Калькулятор для цилиндра
С помощью онлайн калькулятора для цилиндра можно по известным данным вычислить объем цилиндра, площадь основания и боковой поверхности, площадь полной поверхности, радиус, диаметр, высоту.
Цилиндр — геометрическое тело, ограниченное цилиндрической поверхностью (называемой боковой поверхностью цилиндра) и не более чем двумя поверхностями (основаниями цилиндра).
Обозначения:
R – радиус, D – диаметр,
V – объем,
Sо – площадь основания, Sб – площадь боковой поверхности, S – площадь полной поверхности,
h – высота прямого кругового цилиндра (h2 и h3 — минимальная и максимальная высота)
π – число Пи которое всегда примерно равно 3,14.
Прямой круговой цилиндр
Цилиндр называется круговым, если его направляющая является окружностью. Цилиндр называется прямым, если его образующая перпендикулярна основаниям.
Формулы для прямого кругового цилиндра:
Объем цилиндра
- Если известны радиус и высота цилиндра: V=πR2h
- Если известны диаметр и высота цилиндра: V=πD2/4h
- Если известны площадь и высота цилиндра: V=Sоh
Площадь боковой поверхности прямого кругового цилиндра
Так как боковая поверхность представляет собой прямоугольник, то площадь боковой поверхности цилиндра определяется по формуле: Sб=2πR⋅h
Площадь основания цилиндра
Основание цилиндра —круг, поэтому площадь одного основания находится по формуле площади круга: Sо=πR2.
Площадь полной поверхности прямого кругового цилиндра
Площадь полной поверхности цилиндра определяется по формуле: S=2πRh+2πR2=2πR(h+R)
Формулы нахождения радиуса и диаметра
- По высоте и объему: R=√(V/πh), D=2*√(V/πh)
- По площади боковой поверхности и высоте: R=Sб/2πh, D=2*Sб/2πh
- По площади основания и высоте: R=√(Sо/π), R=2*√(Sо/π)
Формулы нахождения высоты
- По радиусу и объему: h=V/πR2
- По площади боковой поверхности и радиусу: h=Sб/2πR
- По площади полной поверхности и радиусу: h=S/2πR-R
Скошенный цилиндр
Прямой круговой цилиндр со скошенным основанием (скошенный цилиндр) определяется радиусом основания R, минимальной высотой h2 и максимальной высотой h3.
Формулы для скошенного цилиндра:
- Объем скошенного цилиндра: V=πR2(h2+h3)2
- Площадь боковой поверхности скошенного цилиндра: Sб=πR(h2+h3)
- Площадь оснований скошенного цилиндра: Sо=πR2+πR √(R2+((h2−h3)/2)2)
- Площадь полной поверхности скошенного цилиндра
S=Sб+Sо= πR(h2+h3)+ πR2+πR √ (R2+((h2−h3)/2)2) = πR[(h2+h3)+ R+√ (R2+((h2−h3)/2)2) ]
Как посчитать объем цилиндра — онлайн калькулятор
Чтобы посчитать объем цилиндра воспользуйтесь нашим удобным онлайн калькулятором:
Онлайн калькулятор
Найти чему равен объем цилиндра (V) можно зная (либо-либо):
- радиус r и высоту h цилиндра
- диаметр d и высоту h цилиндра
- площадь основания So и высоту h цилиндра
- площадь боковой поверхности Sb и высоту h цилиндра
Подставьте значения в соответствующие поля и получите результат.
Зная радиус r и высоту h
Чему равен объем цилиндра V если известны его радиус r и высота h?
Формула
V = π⋅r2⋅h
Пример
Если цилиндр имеет высоту h = 8 см, а его радиус r = 2 см, то:
V = 3.14156 ⋅ 22 ⋅ 8 = 3.14156 ⋅ 32 = 100.53 см3
Зная диаметр d и высоту h
Чему равен объем цилиндра
Формула
V = π⋅(d/2)2⋅h
Пример
Если цилиндр имеет высоту h = 5 см, а его диаметр d = 1 см, то:
V = 3.14156 ⋅ (1/2)2 ⋅ 5 = 3.14156 ⋅ 1.25 ≈ 3.927 см3
Зная площадь основания So и высоту h
Чему равен объем цилиндра V если известны его площадь основания So и высота h?
Формула
V = So⋅h
Пример
Если цилиндр имеет высоту h = 10 см, а площадь его основания So = 5 см2, то:
V = 10 ⋅ 5 = 50 см3
Зная площадь боковой поверхности Sb и высоту h
Чему равен объем цилиндра V если известны его площадь боковой поверхности Sb и высота h?
Формула
V = Sb2/4πh
Пример
Если цилиндр имеет высоту h = 5 см, а площадь его боковой поверхности Sb = 30 см2, то:
V = 302/ 4 ⋅ 3.14⋅ 5 = 900/62.8 = 14.33 см3
См. также
Калькулятор онлайн — Вычисление объема цилиндра
Этот математический калькулятор онлайн поможет вам вычислить объём цилиндра. Программа для вычисления объёма цилиндра не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.
Числа можно вводить целые или дробные.Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: \( -\frac{2}{3} \)
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: \( -1\frac{5}{7} \)
Цилиндр – это геометрическое тело, которое имеет цилиндрическую поверхность, называемое еще как боковая поверхность цилиндра и имеет две поверхности, которые носят название оснований цилиндра. Круговым цилиндр называют, если у него в основании лежит круг.
Высота цилиндра
— это отрезок, соединяющий две любые точки оснований но обязательно расположенный перпендикулярно к ним обоим.
Объем прямого цилиндра
Цилиндр — это геометрическое тело, которое сформировано вращением прямоугольника на оси, совпадающей с одним из его сторон. Слово «цилиндр» происходит от греческого слова «kylindros».
Объем цилиндра через радиус основания и высоту цилиндра
Объем цилиндра равен произведению квадрата радиуса основания, высоты цилиндра и числа пи (3.1415)
\[ \LARGE V = \pi \cdot R^{2} \cdot H \]
где:
V — объем цилиндра
π — число пи (3.1415)
R — радиус основания
H — высота цилиндра
Объем цилиндра через площадь основания и высоту цилиндра
Объем цилиндра равен произведению площади основания цилиндра на его высоту.
\[ \LARGE V = S \cdot H \]
где:
V — объем цилиндра
H — высота цилиндра
S — площадь цилиндра
Объем цилиндра через диаметр основания и высоту цилиндра
Объем цилиндра равен произведению диаметра основания и числа пи (3.1415) делённое на четыре высоты цилиндра
\[ \LARGE V = \frac {\pi \cdot D^{2} }{4 \cdot H} \]
где:
V — объем цилиндра
π — число пи (3.1415)
D — диаметр основания
H — высота цилиндра
Калькулятор объёма цилиндра
Входные данные
Радиус цилиндра r:
Высота цилиндра h:
Количество знаков после запятой в результате вычислений
1 2 3 4 5 6 7
Результат
В вашем браузере отключен Javascript.Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
Объём стенки цилиндра — онлайн калькулятор
Чтобы посчитать объём стенки цилиндра, то есть объём полого цилиндра, воспользуйтесь нашим очень удобным онлайн калькулятором:
Онлайн калькулятор
Найти чему равен объём полого цилиндра (Vст) можно зная (либо-либо):
- Высоту цилиндра h, внешний радиус r1 и внутренний радиус r2
- Высоту цилиндра h, внешний диаметр d1 и внутренний диаметр d2
- Высоту цилиндра h, внешний радиус r1 и толщину стенки δ
- Высоту цилиндра h, внутренний радиус r2 и толщину стенки δ
- Высоту цилиндра h, внешний диаметр d1 и толщину стенки δ
- Высоту цилиндра h, внутренний диаметр d2 и толщину стенки δ
Зная оба радиуса (диаметра)
Зная толщину стенки
Теория
Чему равен объём полого цилиндра Vст если:
Формулы
Через радиусы или диаметры цилиндра
Vст = π ⋅ (r1² — r2²) ⋅ h , где r1 — внешний радиус, r2 — внутренний радиус , а h — высота
Vст = π ⋅ ((d1/2)² — (d2/2)²) ⋅ h , где d1 — внешний диаметр, d2 — внутренний диаметр, а h — высота
Через толщину стенки цилиндра
Vст = π ⋅ (d2 ⋅ δ + δ²) ⋅ h , где δ — толщина стенки цилиндра, d2 — внутренний диаметр, а h — высота
Vст = π ⋅ ((d1 — 2 ⋅ δ) ⋅ δ + δ²) ⋅ h , где δ — толщина стенки цилиндра, d1 — внешний диаметр, а h — высота
Vст = π ⋅ (2 ⋅ r2 ⋅ δ + δ²) ⋅ h , где δ — толщина стенки цилиндра, r2 — внутренний радиус, а h — высота
Vст = π ⋅ ((2 ⋅ r1 — 2 ⋅ δ) ⋅ δ + δ²) ⋅ h , где δ — толщина стенки цилиндра, r1 — внешний радиус, а h — высота
Пример №1
К примеру, посчитаем каков объём металла в трубе, если её длинна 3 метра, внешний диаметр d1=5 см, а внутренний d2=4.5 см?
Vст = 3.14 ⋅ ((5/2)² — (4.5/2)²) ⋅ 300 = 3.14 ⋅ (6.25 — 5.0625) ⋅ 300 ≈ 1119 см³
Пример №2
Теперь посчитаем объём металла в этой же 3-х метровой трубе, но возьмём внутренний радиус r2 = 2.25 см и толщину стенки δ = 0.25 см (при этом у нас должен получится тот же ответ, что и в предыдущем примере):
Vст = 3.14 ⋅ (2 ⋅ 2.25 ⋅ 0.25 + 0.25²) ⋅ 300 = 3.14 ⋅ 1.1875 ⋅ 300 ≈ 1119 см³
См. также
Онлайн калькулятор: Объем геометрических фигур
Данная статья содержит калькуляторы для расчета объема различных геометрических фигур. Основной источник формул: Spiegel, Murray R. Mathematical Handbook of Formulas and Tables. Schaum’s Outline series in Mathematics. McGraw-Hill Book Co., 1968.
Объем куба
Размеры куба
Формула:
Объем куба
Длина ребра куба (H)
Точность вычисленияЗнаков после запятой: 5
save Сохранить extension Виджет
Объем прямоугольной призмы
Размеры прямоугольной призмы
Формула:
Объем прямоугольной призмы
Точность вычисленияЗнаков после запятой: 5
save Сохранить extension Виджет
Объем пирамиды
Размеры пирамиды
Формула:
Объем пирамиды
Площадь основания
Точность вычисленияЗнаков после запятой: 5
save Сохранить extension Виджет
Объем усеченной пирамиды
Размеры усеченной пирамиды
Формула:
Объем усеченной пирамиды
Точность вычисленияЗнаков после запятой: 5
Цилиндр — геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её.
Формула для расчета объема цилиндра:
- V — объем цилиндра.
- R — радиус оснований цилиндра.
- h — высота.
Найти и вычислить объем цилиндра через онлайн калькулятор:
Видео урок по теме «Цилиндр».
Оцени статью
ОценитьСредняя оценка / 5. Количество голосов:
Спасибо, помогите другим — напишите комментарий, добавьте информации к статье.
Или поделись статьей
Видим, что вы не нашли ответ на свой вопрос.
Помогите улучшить статью.
Напишите комментарий, что можно добавить к статье, какой информации не хватает.Отправить
Спасибо за ваши отзыв!
Цилиндрический калькуляторКруглый цилиндр
r = радиус
h = высота
V = объем
L = площадь боковой поверхности
T = площадь верхней поверхности
A = общая площадь поверхности
π = pi = 3.1415926535898
√ = квадратный корень Калькулятор
Использование
Этот онлайн калькулятор рассчитает различные свойства цилиндра с учетом 2 известных значений. Он также рассчитает эти свойства в терминах PI π. Это правый круглый цилиндр, в котором верхняя и нижняя поверхности параллельны, но его обычно называют «цилиндром».
Единицы: Обратите внимание, что единицы показаны для удобства, но не влияют на расчеты.Единицы измерения установлены для указания порядка результатов, таких как футы, футы 2 или футы 3 . Например, если вы начинаете с мм и знаете r и h в мм, ваши вычисления приведут к V в мм 3 , L в мм 2 , T в мм
Ниже приведены стандартные формулы для цилиндра. Расчеты основаны на алгебраических манипуляциях с этими стандартными формулами.
Цилиндрические формулы по r и h:
- Рассчитать объем цилиндра:
- Рассчитать площадь боковой поверхности цилиндра (только изогнутую снаружи) **:
- Рассчитать площадь верхней и нижней поверхности цилиндра (2 кружки):
- Общая площадь поверхности закрытого цилиндра составляет:
- A = L + T + B = 2πrh + 2 (πr 2 ) = 2πr (h + r)
** Рассчитанная площадь представляет собой только боковую поверхность внешней стенки цилиндра.Чтобы рассчитать общую площадь поверхности, вам также необходимо рассчитать площадь верха и низа. Вы можете сделать это с помощью круг калькулятор.
Расчёт цилиндров:
Используйте следующие дополнительные формулы вместе с формулами выше.
- По заданному радиусу и высоте рассчитайте объем, площадь боковой поверхности и общую площадь поверхности.
Рассчитать V, L, A | Учитывая г, ч - По заданному радиусу и объему рассчитайте высоту, площадь боковой поверхности и общую площадь поверхности.
Рассчитайте h, L, A | Учитывая г, V - По заданному радиусу и площади боковой поверхности рассчитывают высоту, объем и общую площадь поверхности.
- По заданной высоте и площади боковой поверхности рассчитайте радиус, объем и общую площадь поверхности.
Рассчитайте r, V, A | Учитывая ч, L - По заданной высоте и объему рассчитайте радиус, площадь боковой поверхности и общую площадь поверхности.
Рассчитайте r, L, A | Учитывая ч, V
— Бесплатный онлайн калькулятор
- Классы
- Класс 1 — 3
- Класс 4 — 5
- Класс 6 — 10
- Класс 11 — 12
- КОНКУРСЫ
- BBS
- 000000000000 Книги
- NCERT Книги для 5 класса
- NCERT Книги Класс 6
- NCERT Книги для 7 класса
- NCERT Книги для 8 класса
- NCERT Книги для 9 класса
- NCERT Книги для 10 класса
- NCERT Книги для 11 класса
- NCERT Книги для 12-го класса
- NCERT Exemplar
- NCERT Exemplar Class 8
- NCERT Exemplar Class 9
- NCERT Exemplar Class 10
- NCERT Exemplar Class 11
- NCERT Exemplar Class 12 9000al Aggar
Agard Agard Agard Agard Agulis Class 12- Классы
- Решения RS Aggarwal класса 10
- Решения RS Aggarwal класса 11
- Решения RS Aggarwal класса 10 90 003 Решения RS Aggarwal Class 9
- Решения RS Aggarwal Class 8
- Решения RS Aggarwal Class 7
- Решения RS Aggarwal Class 6
- Решения RD Sharma
- Решения RD Sharma класса 9
- Решения RD Sharma Class 7 Решения RD Sharma Class 8
- Решения RD Sharma Class 9
- Решения RD Sharma Class 10
- Решения RD Sharma Class 11
- Решения RD Sharma Class 12
- ФИЗИКА
- Механика
- 000000 Электромагнетизм
- ХИМИЯ
- Органическая химия
- Неорганическая химия
- Периодическая таблица
- МАТС
- Теорема Пифагора
- Отношения и функции
- Последовательности и серии
- Таблицы умножения
- Детерминанты и матрицы
- Прибыль и убыток
- Полиномиальные уравнения
- Делительные дроби
- 000 ФОРМУЛЫ
- Математические формулы
- Алгебровые формулы
- Тригонометрические формулы
- Геометрические формулы
- КАЛЬКУЛЯТОРЫ
- Математические калькуляторы
- S000
- S0003
- Pегипс Класс 6
- Образцы документов CBSE для класса 7
- Образцы документов CBSE для класса 8
- Образцы документов CBSE для класса 9
- Образцы документов CBSE для класса 10
- Образцы документов CBSE для класса 11
- Образец образца CBSE pers for Class 12
- CBSE Документ с вопросами о предыдущем году
- CBSE Документы за предыдущий год Class 10
- CBSE Вопросы за предыдущий год Class 12
- HC Verma Solutions
- HC Verma Solutions Класс 11 Физика
- Решения HC Verma Class 12 Physics
- Решения Lakhmir Singh
- Решения Lakhmir Singh Class 9
- Решения Lakhmir Singh Class 10
- Решения Lakhmir Singh Class 8
- Примечания
- CBSE
- Notes
- CBSE Класс 7 Примечания CBSE
- Класс 8 Примечания CBSE
- Класс 9 Примечания CBSE
- Класс 10 Примечания CBSE
- Класс 11 Примечания CBSE
- Класс 12 Примечания CBSE
- Дополнительные вопросы CBSE 8 класса
- Дополнительные вопросы CBSE 8 по естественным наукам
- CBSE 9 класса Дополнительные вопросы
- CBSE 9 дополнительных вопросов по науке CBSE 9000 Класс 10 Дополнительные вопросы по математике
- Класс 3
- Класс 4
- Класс 5
- Класс 6
- Класс 7
- Класс 8
- Класс 9
- Класс 10
- Класс 11
- Класс 12
- Решения NCERT для класса 11
- Решения NCERT для физики класса 11
- Решения NCERT для класса 11 Химия Решения для класса 11 Биология
- NCERT Solutions для Класс 12 Физика
- Решения NCERT для 12 класса Химия
- Решения NCERT для 12 класса Биология
- Решения NCERT для 12 класса Математика
- Решения NCERT Класс 12 Бухгалтерский учет
- Решения NCERT Класс 12 Бизнес исследования
- Решения NCERT Класс 12 Экономика
- NCERT Solutions Class 12 Бухгалтерский учет Часть 1
- NCERT Solutions Class 12 Бухгалтерский учет Часть 2
- NCERT Solutions Class 12 Микроэкономика
- NCERT Solutions Class 12 Коммерция
- NCERT Solutions Class 12 Макроэкономика
- Решения NCERT для математики класса 4
- Решения NCERT для класса 4 EVS
- Решения NCERT для математики класса 5
- Решения NCERT для класса 5 EVS
- Решения NCERT для класса 6 Maths
- Решения NCERT для класса 6 Science
- Решения NCERT для класса 6 Общественные науки
- Решения NCERT для класса 6 Английский
- Решения NCERT для класса 7 Математика
- Решения NCERT для 7 класса Science
- Решения NCERT для 7 класса Общественные науки
- Решения NCERT для 7 класса Английский
- для 8 класса Математика
- Решения NCERT для класса 8 Science
- Решения NCERT для класса 8 Общественные науки
- NCERT Solutio ns для класса 8 Английский
- Решения NCERT для класса 9 Общественные науки
- Решения NCERT для класса 9 Математика Глава 1
- Решения NCERT Для класса 9 Математика 9 класса Глава 2
- Решения NCERT для математики 9 класса Глава 3
- Решения NCERT для математики 9 класса Глава 4
- Решения NCERT для математики 9 класса Глава 5
- Решения NCERT для математики 9 класса Глава 6
- Решения NCERT для Математика 9 класса Глава 7
- Решения NCERT для математики 9 класса Глава 8
- Решения NCERT для математики 9 класса Глава 9
- Решения NCERT для математики 9 класса Глава 10
- Решения NCERT для математики 9 класса Глава 11
- Решения NCERT для Математика 9 класса Глава 12
- Решения NCERT для математики 9 класса Глава 13
- Решения NCERT для математики 9 класса Глава 14
- Решения NCERT для математики класса 9 Глава 15
- Решения NCERT для науки 9 класса Глава 1
- Решения NCERT для науки 9 класса Глава 2
- Решения NCERT для класса 9 Наука Глава 3
- Решения NCERT для 9 класса Наука Глава 4
- Решения NCERT для 9 класса Наука Глава 5
- Решения NCERT для 9 класса Наука Глава 6
- Решения NCERT для 9 класса Наука Глава 7
- Решения NCERT для 9 класса Научная глава 8
- Решения NCERT для 9 класса Научная глава
- Научные решения NCERT для 9 класса Научная глава 10
- Научные решения NCERT для 9 класса Научная глава 12
- Научные решения NCERT для 9 класса Научная глава 11
- Решения NCERT для 9 класса Научная глава 13
- Решения NCERT для 9 класса Научная глава 14
- Решения NCERT для класса 9 Science Глава 15
- Решения NCERT для класса 10 Общественные науки
- Решения NCERT для математики класса 10 Глава 1
- Решения NCERT для математики класса 10 Глава 2
- решения NCERT для математики класса 10 глава 3
- решения NCERT для математики класса 10 глава 4
- решения NCERT для математики класса 10 глава 5
- решения NCERT для математики класса 10 глава 6
- решения NCERT для математики класса 10 Глава 7
- решения NCERT для математики класса 10 глава 8
- решения NCERT для математики класса 10 глава 9
- решения NCERT для математики класса 10 глава 10
- решения NCERT для математики класса 10 глава 11
- решения NCERT
Ниже приведен список калькуляторов объема для нескольких распространенных фигур. Пожалуйста, заполните соответствующие поля и нажмите кнопку «Рассчитать».
Sphere Volume Calculator
Калькулятор объема конуса
Cube Volume Calculator
Калькулятор объема цилиндра
Прямоугольный калькулятор объема бака
Калькулятор объема капсулы
Калькулятор объема сферической крышки
Пожалуйста, укажите любые два значения ниже для расчета.
Конус Frustum Объем Калькулятор
Ellipsoid Volume Calculator
Калькулятор объема квадратной пирамиды
Tube Volume Calculator
Калькулятор площади поверхности | Калькулятор площади
Объем — это количественное определение трехмерного пространства, которое занимает вещество.Единицей СИ для объема является кубический метр или м 3 . По общему правилу объем контейнера, как правило, зависит от его вместимости и количества жидкости, которое он способен удерживать, а не от объема пространства, которое вытесняет реальный контейнер. Объемы многих форм могут быть рассчитаны с помощью четко определенных формул. В некоторых случаях более сложные формы могут быть разбиты на их более простые совокупные формы, а сумма их объемов используется для определения общего объема. Объемы других, даже более сложных форм, можно рассчитать с помощью интегрального исчисления, если для границы формы существует формула.Помимо этого, формы, которые не могут быть описаны известными уравнениями, могут быть оценены с использованием математических методов, таких как метод конечных элементов. В качестве альтернативы, если плотность вещества известна и является однородной, объем можно рассчитать, используя его вес. Этот калькулятор вычисляет объемы для некоторых наиболее распространенных простых форм.
Сфера
Сфера — это трехмерный аналог двумерного круга. Это идеально круглый геометрический объект, который математически представляет собой набор точек, которые равноудалены от данной точки в ее центре, где расстояние между центром и любой точкой на сфере равно радиусу r .Скорее всего, наиболее известным сферическим объектом является идеально круглый шар. В математике существует различие между шаром и сферой, где шар состоит из пространства, ограниченного сферой. Независимо от этого различия шар и сфера имеют одинаковый радиус, центр и диаметр, и их объемы одинаковы. Как и в случае с кругом, самый длинный отрезок линии, соединяющий две точки сферы через ее центр, называется диаметром d . Уравнение для расчета объема сферы приведено ниже:
EX: Клэр хочет заполнить идеально сферический водяной шар радиусом 0.15 футов с уксусом, чтобы использовать его в борьбе с ее заклятым врагом Хильдой в эти выходные. Необходимый объем уксуса может быть рассчитан с использованием приведенного ниже уравнения:
объем = 4/3 × π × 0,15 3 = 0,141 фут 3
Конус
Конус — это трехмерная форма, которая плавно сужается от своего обычно круглого основания к общей точке, называемой вершиной (или вершиной). Математически конус формируется аналогично кругу с помощью набора отрезков, соединенных с общей центральной точкой, за исключением того, что центральная точка не входит в плоскость, которая содержит окружность (или какую-либо другую базу).На этой странице рассматривается только случай конечного правого кругового конуса. Конусы, состоящие из полулиний, некруглых оснований и т. Д., Которые простираются бесконечно, не будут рассматриваться. Уравнение для расчета объема конуса выглядит следующим образом:
, где r — радиус, а h — высота конуса
EX: Беа намерена выйти из магазина мороженого, с трудом заработав 5 долларов. Хотя она предпочитает обычные сахарные рожки, вафельные рожки, несомненно, больше.Она определяет, что она предпочитает обычные сахарные шишки на 15% больше, чем вафельные, и должна определить, является ли потенциальный объем вафельного рожка на ≥ 15% больше, чем у сахарного рожка. Объем вафельного рожка с круглым основанием с радиусом 1,5 дюйма и высотой 5 дюймов можно рассчитать по приведенному ниже уравнению:
объем = 1/3 × π × 1,5 2 × 5 = 11,781 в 3
Bea также вычисляет объем сахарного рожка и находит, что разница составляет <15%, и решает приобрести сахарный рожок.Теперь все, что ей нужно сделать, это использовать свое ангельское, детское обращение, чтобы манипулировать посохом, чтобы опустошать контейнеры с мороженым в ее конус.
куб
Куб является трехмерным аналогом квадрата и представляет собой объект, ограниченный шестью квадратными гранями, три из которых встречаются в каждой из его вершин, и все они перпендикулярны своим соответствующим смежным граням. Куб является частным случаем многих классификаций форм в геометрии, включая квадратный параллелепипед, равносторонний кубоид и правый ромбоэдр.Ниже приведено уравнение для расчета объема куба:
Объем = 3
где a — длина ребра куба
EX: Боб, который родился в штате Вайоминг (и никогда не покидал штат), недавно посетил свою исконную родину в штате Небраска. Боб, пораженный великолепием штата Небраска и окружающей средой, непохожий на то, что он испытывал ранее, знал, что ему нужно взять с собой часть Небраски. У Боба кубический чемодан с длиной ребра 2 фута, и он рассчитывает объем почвы, который он может взять с собой домой, следующим образом:
объем = 2 3 = 8 футов 3
Цилиндр
Цилиндр в его простейшей форме определяется как поверхность, образованная точками на фиксированном расстоянии от заданной оси прямой линии.Однако в общем использовании «цилиндр» относится к правому круглому цилиндру, где основания цилиндра представляют собой окружности, соединенные через их центры осью, перпендикулярной плоскостям его оснований, с заданной высотой h и радиусом r . Уравнение для расчета объема цилиндра приведено ниже:
объем = πr 2 ч
где r — радиус, а h — высота резервуара
EX: Келум хочет построить замок из песка в гостиной своего дома.Поскольку он является твердым сторонником переработки отходов, он извлек три цилиндрических бочки с места незаконного сброса и очистил химические отходы от бочек, используя моющее средство для мытья посуды и воду. Каждый из бочек имеет радиус 3 фута и высоту 4 фута, и Caelum определяет объем песка, который может вместить каждый, используя уравнение ниже:
объем = π × 3 2 × 4 = 113,097 футов 3
Он успешно строит замок из песка в своем доме, и в качестве дополнительного бонуса ему удается экономить электроэнергию при ночном освещении, так как его замок из песка светится ярко-зеленым в темноте.
Прямоугольный резервуар
Прямоугольный резервуар представляет собой обобщенную форму куба, где стороны могут иметь различную длину. Он ограничен шестью гранями, три из которых встречаются в его вершинах, и все они перпендикулярны их соответствующим смежным граням. Уравнение для расчета объема прямоугольника показано ниже:
объем = длина × ширина × высота
EX: Дарби любит торт. Она ходит в спортзал по 4 часа в день, каждый день, чтобы компенсировать свою любовь к пирогу.Она планирует отправиться в поход по тропе Калалау в Кауаи, и, хотя она очень подходит, Дарби беспокоится о своей способности завершить тропу из-за отсутствия пирога. Она решает упаковать только самое необходимое и хочет наполнить свою идеально прямоугольную пачку длиной, шириной и высотой 4 фута, 3 фута и 2 фута соответственно, тортиком. Точный объем торта, который она может поместить в свою пачку, рассчитывается ниже:
объем = 2 × 3 × 4 = 24 фута 3
Капсула
Капсула представляет собой трехмерную геометрическую форму, состоящую из цилиндра и двух полусферических концов, где полусфера представляет собой половину сферы.Отсюда следует, что объем капсулы можно рассчитать путем объединения уравнений объема для сферы и правого круглого цилиндра:
= 2 ч + | № 3 = № 2 ( | р + ч) |
, где r — радиус, а h — высота цилиндрической части
EX: Учитывая капсулу с радиусом 1,5 фута и высотой 3 фута, определите объем расплавленного молочного шоколада, который Джо может нести в капсуле времени, которую он хочет похоронить для будущих поколений, на своем пути самопознания через Гималаи:
объем = π × 1.5 2 × 3 + 4/3 × π × 1,5 3 = 35,343 фута 3
Сферическая крышка
Сферическая крышка — это часть сферы, которая отделена от остальной части сферы плоскостью. Если плоскость проходит через центр сферы, сферическая крышка называется полусферой. Существуют и другие различия, в том числе сферический сегмент, где сфера сегментирована с двумя параллельными плоскостями и двумя разными радиусами, где плоскости проходят через сферу. Уравнение для расчета объема сферического колпачка получено из уравнения сферического сегмента, где второй радиус равен 0.По отношению к сферической крышке, показанной в калькуляторе:
Учитывая два значения, калькулятор вычисляет третье значение и объем. Уравнения для преобразования высоты в радиусы приведены ниже:
Дано r и R : h = R ± √R 2 — r 2
где r — радиус основания, R — радиус сферы, а h — высота сферического колпачка
EX: Джек действительно хочет победить своего друга Джеймса в игре в гольф, чтобы произвести впечатление на Джилл, и вместо того, чтобы практиковать, решает саботировать мяч для гольфа Джеймса.Он отсекает идеальную сферическую крышку от верхней части мяча для гольфа Джеймса, и ему необходимо рассчитать объем материала, необходимый для замены сферической крышки и исказить вес мяча для гольфа Джеймса. Учитывая, что мяч для гольфа Джеймса имеет радиус 1,68 дюйма, а высота сферической крышки, которую Джек отрезал, составляет 0,3 дюйма, объем можно рассчитать следующим образом:
объем = 1/3 × π × 0,3 2 (3 × 1,68–0,3) = 0,447 в 3
К сожалению для Джека, Джеймс случайно получил новую партию шаров за день до их игры, и все усилия Джека были напрасны.
Конический усеченный
Коническая усеченная часть — это часть твердого тела, которая остается при разрезании конуса двумя параллельными плоскостями. Этот калькулятор рассчитывает объем для правого круглого конуса специально. Типичные конические усеченные контуры, встречающиеся в повседневной жизни, включают абажуры, ведра и некоторые стаканы. Объем правого конического усеченного конуса рассчитывается по следующему уравнению:
объем = | πh (r 2 + rR + R 2 ) |
, где r и R — радиусы оснований, h — высота усеченного конуса
EX: Bea успешно приобрела немного мороженого в сахарном конусе и только что съела его таким образом, чтобы мороженое было упаковано внутри конуса, а уровень поверхности мороженого был параллелен плоскости отверстия конуса.Она собирается съесть свой конус и оставшееся мороженое, когда ее брат схватил ее конус и откусил часть нижней части конуса, которая идеально параллельна ранее единственному отверстию. Теперь у Bea осталось мороженое с утечкой в правом конусе, и она должна рассчитать объем мороженого, которое она должна быстро съесть, учитывая высоту усеченного конуса 4 дюйма, с радиусами 1,5 дюйма и 0,2 дюйма:
объем = 1/3 × π × 4 (0,2 2 + 0,2 × 1,5 + 1,5 2 ) = 10.849 в 3
Эллипсоид
Эллипсоид является трехмерным аналогом эллипса и является поверхностью, которая может быть описана как деформация сферы посредством масштабирования элементов направления. Центр эллипсоида — это точка, в которой пересекаются три попарно перпендикулярных оси симметрии, а отрезки, ограничивающие эти оси симметрии, называются основными осями. Если все три имеют различную длину, эллипсоид обычно описывается как трехосный.Уравнение для расчета объема эллипсоида выглядит следующим образом:
, где a , b и c являются длинами осей
EX: Хабат любит есть только мясо, но его мать настаивает на том, что он потребляет слишком много, и позволяет ему есть столько мяса, сколько он может вместить в булочку эллипсоидной формы. Таким образом, Xabat выдавливает булочку, чтобы максимизировать объем мяса, которое он может поместить в свой бутерброд. Учитывая, что его булочка имеет длину оси 1.5 дюймов, 2 дюйма и 5 дюймов, Xabat рассчитывает объем мяса, которое он может поместить в каждую выдолбленную булочку, следующим образом:
объем = 4/3 × π × 1,5 × 2 × 5 = 62,832 в 3
Квадратная пирамида
Геометрическая пирамида — это трехмерное тело, образованное путем соединения полигонального основания с точкой, называемой его вершиной, где многоугольник — это форма в плоскости, ограниченной конечным числом отрезков прямых линий. Существует много возможных многоугольных оснований для пирамиды, но квадратная пирамида — это пирамида, в которой основание — это квадрат.Другое различие, связанное с пирамидами, касается расположения вершины. Правая пирамида имеет вершину, которая находится прямо над центром тяжести своего основания. Независимо от того, где находится вершина пирамиды, пока ее высота измеряется как перпендикулярное расстояние от плоскости, содержащей основание, до ее вершины, объем пирамиды можно записать как:
Обобщенный объем пирамиды:
Как определить объем и площадь поверхности цилиндра?
Цилиндр — это трехмерное тело с конгруэнтными основаниями в паре параллельных плоскостей. Эти основания являются конгруэнтными кругами. Ось цилиндра представляет собой отрезок с концами в центрах оснований.
Высота или высота цилиндра, обозначенная $ h $, представляет собой перпендикулярное расстояние между его круглыми основаниями. Существует два типа цилиндров:
- Правый цилиндр; Наклонный цилиндр
- .
Работа с объемом и площадью поверхности цилиндра с шагами показывает полный пошаговый расчет для определения площади и объема поверхности цилиндра с длиной его базового радиуса $ 5 \; в $ и высотой $ 10 \; в $ с использованием формул площади и объема. Для любые другие значения длины базового радиуса и высоты цилиндра, просто укажите два положительных вещественных числа и нажмите «Создать работу». кнопка. Учащиеся начальной школы могут использовать этот цилиндрический калькулятор для создания работы, проверки результатов определения площади поверхности и объема трехмерных тел или эффективного выполнения своих домашних заданий.
,