутящий момент, создаваемый двигателем.Хотя может показаться логичным, что чем выше частота вращения двигателя, тем выше значение крутящего момента, к сожалению, это не так просто.

    Одной из основных переменных, которые заставляют кривую крутящего момента снижаться после своего пика, является сложность нагнетания воздуха в двигатель. Максимальный крутящий момент достигается в точке, где комбинация топлива, воздуха и искры совпадают, создавая наибольшую вертикальную силу. Однако по мере увеличения частоты вращения двигателю становится все труднее втягивать необходимый для сгорания воздух, используя вакуум поршня, опускающегося в цилиндр после такта выпуска.Блок управления двигателем запрограммирован для удовлетворения требований к крутящему моменту, заявленных производителем, при этом многие двигатели настроены на формирование как можно более плоской кривой крутящего момента для равномерного распределения по диапазону оборотов.

    Существенным недостатком такой передачи крутящего момента является задержка в достижении максимального крутящего момента. Начиная с низких оборотов, частота вращения двигателя должна медленно повышаться до максимального порогового значения крутящего момента, который в большинстве двигателей без наддува является довольно высоким в диапазоне оборотов. Разрывы крутящего момента по своей сути существуют в пределах схемы двигателя внутреннего сгорания, что производители недавно пытались минимизировать с помощью турбонаддува и векторизации крутящего момента.

    Передача крутящего момента электромобиля

    Максимальный крутящий момент возникает мгновенно, а затем снижается.

    К счастью, в электродвигателях максимальный крутящий момент достигается с самого начала.Когда через электродвигатель протекает ток, соответствующий электрический заряд заставляет якорь вращаться. Эти вращения во внутреннем магнитном поле вызывают так называемую обратную ЭДС (электродвижущую силу), которая противодействует напряжению питания. Представьте, что обратная ЭДС эквивалентна естественной тормозной силе, как в двигателях внутреннего сгорания.

    Таким образом, суммарная сила, приложенная к колесам, является разницей между напряжением питания и ЭДС. Противо-ЭДС пропорциональна скорости, поэтому чем выше скорость, тем меньше итоговая общая сила.Это объясняет, почему кривая крутящего момента начинает уменьшаться на динамограмме электромобиля, когда электродвигатели автомобиля выходят за верхние пределы своих пределов производительности.

    Чтобы перевернуть это с ног на голову, если скорость очень мала (или равна нулю при старте с места), обратная ЭДС практически отсутствует, а это означает, что напряжение питания немедленно приравнивается к выходному крутящему моменту. Таким образом, если вы нажмете дроссельную заслонку, максимальное напряжение будет внезапно приложено, поэтому максимальный крутящий момент будет доступен немедленно.

    Хотя Tesla, вероятно, сойдет с конвейера быстрее, обратная ЭДС в электромобиле позволит GTR пройти мимо, когда он полностью наберет скорость.

    Сегодня, когда во многих высокопроизводительных автомобилях используется лучшее из обоих миров, дни двигателей внутреннего сгорания еще не закончились. Партнерские отношения, существующие в новейших гиперкарах, таких как Porsche 918, чрезвычайно эффективны, поскольку не только используют электрический крутящий момент на кране, чтобы сойти с конвейера, но и задействуют двигатель внутреннего сгорания, чтобы поддерживать это ускорение. Затем электричество снова используется для заполнения крутящего момента, что приводит к созданию пакета, созданного для дикой скорости.

    Хотя есть что-то чрезвычайно приятное в том, чтобы поддерживать автомобиль в пределах диапазона максимального крутящего момента, похоже, что будущее за электромотором — это безупречная производительность. С электромобилями, способными разгоняться до 100 км / ч менее чем за две секунды, двигатель внутреннего сгорания действительно превзошел.

    Как работают моторы и как выбрать мотор для любого проекта

    Как работают двигатели и как выбрать правильный двигатель

    Моторы можно найти практически везде.Это руководство поможет вам изучить основы электродвигателей, доступные типы и способы выбора правильного электродвигателя. Основные вопросы, на которые нужно ответить при принятии решения о том, какой двигатель лучше всего подходит для применения, — это какой тип выбрать и какие характеристики имеют значение.

    Как работают моторы?

    Электродвигатели работают, преобразуя электрическую энергию в механическую энергию для создания движения. Сила создается внутри двигателя за счет взаимодействия между магнитным полем и переменным (AC) или постоянным (DC) током обмотки.С увеличением силы тока увеличивается и сила магнитного поля. Помните о законе Ома (V = I * R); напряжение должно увеличиваться, чтобы поддерживать тот же ток при увеличении сопротивления.

    Электродвигатели имеют множество применений. Обычные промышленные применения включают воздуходувки, станки и электроинструменты, вентиляторы и насосы. Любители обычно используют двигатели в небольших приложениях, требующих движения, таких как робототехника или модули с колесами.

    Типы двигателей:

    Есть много типов двигателей постоянного тока , но наиболее распространены щеточные или бесщеточные.Также существуют вибрационные двигатели, шаговые двигатели и серводвигатели.

    Щеточные двигатели постоянного тока являются одними из самых простых и используются во многих бытовых приборах, игрушках и автомобилях. Они используют контактные щетки, которые подключаются к коммутатору для изменения направления тока. Они недороги в производстве, просты в управлении и обладают отличным крутящим моментом на низких скоростях (измеряется в оборотах в минуту или об / мин). Некоторые недостатки заключаются в том, что они требуют постоянного обслуживания для замены изношенных щеток, имеют ограниченную скорость из-за нагрева щеток и могут генерировать электромагнитный шум из-за искрения щеток.


    Щеточный двигатель постоянного тока

    Бесщеточные двигатели постоянного тока используют постоянные магниты в роторном узле. Они популярны на рынке хобби для применения в самолетах и ​​наземных транспортных средствах. Они более эффективны, требуют меньше обслуживания, производят меньше шума и имеют более высокую удельную мощность, чем щеточные двигатели постоянного тока. Они также могут производиться серийно и напоминать двигатель переменного тока с постоянной частотой вращения, за исключением того, что они питаются от постоянного тока. Однако есть несколько недостатков, в том числе то, что ими сложно управлять без специального регулятора, и они требуют низких пусковых нагрузок и специализированных редукторов в приводных приложениях, что приводит к их более высоким капитальным затратам, сложности и экологическим ограничениям.


    Бесщеточный двигатель постоянного тока

    Вибрационные двигатели используются в приложениях, требующих вибрации, например, в мобильных телефонах или игровых контроллерах. Они генерируются электродвигателем и имеют неуравновешенную массу на приводном валу, которая вызывает вибрацию. Их также можно использовать в неэлектронных зуммерах, которые вибрируют для звуковой сигнализации или для сигналов тревоги или дверных звонков.


    Вибрационный двигатель

    Когда требуется точное позиционирование, шаговые двигатели — ваш друг.Они используются в принтерах, станках и системах управления технологическими процессами и рассчитаны на высокий удерживающий момент, что дает пользователю возможность переходить от одного шага к другому. У них есть система контроллера, которая определяет положение посредством сигнальных импульсов, отправляемых драйверу, который интерпретирует их и передает пропорциональное напряжение на двигатель. Их относительно просто изготовить и контролировать, но они постоянно потребляют максимальный ток. Расстояние небольшого шага ограничивает максимальную скорость, и шаги можно пропустить при высоких нагрузках.


    Шаговый двигатель

    Серводвигатели — еще один популярный двигатель на рынке хобби, который используется для неточного управления положением. Их популярные приложения включают приложения дистанционного управления, такие как игрушечные радиоуправляемые автомобили и робототехника. Они состоят из двигателя, потенциометра и схемы управления и в основном управляются с помощью широтно-импульсной модуляции (ШИМ), посредством отправки электрических импульсов на провод управления. Сервоприводы могут быть как переменного, так и постоянного тока. Сервоприводы переменного тока могут справляться с более высокими скачками тока и используются в промышленном оборудовании, тогда как сервоприводы постоянного тока предназначены для небольших любительских приложений.Чтобы узнать больше о сервомоторах, ознакомьтесь с нашей статьей How Servo Motors Work .

    Существует три основных типа двигателей переменного тока: асинхронные, синхронные и промышленные.
    Асинхронные двигатели называются асинхронными двигателями, поскольку они не вращаются с одинаковой постоянной скоростью или не медленнее, чем указанная частота. Скольжение , разница между фактической и синхронной скоростью, необходима для создания крутящего момента , крутящего момента, вызывающего вращение, в асинхронных двигателях.Магнитное поле, окружающее ротор этих двигателей, создается индуцированным током.

    Ротор синхронных двигателей вращается с постоянной скоростью при подаче переменного тока. Их магнитное поле создается постоянными магнитами. Промышленные двигатели предназначены для трехфазных систем с высокой мощностью, таких как конвейеры или воздуходувки. Двигатели переменного тока также можно найти в бытовой технике и других приложениях, таких как часы, вентиляторы и дисководы.

    Что нужно учитывать при покупке мотора:

    При выборе двигателя необходимо обратить внимание на несколько характеристик, но наиболее важными являются напряжение, ток, крутящий момент и скорость (об / мин).

    Ток — это то, что питает двигатель, и слишком большой ток приведет к его повреждению. Для двигателей постоянного тока важны рабочий ток и ток остановки. Рабочий ток — это средняя величина тока, которую двигатель может потреблять при типичном крутящем моменте. Ток останова обеспечивает достаточный крутящий момент для двигателя, чтобы работать со скоростью останова, или 0 об / мин. Это максимальный ток, который двигатель может потреблять, а также максимальная мощность, умноженная на номинальное напряжение. Радиаторы важны, если двигатель постоянно работает или работает с напряжением выше номинального, чтобы катушки не плавились.

    Напряжение используется для поддержания протекания чистого тока в одном направлении и для преодоления обратного тока. Чем выше напряжение, тем выше крутящий момент. Номинальное напряжение двигателя постоянного тока указывает на наиболее эффективное напряжение во время работы. Обязательно подайте рекомендованное напряжение. Если вы приложите слишком мало вольт, двигатель не будет работать, тогда как слишком большое напряжение может привести к короткому замыканию обмоток, что приведет к потере мощности или полному разрушению.

    Рабочие значения и значения остановки также необходимо учитывать с крутящим моментом.Рабочий крутящий момент — это крутящий момент, который двигатель был спроектирован для обеспечения, а крутящий момент при остановке — это крутящий момент, создаваемый при подаче мощности от скорости останова. Вы всегда должны смотреть на требуемый рабочий крутящий момент, но в некоторых случаях вам потребуется знать, насколько далеко вы можете толкнуть двигатель. Например, для колесного робота хороший крутящий момент равен хорошему ускорению, но вы должны убедиться, что крутящий момент сваливания достаточно высок, чтобы поднять вес робота. В этом случае крутящий момент важнее скорости.

    Скорость или скорость (об / мин) может быть сложной для двигателей. Общее правило заключается в том, что двигатели наиболее эффективно работают на самых высоких скоростях, но это не всегда возможно, если требуется передача. Добавление шестерен снизит эффективность двигателя, поэтому примите во внимание снижение скорости и крутящего момента.

    Это основные принципы, которые следует учитывать при выборе двигателя. Подумайте о назначении приложения и о том, какой ток он использует, чтобы выбрать подходящий тип двигателя. Технические характеристики приложения, такие как напряжение, ток, крутящий момент и скорость, будут определять, какой двигатель наиболее подходит, поэтому обязательно обратите внимание на его требования.

    Есть ли у вас дополнительные советы по выбору двигателей? Дайте нам знать по телефону [адрес электронной почты защищен] .

    Выходная мощность двигателя электромобиля

    Что означает выходная мощность двигателя автомобиля?

    В физике выходная мощность относится к количеству энергии, доставленной в течение заданного периода времени. Применительно к автомобильной промышленности это означает количество механической энергии, производимой двигателем, опять же в течение заданного периода времени. Это влияет на ускорение, тяговое усилие автомобиля (вес, который он может перемещать) и его способность подниматься в гору.

    Будь то двигатель внутреннего сгорания или электродвигатель, выходная мощность механической энергии определяется произведением скорости вращения (измеряется в оборотах в минуту) и крутящего момента. Выраженный в Ньютон-метрах (Нм), крутящий момент описывает тяговую мощность двигателя.

    Это объясняет тот факт, что два двигателя с одинаковой выходной мощностью могут вести себя по-разному и ощущаться водителем по-разному. Спортивный автомобиль демонстрирует характеристики, которые не могут сравниться с характеристиками большого грузовика, даже если они оба одинаково мощны с точки зрения мощности двигателя!

    Как рассчитывается выходная мощность двигателя электромобиля ?

    Производители не могут просто заявить мощность двигателя: она измеряется в процессе тестирования, что иллюстрируется изменениями крутящего момента в зависимости от скорости вращения.Значение, используемое производителями автомобилей, обычно относится к максимальной измеренной выходной мощности. Выражается в ваттах (Вт) и, в более общем смысле, в киловаттах (кВт).

    Как найти выходную мощность двигателя электромобиля

    Когда говорят об электрической системе, такой как в электромобиле, механическая мощность, выраженная в ваттах (Вт), киловаттах (кВт) или лошадиных силах (PS), вычисляется путем умножения скорости (об / мин) на крутящий момент, вращательное эквивалент линейной силы, измеряемой в фунт-футах (фунт-фут) или ньютон-метрах (Нм).Но прежде чем приступить к каким-либо долгим вычислениям, быстрый поиск в Интернете приведет к появлению ряда веб-сайтов, на которых вы просто вводите скорость и крутящий момент вашего электромобиля, чтобы рассчитать его выходную мощность в киловаттах. Или вы можете посмотреть руководство по эксплуатации вашего автомобиля.

    Как киловатты (кВт) соотносятся с лошадиными силами (л.с.)?

    «Лошадиная сила» исторически относится к выходной мощности автомобильного двигателя и восходит к концу девятнадцатого века. Это способ выразить выходную мощность более буквально, приравняв ее к рабочей нагрузке, которую люди могут понять.Таким образом, мощность в лошадиных силах, иногда обозначаемая аббревиатурой PS (немецкое «Pferdestärke»), относится к выходной мощности, создаваемой лошадью, чтобы поднять 75-килограммовый груз на высоту одного метра за одну секунду. По метрической системе это примерно 736 Вт.

    .

    Таким образом, мощность двигателя электромобиля может быть взаимозаменяемо выражена в кВт или л.с. Например, двигатель R135 в ZOE выдает мощность двигателя 100 кВт или 135 л.с. — отсюда и название! Его крутящий момент теперь улучшен до 245 Нм по сравнению с 225 Нм у двигателя ZOE R110, выпущенного в 2018 году, чтобы сделать электромобиль более динамичным в ситуациях, когда требуется ускорение, например, при проезде или выезде на шоссе.

    Какие факторы определяют выходную мощность электромобиля?

    Роль двигателя — создавать механическую энергию из другой формы энергии. Таким образом, его выходная мощность определяется максимальной способностью преобразования энергии. В случае электромобиля его выходная мощность зависит от размера двигателя (его объема) и мощности входящего тока.

    Что такое «полезная» энергия, выделяемая электродвигателем?

    Выходная мощность также является результатом урожайности, т.е.е. соотношение количества поступающей поставляемой электроэнергии к исходящей доставленной механической энергии.

    Не вся энергия, вырабатываемая электросетью или зарядной станцией, в конечном итоге используется для питания двигателя. Его можно потерять из-за тепла или трения по пути. Другими словами, механическая энергия, фактически используемая двигателем, является «полезной» энергией. Разделив фактическую выходную мощность электродвигателя на идеальную выходную мощность (равную начальной потребляемой мощности), вы получите механический КПД двигателя.

    Итак, для электромобиля расчет «полезной» энергии можно найти, разделив выходную мощность (скорость x крутящий момент) на входную и выразив результат в процентах. Это иначе известно как формула эффективности r = P / C, где P — количество полезной продукции («продукта»), произведенной на количество C («стоимость») потребленных ресурсов.

    Цель состоит в том, чтобы уменьшить эти потери выходной мощности для достижения максимальной энергоэффективности. Таким образом, большая часть энергии, хранящейся в аккумуляторе, используется для увеличения запаса хода электромобиля.В этом отношении ZOE работает особенно хорошо. Имея запас хода по WLTP * в 395 км благодаря аккумулятору емкостью 52 кВтч, он предлагает одно из лучших соотношений на рынке электромобилей во всех сегментах вместе взятых.

    Выходная мощность, потребление и диапазон

    При этом максимальная выходная мощность не влияет напрямую на запас хода электромобиля, так как стиль вождения оказывает наибольшее влияние на потребление энергии двигателем. Следовательно, речь идет не о самом эффективном двигателе электромобиля, а о самом эффективном поведении при вождении.Например, резкое ускорение будет означать скачок потребления электроэнергии. Периоды высокоскоростной езды также значительно расходуют заряд аккумулятора. Чем выше скорость, тем больше энергии требуется для ее поддержания.

    И наоборот, расслабленное вождение снижает мгновенный расход и делает рекуперативное торможение более эффективным. Это принцип экологического вождения, который является одним из лучших способов увеличить запас хода электромобиля.

    крутящего момента или лошадиных сил? Что такое каждый на самом деле и почему это важно

    Оба они измеряют мощность, но одно связано с силой, а другое — со временем.

    Поговорите об открытии Ящика Пандоры. Попробуйте найти простое сравнительное объяснение крутящего момента и мощности. Многие люди получают награды за свои попытки, но немногие действительно преуспевают.

    Понимание разницы между крутящим моментом и мощностью стало еще более важным сейчас, когда стали обычным явлением электромобили и строительная техника с батарейным питанием и мгновенным крутящим моментом. Вот что вам нужно знать.

    То же … только другое

    Мы говорим о мощности и ее измерении.Помните об этом, когда будете двигаться вперед. Электромобили и строительное оборудование с батарейным питанием вырабатывают энергию, которая приводит в движение колеса, чтобы привести предметы в движение, или создают движение, необходимое для того, чтобы оборудование выполняло свою работу. В отличие от бензинового или дизельного двигателя, электродвигатель с батарейным питанием выдает мощность немного иначе. Так же, как двигатель внутреннего сгорания, работающий на газе, двигатель электромобиля вырабатывает энергию. В отличие от газового двигателя, электромобили вырабатывают мощность немного иначе.

    Выходная мощность электродвигателя измеряется либо в лошадиных силах, либо в киловаттах — и да, это второе измерение относится к электричеству. Например, тачка с батарейным питанием PowerPac MCE400 рассчитана на 1 киловатт.

    Киловатт равен примерно 1,34 лошадиным силам. Таким образом, можно сказать, что MCE400 имеет двигатель мощностью 1,34 лошадиные силы. Что, вероятно, вас не впечатлит, учитывая, что у Toyota Prius есть электродвигатель мощностью 60 лошадиных сил, а вы привыкли слышать об обычных двигателях внутреннего сгорания, мощность которых составляет сотни.Но подождите…

    Способ доставки

    Означает ли это, что строительная техника с батарейным питанием полностью уступает своим традиционным собратьям, работающим на ископаемом топливе? Ни в коей мере — но чтобы понять почему, вы должны учитывать, как электродвигатели и бензиновые или дизельные двигатели передают энергию таким вещам, как колеса.

    А вот и Форд Ф-250. Он может выдавать от 385 до 440 лошадиных сил. Выходная мощность 1,34 лошадиных сил тачки MCE400 с батарейным питанием — большой зевок по сравнению с этим, не так ли? Но мощность F-250 от 328 до 440 лошадиных сил на самом деле равна пиковой мощности лошадиных сил.Это максимальная мощность, которую двигатель может выдать при определенном количестве оборотов в минуту (об / мин). Это пиковое число довольно высоко на тахометре. Вы хотите эту мощность? Вы заплатите за это расходом топлива, а чтобы добраться туда, нужно время.

    В этом суть бензиновых и дизельных двигателей, используемых в строительстве. Они наращивают мощность — и, следовательно, число оборотов в минуту — за счет ускорения до достижения максимальной мощности и крутящего момента. Это вряд ли эффективно.

    Это также требует всевозможного дополнительного оборудования, такого как трансмиссия и шестерни, для оптимизации выходной мощности при различных оборотах двигателя.

    Все сразу

    Сравните это с включением электродвигателя в MCE400. Это как включить лампочку. Электродвигателю и лампочке не нужно время, чтобы набрать мощность. Пиковая мощность электродвигателя всегда при нулевых оборотах. И крутящий момент тоже. Вы мгновенно получаете 100% доступной мощности электродвигателя.

    Что это означает для строительного электрического оборудования, работающего на лошадиных силах и с питанием от аккумуляторов? Во-первых, это означает, что, поскольку мощность доступна немедленно, вам больше не нужно искать огромные статистические данные о мощности.Чтобы представить это вам в перспективе, Tesla Model S с половиной лошадиных сил почти так же быстр, как Corvette Z06 (хотя программное обеспечение ограничивает скорость до 155 миль в час) — и разгоняется так же быстро.

    Вот еще одна аналогия. Все мы знакомы с огромными двигателями дизельных поездов, которые тянут или толкают длинные очереди грузовых вагонов. Вы наблюдаете, как они изрыгают черный дым от дизельного топлива, поэтому можете подумать, что они оснащены огромными дизельными двигателями.

    Но двигатели действуют только как генераторы для выработки электричества, которое приводит в действие электродвигатели, непосредственно прикрепленные к каждому колесу.Эти электродвигатели могут мгновенно развить крутящий момент до 60 000 фунтов на фут. Его достаточно, чтобы тянуть — или толкать — более 17 000 тонн угля в железнодорожных вагонах. В противном случае вам понадобилось бы около 120 Ferrari Enzos, работающих вместе, чтобы переместить этот уголь. Когда дело доходит до толкания или тяги, главное — крутящий момент, а не мощность.

    А поскольку электродвигатели и строительное оборудование с батарейным питанием, в котором они используются, имеют меньше деталей, чем традиционный двигатель внутреннего сгорания, это означает меньше вещей, которые могут выйти из строя, и меньше технического обслуживания для поддержания их работы.

    Triple E готов обеспечить мгновенную подачу электроэнергии на вашу рабочую площадку. Позвоните нам по телефону (954) 978-3440 или задайте нам любые вопросы здесь.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *