Схемы самодельных ЗУ для автомобильных АКБ на TL494
Ранее мы опубликовали схемы зарядных устройств для автомобильного аккумулятора.
Сегодня рассмотрим несколько схем с использованием широко распространённой специализированной мс TL494.
Зарядное устройство, рассматриваемое ниже собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки.
Для управления ключевым транзистором используется микросхема TL494 (KIA494, KA7500B, К1114УЕ4). Её можно часто встретить в компьютерных БП. Устройство обеспечивает регулировку тока заряда в пределах 1 … 6 А (10А max) и выходного напряжения 2 … 20 В.
Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 — VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 … 400 см2. Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы.
Так как в процессе работы происходит намагничивание магнитопровода постоянным током — из-за насыщения индуктивность его сильно зависит от протекающего тока. С целью уменьшения влияния подмагничивания на индуктивность, предпочтительней использовать альсиферовые магнитопроводы с малой магнитной проницаемостью, насыщение которых происходит при значительно больших магнитных полях, чем у ферритов.
В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров 3УСЦТ или аналогичный. Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,2 … 1,0 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 … 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается. Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации — необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора C3 или установить дроссель большего типоразмера.
При отсутствии силового транзистора структуры p-n-p в схеме можно использовать мощные транзисторы структуры n-p-n, как показано на рисунке, ниже.
В качестве диода VD5 перед дросселем L1 можно использовать любые доступные диоды с барьером Шоттки, рассчитанными на ток не менее 10А и напряжение 50В. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое. Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы.
Настройка схемы зарядного устройства
В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы.
Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 … 100 кОм.
Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.
Монтаж ЗУ
Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор. Монтажная схема подключения печатной платы приведена на рисунке справа. В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В и тока 6А, то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора также можно уменьшить до 100 .. 200 см2.
Это зарядное устройство можно использовать также и как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу.
Схема ЗУ на мс TL494 с нормализацией напряжения шунта
Ниже, представлен вариант схемы зарядного устройства для автомобильных аккумуляторов, который, несмотря на большую сложность, проще в настройке благодаря использованию операционного усилителя для нормализации напряжения токоизмерительного шунта.
В этой схеме в качестве шунта R13 можно использовать практически любой проволочный резистор сопротивлением 0,01 … 0,1 Ом и мощностью 1 … 5 Вт. Требуемое для нормальной регулировки тока в нагрузке напряжение 0 … 0,6 В на выводе 1 микросхемы DA1 достигается соотношением сопротивлений резисторов R9 и R11. Сопротивления резисторов R11 и R12 должны быть одинаковыми и быть в пределах 0,5 … 100 кОм. Сопротивление резистора R9 подсчитывают по формуле: R9 (Ом)= 0,1* I вых.max (A) * R11 (Ом) / I вых.max (А) * R13 (Ом). Переменный резистор R2 может быть любым подходящим, с сопротивлением 1 … 100 кОм. После выбора R2 рассчитывают требуемое значение сопротивления резистора R4, которое определяется по формуле: R4(кОм) = R2 (кОм) * (5 В- 0,1 * I вых. max (A)) / 0,1 * I вых. max (A). Переменный резистор R14 также может быть любым подходящим с сопротивлением 1 … 100 кОм. Сопротивление резистора R15 определяет верхнюю границу регулировки выходного напряжения. Номинал этого резистора должен быть таким, чтобы при максимальном выходном напряжении на движке резистора, в нижнем по схеме положении, напряжение составляло 5,00В. На рисунке показаны номиналы для максимального выходного тока 6А и максимального напряжения 15 В, но предельные значения этих параметров легко пересчитать согласно выше приведённым формулам.
Конструкция и монтаж
Конструктивно основная часть схемы выполнена на печатной плате размером 45 х 58 мм. Остальные элементы: силовой трансформатор, диодный мост VD2, транзистор VT1, диод VD5, дроссель Др1, электролитические конденсаторы С2, С7, переменные резисторы и предохранители размещены методом объёмного монтажа в корпусе зарядного устройства. Такой подход позволил использовать в схеме разные по габаритам элементы и был вызван необходимостью тиражирования конструкции.
Требования к элементной базе описаны выше. Правильно собранная схема начинает работать сразу и, практически, не требует наладки.
Эта схема также, как и предыдущая, может использоваться не только в качестве зарядного устройства , но и лабораторного блока питания с регулируемым ограничением выходного тока.
Источник:kravitnik.narod.ru
П О П У Л Я Р Н О Е:
— н а в и г а т о р —
Популярность: 5 210 просм.
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
www.mastervintik.ru
Зарядное устройство для автомобильного аккумулятора на TL494
Ещё одно зарядное устройство собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки. Для управления ключевым транзистором используется широко распространённая специализированная микросхема TL494 (KIA491, К1114УЕ4). Устройство обеспечивает регулировку тока заряда в пределах 1 … 6 А (10А max) и выходного напряжения 2 … 20 В.
Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 — VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 … 400 см2. Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы. В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров 3УСЦТ или аналогичный. Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,5 … 1,5 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 … 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается. Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации — необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора C3 или установить дроссель большего типоразмера. При отсутствии силового транзистора структуры p-n-p в схеме можно использовать мощные транзисторы структуры n-p-n, как показано на рисунке.
В качестве диода VD5 перед дросселем L1 желательно использовать любые доступные диоды с барьером Шоттки, рассчитанные на ток не менее 10А и напряжение 50В, в крайнем случае можно использовать среднечастотные диоды КД213 , КД2997 или подобные импортные. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое. Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы. В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы.
Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 … 100 кОм. Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.
Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор.
Монтажная схема подключения печатной платы приведена на рисунке ниже.
Варианты печатных плат в lay6
За печатки говорим спасибо в комментариях Demo
В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В и тока 6А, то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора также можно уменьшить до 100 .. 200 см2. Устройство может использоваться как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу и требует только подстройки.
Источник: http://shemotehnik.ru
shemu.ru
Автоматическое импульсное зарядное устройство на ИМС TL494
Универсальное зарядное устройство для любых типов аккумуляторных батарей
с номинальными напряжениями 1,5 — 24В и ёмкостью 0,3 — 200Ач.
Заряд аккумуляторной батареи — это химический процесс, в ходе которого аккумулятор принимает в себя часть электрической энергии, прибывающей из сетевой розетки. Обряд несложный, однако имеет нюансы и несколько отличается от церемонии зарядки воды денежными символами и звездой Эрцгаммы.
Наиболее широко распространены два способа заряда аккумуляторов: 1 — при постоянном зарядном токе и 2 — при постоянном напряжении.
Первый из них мы достаточно легко и непринуждённо реализовали в мощном бестрансформаторном ЗУ, описанным на странице
ссылка на страницу , второй — рассмотрим в рамках этой статьи.
Итак, заряд постоянным напряжением.
При данном способе напряжение на выходе ЗУ поддерживается постоянным в течении всего времени заряда.
В результате, в связи с постепенным увеличением внутреннего сопротивления батареи, зарядный ток убывает в течение процесса
от максимального до практически нулевого.
При этом, без специальных защитных схемных решений, сила тока в начальный момент заряда может достигать весьма опасных для АКБ
величин — 100-150% от номинальной ёмкости аккумулятора.
Чтобы батарея в этот момент не крякнула от неожиданности, в мощные зарядники обязательно вводят ограничитель тока
(≈ 50% ёмкости АКБ).
Стало быть, нам нужно серьёзно озадачиться устройством, выдающим в сухом остатке: регулируемое в диапазоне 1,5-24В постоянное напряжение,
выходной ток вплоть до 20А и содержащим узел защиты, ограничивающий этот ток величиной, заранее задаваемой юзером.
К тому же, при таких весомых мощностях повиснет в воздухе вопрос, касающийся параметра КПД, а также массогабаритных
характеристик зарядного устройства.
Исходя из сложившейся ситуации, делаем широкомасштабный вывод: блок питания должен быть импульсным, стабилизатор напряжения и регулятор тока — тоже.
Начнём с конца.
Схема электрическая принципиальная регулируемого стабилизатора напряжения с ограничителем тока.
Рис.1
В основе схемы стабилизатора лежит интегральная микросхема TL494, представляющая из себя ШИМ — контроллер, вполне комфортно себя чувствующий в схемах управления блоков питания.
При полном отсутствии желания выпендриться и бить себя по темечку, считая себя умнее создателей ИМС, было решено на 100% следовать схеме включения микросхемы, приведённой в качестве примера 10А блока питания в Datasheet-е производителя.
Частота колебаний внутреннего генератора, задаётся элементами R6, С2 и составляет 20кГц.
Внешний биполярный транзистор был заменён на мощный p-канальный полевик Т3, обладающий значительно более высоким параметром КПД при
работе в ключевых приложениях.
Двухтактный эмиттерный повторитель на транзисторах Т1-Т2 предназначен для прокачки значительной входной ёмкости полевого транзистора.
Делитель, образованный резисторами R9, R10, ограничивает максимальное напряжение Uзи Т3 на допустимом уровне -15В.
Как это всё работает?
Выходное напряжение (+Uвых) через делитель, образованный переменным резистором R13, поступает на неинвертирующий вход (1IN+)
встроенного в ИМС усилителя ошибки и сравнивается с опорным напряжением 1,5В, присутствующем на инвертирующем входе (1IN-).
Если это напряжение ниже опорного, контроллер даёт команду на увеличение длительности выходных импульсов, если выше — на уменьшение.
Таким образом происходит стабилизация выходного напряжения на уровне Uвых = 1,5×Kдел, где Kдел —
коэффициент деления переменника R13.
Таким образом, в верхнем (по схеме) положении ползунка R13 Kдел=1, и выходное напряжение зафиксируется на уровне 1,5В,
в нижнем — Kдел=∞, а это означает, что всё питающее напряжение через постоянно открытый ключ попадёт в нагрузку.
Теперь, что касается ограничения выходного тока.
Минусовой вывод нагрузки, как видно из схемы, подключается к земле не напрямую, а через резисторы мелкого номинала R16 (при выходных
токах до 2А), либо R15IIR16 (при токах 2-20А).
Ясен хроматограф, что напряжение, падающее на этих резисторах, будет прямо пропорционально протекающему через нагрузку току.
Далее это напряжение усиливается операционным усилителем DA2, а следом поступает на неинвертирующий вход (2IN+) второго усилителя ошибки,
где сравнивается с опорным напряжением 1В на инвертирующем входе (2IN-).
Последующий механизм реакции микросхемы на соотношение входного и опорного сигналов аналогичен предыдущему описанию,
за исключением того, что второй усилитель включён в режиме компаратора, и изменения выходного уровня происходят скачкообразно с частотой,
определяемой постоянной времени интегрирующей цепочки R25 С8.
Итак. Ограничение тока происходит в момент появления на выходе DA2 напряжения уровнем 1В. Переключаемые резисторы R17-R24, отвечающие за коэффициент усиления операционного усилителя, как раз и определяют момент появление этого выходного уровня, в зависимости от тока, протекающего через нагрузку.
Приведу пример. Допустим, нам надо ограничить ток в нагрузке значением 1А. При таком токе на резисторе R16 образуется напряжение
0,1(Ом)×1(А)=0,1(В), т.е. для получения напряжения на выходе операционника 1В, нам надо усилить это значение в 10 раз.
Выбираем переключателем R19.
DA2 у нас работает в неинвертирующем режиме, поэтому его Ku=1+91(кОм)/10(кОм)=10,1 раз.
С приемлемой точностью результат получен.
Поскольку мы с Вами задумали зарядное устройство, а не блок питания РЭА, к пульсациям на выходе устройства можно отнестись
вполне индифферентно, поверьте, точно также к ним отнесётся и подопытный АКБ. Поэтому решительно отказываемся от дросселя
номиналом 140мкГн, приведённом в Datasheet-е, в пользу моточного изделия индуктивностью 50мкГн, и так размеры кольца для 20-ти
амперных токов получатся весьма недетскими.
А именно. Без опасения загнать сердечник в насыщение следует использовать кольца
из распылённого железа типоразмера Т130 и материалов смесей 52 (салатовый/голубой), либо 40 (салатовый/жёлтый), либо
26 (жёлтый/белый), склеить их в количестве 3-ёх штук, намотать 15-18 витков вчетверо сложенных проводов диаметром 1,5мм.
Использовать низкочастотные ферриты без пропила для создания малого воздушного зазора — дело весьма распространённое среди «умельцев»,
но абсолютно бессмысленное.
Едем дальше. Переходим к схеме собственно самого источника питания, обеспечивающего нам 30-ти вольтовое напряжение при
токе нагрузки 20А.
Рис.2
Схемы, приведённые на Рис.2, обмусолены нами, истолкованы вдоль и поперёк на нескольких страницах, начиная с ссылка на страницу, поэтому ограничусь лишь описанием трансформатора Tr1.
Импульсный трансформатор намотан на низкочастотном ферритовом кольце 2000НМ размерами 40×25×22мм.
Первичная обмотка содержит 30 витков обмоточного провода диаметром 1,5мм,
Вторичная — 6 витков сложенных вдвое проводов диаметром 2мм, либо вчетверо сложенных проводов диаметром 1,5мм.
vpayaem.ru
Зарядное устройство для автомобильного аккумулятора на TL494
Ещё одно зарядное устройство собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки. Для управления ключевым транзистором используется широко распространённая специализированная микросхема TL494 (KIA491, К1114УЕ4). Устройство обеспечивает регулировку тока заряда в пределах 1 … 6 А (10А max) и выходного напряжения 2 … 20 В.
Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 — VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 … 400 см2. Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы. В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров 3УСЦТ или аналогичный. Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,5 … 1,5 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 … 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается. Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации — необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора C3 или установить дроссель большего типоразмера. При отсутствии силового транзистора структуры p-n-p в схеме можно использовать мощные транзисторы структуры n-p-n, как показано на рисунке.
В качестве диода VD5 перед дросселем L1 желательно использовать любые доступные диоды с барьером Шоттки, рассчитанные на ток не менее 10А и напряжение 50В, в крайнем случае можно использовать среднечастотные диоды КД213 , КД2997 или подобные импортные. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое. Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы. В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы.
Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 … 100 кОм. Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.
Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор.
Монтажная схема подключения печатной платы приведена на рисунке ниже.
Варианты печатных плат в lay6
За печатки говорим спасибо в комментариях Demo
В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В и тока 6А, то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора также можно уменьшить до 100 .. 200 см2. Устройство может использоваться как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу и требует только подстройки.
Источник: http://shemotehnik.ru
shemu.ru
Зарядное устройство на тиристоре с улучшенными характеристиками и с использованием микросхемы TL494
Рассказать в:Более современная конструкция несколько проще в изготовлении и настройке и содержит доступный силовой трансформатор с одной вторичной обмоткой, а регулировочные характеристики выше , чем у предыдущей схемы.Предлагаемое устройство имеет стабильную плавную регулировку действующего значения выходного тока в пределах 0,1 … 6А, что позволяет заряжать любые аккумуляторы, а не только автомобильные. При зарядке маломощных аккумуляторов желательно последовательно в цепь включить балластный резистор сопротивлением несколько Ом или дроссель, т.к. пиковое значение зарядного тока может быть достаточно большим из-за особенностей работы тиристорных регуляторов. С целью уменьшения пикового значения тока зарядки в таких схемах обычно применяют силовые трансформаторы с ограниченной мощностью, не превышающей 80 — 100 Вт и мягкой нагрузочной характеристикой, что позволяет обойтись без дополнительного балластного сопротивления или дросселя. Особенностью предлагаемой схемы является необычное использование широко распространённой микросхемы TL494 (KIA494, К1114УЕ4). Задающий генератор микросхемы работает на низкой частоте и синхронизирован с полуволнами сетевого напряжения с помощью узла на оптроне U1 и транзисторе VT1, что позволило использовать микросхему TL494 для фазового регулирования выходного тока. Микросхема содержит два компаратора, один из которых используется для регулирования выходного тока, а второй используется для ограничения выходного напряжения, что позволяет отключить зарядный ток по достижению на аккумуляторе напряжения полной зарядки ( для автомобильных аккумуляторов Uмах = 14,8 В) . На ОУ DA2 собран узел усилителя напряжения шунта для возможности регулирования тока зарядки. При использовании шунта R14 с другим сопротивлением потребуется подбор резистора R15. Сопротивление должно быть таким, чтобы при максимальном выходном токе не наблюдалось насыщение выходного каскада ОУ. Чем больше сопротивление R15, тем меньше минимальный выходной ток, но уменьшается и максимальный ток за счёт насыщения ОУ. Резистором R10 ограничивают верхнюю границу выходного тока. Основная часть схемы собрана на печатной плате размером 85 х 30 мм (см. рисунок).Конденсатор С7 напаян прямо на печатные проводники. Чертёж печатной платы в натуральную величину можно скачать здесь.В качестве измерительного прибора использован микроамперметр с самодельной шкалой, калибровка показаний которого производится резисторами R16 и R19. Можно использовать цифровой измеритель тока и напряжения, как показано в схеме зарядного с цифровой индикацией. Следует иметь ввиду, что измерение выходного тока таким прибором производится с большой погрешностью из-за его импульсного характера, но в большинстве случаев это несущественно. В схеме можно применять любые доступные транзисторные оптроны, например АОТ127, АОТ128. Операционный усилитель DA2 можно заменить практически любым доступным ОУ , а конденсатор С6 может быть исключён, если ОУ имеет внутреннюю частотную коррекцию. Транзистор VT1 можно заменить на КТ315 или любой маломощный. В качестве VT2 можно использовать транзисторы КТ814 В, Г; КТ817В, Г и другие. В качестве тиристора VS1 может использоваться любой доступный с подходящими техническими характеристиками, например отечественный КУ202, импортные 2N6504 … 09, C122(A1) и другие. Диодный мост VD7 можно собрать из любых доступных силовых диодов с подходящими характеристиками.На втором рисунке показана схема внешних подключений печатной платы. Наладка устройства сводится к подбору сопротивления R15 под конкретный шунт, в качестве которого можно применить любые проволочные резисторы сопротивлением 0,02 … 0,2 Ом, мощность которых достаточна для длительного протекания тока до 6 А. После настройки схемы подбирают R16, R19 под конкретный измерительный прибор и шкалу.
Раздел: [Зарядные устройства (для авто)]
Сохрани статью в:
Оставь свой комментарий или вопрос:
www.cavr.ru
Зарядное из АТ блока питания 200 Вт на TL494
При переделке некоторых старых блоков АТ в зарядные устройства, можно столкнуться с некоторыми проблемами, в которых новичку тяжело разобраться. Мы попытаемся сегодня уделить немного времени таким моментам и расскажем, как можно сделать зарядное из АТ блока питания 200 Вт на основе ШИМ TL494. Опытом переделки поделится с вами Ильсур Валитов с Ульяновска.
Зарядное из АТ блока питания 200 Вт на TL494
Немножко теории. ШИМ TL494 был, есть и будет популярен среди радиолюбителей, на его основе очень часто встречаются как старые АТ блоки, так и современные АТХ. Вся суть переделок подобных БП заключается в корректировке режима работы TL494 для поднятия выходного напряжения блока до 14,4 В.
Если смотреть типовую схему включения TL494, то выходное напряжение блока будет зависеть от делителя, состоящего с резисторов R8 и R9. Увеличивая сопротивление R8, можно увеличивать и выходное напряжение БП. Проще говоря, ШИМ будет стараться поддерживать опорное напряжение 2,5 В на этом делителе, к которому подключена 1-я ножка TL494.
Все было бы хорошо, но существуют АТ блоки, где такой делитель подключен только к шине + 5 В.
В таком блоке питания получается, что стабилизирована только шина +5 В. Если мы, с помощью резистора R7 (см. уже схему блока) увеличивая его сопротивление, добьемся выходного напряжения 14,4 В на шине +12 В, то при подключении АКБ зарядный ток будет составлять лишь 1-1,5 А. Этого явно мало, т.к. блок способен выдать больше. Для этого нам нужно стабилизировать шину +12 В, к которой будем подключать АКБ.
Выпаиваем R7 (нумерация деталей на схеме не совпадает с нумерацией на плате, но номиналы деталей соответствуют схеме).
Вместо него устанавливаем подстроечный резистор. Ножку резистора, которая шла на шину +5 В, подключаем к шине +12 В.
Подстроечный резистор настраиваем на 24 кОм, т.к. при таком его сопротивлении TL494 необходимо будет подать 14,4 В на выход БП, чтобы на делителе получилось 2,5 В.
Теперь с помощью подстроечного резистора можно немного откорректировать выходное напряжение.
Зарядное из АТ блока питания готово. Ну и, конечно, финальное фото процесса зарядки. При подключении сильно посаженной АКБ зарядные токи могут достигать 5 -7 А и выше, по мере заряда батареи ток будет падать.
Процесс зарядки можно будет считать оконченным, когда зарядный ток снизится до 0,5 А.
Вконтакте
Одноклассники
comments powered by HyperCommentsdiodnik.com
Как сделать зарядное устройство для 12В свинцово-кислотных аккумуляторов из компьютерного БП ATX.
Как сделать зарядное устройство для 12В свинцово-кислотных аккумуляторов из компьютерного БП ATX.
Скопилось у меня много компьютерных БП, отремонтированных в качестве тренировки этого процесса, но для современных компьютеров уже слабоватых. Что с ними делать?
Решил несколько переделать в ЗУ для зарядки 12В автомобильных аккумуляторов.
Итак: начали.
Первым мне подвернулся под руку Linkworld LPT2-20. У этого зверька оказался ШИМ на м/с Linkworld LPG-899. Посмотрел даташит, схему БП и понял – элементарно!
Что оказалось просто шикарно – она питается от 5VSB, т.е наши переделки никак не повлияют на режим её работы. Ноги 1,2,3 используются для контроля выходных напряжений 3,3В, 5В и 12В соответственно в пределах допустимых отклонений. 4-я нога тоже является входом защиты и используется для защиты от отклонений -5В, -12В. Нам все эти защиты не просто не нужны, а даже мешают. Поэтому их надо отключить.
По пунктам:
- Перерезать дорожку идущую от канала 5В к 2-й ноге м/с и её обвязке и соединить её с +5VSB.
- выпаять всю обвязку 1-й и 3-й ноги м/с.
- выпаять детали через которые 4-я нога была связана с -5В и -12В, остальные трогать НЕ НАДО.
- выпаять детали делителя на 16-й ноге (все резисторы которые к ней подходят)
- Если будете оставлять канал 5В (зачем может пригодиться скажу далее), замените нагрузочный резистор на выходе этого канала с 10Ом на 15Ом аналогичного размера (мощности). Ибо после переделки там будет уже 6В и ему станет слишком жарко J
- Теперь можно демонтировать все детали каналов 3,3В -5В и -12В, а также и 5В если вы его решите не оставлять.
- Также выпаять все провода выходящие из БП кроме 3-х черных и 3-х желтых.
Стадия разрушения на этом окончена, пора переходить к созиданию.
- Согласно схеме на Рис.1 смонтировать делитель для 1-й и 3-й ноги м/с из резисторов R1, R3 и R2. Я это сделал в свободных дырках оставшихся от удаленных деталей. Теперь защита будет «довольна» и не будет нам мешать. Вот так это выглядело на этом этапе:
- Замкнуть 9-ю ногу м/с на землю или сделать это через выключатель если сетевого нет или вам его недостаточно. Это действие обеспечивает запуск БП (а теперь, без 5 минут, зарядного), PS-ON — так сказать.
- Далее (на схеме не обозначено), но очень рекомендую нагрузить канал 12В хотя бы на 0,5А. Чем угодно – лампочкой, резисторами или и тем и другим одновременно. Это нужно для адекватной работы БП на холостом ходу (хотя слабенькие БП, типа этого, могут обойтись штатным нагрузочным резистором).
- Теперь восстанавливаем делитель на 16-й ноге (R4, R6 и R12 по схеме).
- Включаем БП (лучше через лампочку на 60-100Вт вместо предохранителя) и меряем напряжение в бывшем 12В канале. Если необходимо подбираем резистор R12 до получения 14,35-14,4В (ну или ещё большего если вам покажется мало, хотя я считаю именно это значение наиболее правильным). Кроме того, можно установить регулятор. Делается это так: сначала подбором R6 добиваемся 13,5-14В на выходе, затем последовательно с ним ставим переменный резистор на 10кОм. Он обеспечит вам регулировку выходного напряжения от 13,5-14 до 14,9-15,4В. Этого диапазона должно хватить для аккумулятора в любом состоянии.
По большому счету ЗУ у нас уже готово, но в нем нет ограничения зарядного тока (хотя защита от КЗ работает). Для того чтобы ЗУ не давало на аккумулятор столько «сколько влезет» – добавляем цепь на VT1, R5, C1, R8, R9, R10. Как она работает? Очень просто. Пока падение напряжения на R8 подаваемое на базу VT1 через делитель R9, R10 не превышает порог открывания транзистора – он закрыт и не влияет на работу устройства. А вот когда он начинает открываться, то к делителю на R4, R6, R12 добавляется ветка из R5 и транзистора VT1, меняя тем самым его параметры. Это приводит к падению напряжения на выходе устройства и, как следствие, к падению зарядного тока. При указанных номиналах, ограничение начинает работать примерно с 5А, плавно понижая выходное напряжение с ростом тока нагрузки. Настоятельно рекомендую эту цепь не выбрасывать из схемы, иначе, при сильно разряженном аккумуляторе ток может быть настолько большим, что сработает штатная защита, или вылетят силовые транзисторы, или шоттки. И зарядить свой аккумулятор вы не сможете, хотя сообразительные автолюбители догадаются на первом этапе включить автомобильную лампу между ЗУ и аккумулятором чтобы ограничить зарядный ток.
VT2, R11, R7 и HL1 занимается «интуитивной» индикацией тока заряда. Чем ярче горит HL1 – тем больше ток. Можно не собирать, если нет желания. Транзистор VT2 – должен быть обязательно германиевый, потому что падение напряжения на переходе Б-Э у него значительно меньше, чем у кремниевого. А значит, и открываться он будет раньше чем VT1.
Цепь из F1 и VD1, VD2 обеспечивает простейшую защиту от переполюсовки. Очень рекомендую сделать её или собрать другую на реле или чём-нибудь ещё. Вариантов в сети можно найти много.
А теперь о том, зачем нужно оставить канал 5В. Для вентилятора 14,4В многовато, особенно с учетом того что при такой нагрузке БП не греется вообще, ну кроме сборки выпрямителя, она немного греется. Поэтому, мы подключаем его к бывшему каналу 5В (сейчас там — около 6В), и он тихо и нешумно выполняет свою работу. Естественно, с питанием вентилятора есть варианты: стабилизатор, резистор и т.п. В дальнейшем некоторые из них мы увидим.
Всю схему я свободно смонтировал на освобожденном от ненужных деталей месте, не делая никаких плат, с минимумом дополнительных соединений. Выглядело это всё после сборки так:
В итоге, что мы имеем?
Получилось ЗУ с ограничением максимального зарядного тока (достигается уменьшением подаваемого на аккумулятор напряжения при превышении порога в 5А) и стабилизированным максимальным напряжением на уровне 14,4В, что соответствует напряжению в бортовой сети автомобиля. Поэтому, его можно смело использовать, не отключая аккумулятор от бортовой электроники. Это зарядное устройство можно смело оставлять без присмотра на ночь, батарея никогда не перегреется. К тому же оно почти бесшумное и очень лёгкое.
Если вам максимального тока в 5-7А маловато (ваш аккумулятор бывает часто сильно разряжен), можно легко увеличить его до 7-10А, заменив резистор R8 на 0,1Ом 5Вт. Во втором БП с более мощной сборкой по 12В именно так я и сделал:
Следующим подопытным у нас будет БП Sparkman SM-250W реализованный на широко известном и горячо любимом ШИМ TL494 (КА7500).
Переделка такого БП ещё проще, чем на LPG-899, так как в ШИМ TL494 нет никаких встроенных защит по напряжениям каналов, зато есть второй компаратор ошибки, который зачастую свободен (как и в данном случае). Схема оказалась практически один к одному со схемой PowerMaster. Её я и взял за основу:
План действий:
- Выпаиваем всё, что обведено или зачеркнуто на схеме Рис.3 розовым, и все провода. Должно получиться примерно так:
- Резистор R42 (по схеме, у вас может оказаться другим номером, так что будьте внимательны) заменяем на 10-11кОм. Включаем БП (желательно через лампу на 60-100Вт, на всякий случай) и меряем напряжение на выходе. Обратите внимание: БП должен запуститься сам, замыкать 4-ю ногу ШИМ на землю НЕ НАДО. Если вы это сделаете, то отключите защиту по току и при КЗ на выходе сможете наблюдать вылет силовых транзисторов и других элементов блока питания. Если напряжение не 14,35-14,45В, то подбором резисторов R44, R45 добиваетесь чтоб оно было в указанном диапазоне. Если этого недостаточно можно не сильно изменить и R42. В принципе на этом можете и закончить. Нет? Ааа…, вам нужно ограничение максимального зарядного тока как в варианте 1? Тогда продолжим. Изображен только фрагмен изменений в обвязке ШИМ. Это не значит что всё остальное вокруг него надо выпаять.
- В ШИМ TL494 имеется два встроенных усилителя ошибки, в данной схеме один из них не использовался, его мы и задействуем для ограничения максимального зарядного тока. Отключаем 15-ю ногу ШИМ от 13-й и 14-й, а16-ю ногу от земли. Можете дорожки перерезать, можете просто их отдельно выпаять, как вам нравится короче. Затем монтируем цепь из R5, C1, R7, R8, R9, R6 по схеме на Рис.4. При указанных номиналах БП больше 5А давать отказывается. При достижении порога, как и в первом случае, начинает падать выходное напряжение. Правда, есть и отличия, в данном варианте падение будет гораздо более резким. Фактически больше заданного тока, он не даст ни при каких обстоятельствах, напряжение упадет хоть до 0 (ну или почти). В то время, как в первом варианте, при достижении заданного порога напряжение снижается более плавно и не станет менее 2,5-3В даже если управляющий транзистор КТ361 откроется совсем. Но, вернемся к данной схеме. В режиме ограничения максимального тока возможно появление сверчков, убиваются подбором R5 и С1. Роль шунта (резистор R6 на схеме) на 0,005Ом у меня выполнял кусок медной проволоки длиной 2,5см, из телефонного кабеля. Изменение порога ограничения максимального тока достигается изменением номинала резистора R9 или R6. И предвосхищая вопрос: «зачем нужен R7?». Отвечу: «Не помню» J, очевидно что при разработке различных вариантов во время проектирования он был нужен в каком то из них. Но потом схема изменилась и теперь он, судя по всему, не играет никакой роли и вместо него можно ставить перемычку. Вот результат работы, испытание заряда реального аккумулятора от UPS, 12В 7А/ч. Напряжение 14,4В ток 0,44А. Пусть вас цифры тока не удивляют, он разряжен был не сильно.
- Вентилятор, как и в предыдущем случае, к бывшему каналу 5В. На провода крокодилы, землю платы заизолировать от корпуса. Защита от переполюсовки — аналогична. От КЗ щупов прекрасно защищает оставшаяся нетронутой штатная защита. Проверено неоднократно.
Это был, пожалуй, самый экономичный вариант. Выпаянных деталей у вас останется гораздо больше чем затраченных J. Особенно если учесть что сборка SBL1040CT была извлечена из канала 5В, а туда были впаяны диоды, в свою очередь добытые, с канала -5В. Все затраты состояли из крокодилов, светодиода и предохранителя. Ну, можно ещё ножки приделать для красоты и удобства.
Вот плата в полном сборе:
Если вас пугают манипуляции с 15 и 16-й ногами ШИМ, подбор шунта с сопротивлением в 0,005Ом, устранение возможных сверчков, можно переделать БП на TL494 и несколько другим способом.
Итак: наша следующая «жертва» — БП Sparkman SM-300W. Схема абсолютно аналогична варианту 2, но имеет на борту более мощную выпрямительную сборку по 12В каналу, более солидные радиаторы. Значит — с него мы возьмем больше, например 10А.
Этот вариант однозначен для тех схем, где ноги 15 и 16 ШИМ уже задействованы и вы не хотите разбираться – зачем и как это можно переделать. И вполне пригоден для остальных случаев.
Повторим в точности пункты 1 и 2 из второго варианта.
Канал 5В, в данном случае, я демонтировал полностью.
Далее собираем схему по Рис.5.
Чтобы не пугать вентилятор напряжением в 14,4В — собран узел на VT2, R9, VD3, HL1. Он не позволяет превышать напряжение на вентиляторе более чем 12-13В. Ток через VT2 небольшой, нагрев транзистора тоже, можно обойтись без радиатора.
С принципом действия защиты от переполюсовки и схемы ограничителя зарядного тока и вы уже знакомы, но вот место его подключения здесь — иное.
Управляющий сигнал с VT1 через R4 заведен на 4-ю ногу KA7500B (аналог TL494). На схеме не отображено, но там должен был остаться от оригинальной схемы резистор в 10кОм с 4-й ноги на землю, его трогать не надо.
Действует это ограничение так. При небольших токах нагрузки транзистор VT1 закрыт и на работу схемы никак не влияет. На 4-й ноге напряжение отсутствует, так как она посажена на землю через резистор. А вот когда ток нагрузки растет, падение напряжения на R6 и R7 соответственно тоже растет, транзистор VT1 начинает открываться и совместно с R4 и резистором на землю они образуют делитель напряжения. Напряжение на 4-й ноге возрастает, а так как потенциал на этой ноге, согласно описанию TL494, непосредственно влияет на максимальное время открытия силовых транзисторов, то ток в нагрузке уже не растет. При указанных номиналах порог ограничения составил 9,5-10А. Основное отличие от ограничения в варианте 1, несмотря на внешнюю похожесть, резкая характеристика ограничения, т.е. при достижении порога срабатывания, напряжение на выходе спадает быстро.
Вот этот вариант в готовом виде:
Кстати, эти зарядки можно использовать и в качестве источника питания для автомагнитолы, переноски на 12В и других автомобильных устройств. Напряжение стабилизировано, максимальный ток ограничен, спалить что-нибудь будет не так то просто.
Вот готовая продукция:
Переделка БП под зарядное по такой методике – дело одного вечера, но для себя любимого времени не жалко?
Тогда позвольте представить:
За основу взято БП Linkworld LW2-300W на ШИМ WT7514L (аналог уже знакомой нам по первому варианту LPG-899).
Ну что ж: демонтаж ненужных нам элементов осуществляем согласно варианту 1, с той лишь разницей, что канал 5В тоже демонтируем – он нам не пригодится.
Здесь схема будет более сложной, вариант с монтажом без изготовления печатной платы в данном случае – не вариант. Хотя и полностью от него мы отказываться не будем. Вот приготовленная частично плата управления и сама жертва эксперимента ещё не отремонтированная:
А вот она уже после ремонта и демонтажа лишних элементов, а на втором фото с новыми элементами и на третьем её обратная сторона с уже проклеенными прокладками изоляции платы от корпуса.
То, что обведено на схеме рис.6 зеленой линией – собрано на отдельной плате, остальное было собрано на освободившемся от лишних деталей месте.
Для начала попробую рассказать: чем это зарядное отличается от предыдущих устройств, а уж потом расскажу какие детали, за что отвечают.
- Включение зарядного происходит только при подключении к нему источника ЭДС (в данном случае аккумулятора), вилка при этом должна быть включена в сеть заблаговременно J.
- Если по каким-либо причинам напряжение на выходе превысит 17В или окажется менее 9В – ЗУ отключается.
- Максимальный ток заряда регулируется переменным резистором от 4 до 12А, что соответствует рекомендуемым токам заряда аккумуляторов от 35А/ч до 110А/ч.
- Напряжение заряда регулируется автоматически 14,6/13,9В, либо 15,2/13,9В в зависимости от выбранного пользователем режима.
- Напряжение питания вентилятора регулируется автоматически в зависимости от тока заряда в диапазоне 6-12В.
- При КЗ или переполюсовке срабатывает электронный самовосстанавливающийся предохранитель на 24А, схема которого, с незначительными изменениями, была заимствована из разработки почетного кота победителя конкурса 2010г Simurga. Скорость в микросекундах не мерил (нечем), но штатная защита БП дернуться не успевает – он гораздо быстрее, т.е. БП продолжает работать как ни в чём не бывало, только вспыхивает красный светодиод срабатывания предохранителя. Искр, при замыкании щупов практически не видно, даже при переполюсовке. Так что очень рекомендую, на мой взгляд эта защита лучшая, по крайней мере из тех что я видел (хотя и немного капризная на ложные срабатывания в частности, возможно придётся посидеть с подбором номиналов резисторов).
Теперь, кто за что отвечает:
- R1, C1, VD1 – источник опорного напряжения для компараторов 1, 2 и 3.
- R3, VT1 – цепь автозапуска БП при подключении аккумулятора.
- R2, R4, R5, R6, R7 – делитель опорных уровней для компараторов.
- R10, R9, R15 – цепь делителя защиты от перенапряжения на выходе о которой я упоминал.
- VT2 и VT4 с окружающими элементами – электронный предохранитель и токовый датчик.
- Компаратор OP4 и VT3 с резисторами обвязки – регулятор оборотов вентилятора, информация о токе в нагрузке, как видите, поступает от токового датчика R25, R26.
- И наконец, самое важное — компараторы с 1-го по 3-й обеспечивают автоматическое управление процессом заряда. Если аккумулятор достаточно сильно разряжен и хорошо «кушает» ток, ЗУ ведет заряд в режиме ограничения максимального тока установленного резистором R2 и равном 0,1С (за это отвечает компаратор ОР1). При этом, по мере заряда аккумулятора, напряжение на выходе зарядного будет расти и при достижении порога 14,6 (15,2), ток начнет уменьшаться. Вступает в работу компаратор ОР2. Когда ток заряда упадет до 0,02-0,03С (где С емкость аккумулятора а А/ч), ЗУ перейдет на режим дозаряда напряжением 13,9В. Компаратор OP3 используется исключительно для индикации, и никакого влияния на работу схемы регулировки не оказывает. Резистор R2 не просто меняет порог максимального тока заряда, но и меняет все уровни контроля режима заряда. На самом деле, с его помощью выбирается емкость заряжаемого аккумулятора от 35А/ч до 110А/ч, а ограничение тока это «побочный» эффект. Минимальное время заряда будет при правильном его положении, для 55А/ч примерно посередине. Вы спросите: «почему?», да потому что если, к примеру, при зарядке 55А/ч аккумулятора поставить регулятор в положение 110А/ч – это вызовет слишком ранний переход к стадии дозаряда пониженным напряжением. При токе 2-3А, вместо 1-1,5А, как задумывалось разработчиком, т.е. мной. А при выставлении 35А/ч будет мал начальный ток заряда, всего 3,5А вместо положенных 5,5-6А. Так что если вы не планируете постоянно ходить смотреть и крутить ручку регулировки, то выставляйте как положено, так будет не только правильнее, но и быстрее.
- Выключатель SA1 в замкнутом состоянии переводит ЗУ в режим «Турбо/Зима». Напряжение второй стадии заряда повышается до 15,2В, третья остается без существенных изменений. Рекомендуется для заряда при минусовых температурах аккумулятора, плохом его состоянии или при недостатке времени для стандартной процедуры заряда, частое использование летом при исправном аккумуляторе не рекомендуется, потому что может отрицательно сказаться на сроке его службы.
- Светодиоды, помогают ориентироваться, на какой стадии находится процесс заряда. HL1 – загорается при достижении максимально допустимого тока заряда. HL2 – основной режим заряда. HL3 – переход в режим дозаряда. HL4 – показывает что заряд фактически окончен и аккумулятор потребляет менее 0,01С (на старых или не очень качественных аккумуляторах до этого момента может и не дойти, поэтому ждать очень долго не стоит). Фактически аккумулятор уже хорошо заряжен после зажигания HL3. HL5 – загорается при срабатывании электронного предохранителя. Чтобы вернуть предохранитель в исходное состояние, достаточно кратковременно отключить нагрузку на щупах.
Что касается наладки. Не подключая плату управления или не запаивая в неё резистор R16 подбором R17 добиться напряжения 14,55-14,65В на выходе. Затем подобрать R16 таким, чтобы в режиме дозаряда (без нагрузки) напряжение падало до 13,8-13,9В.
Вот фото устройства в собранном виде без корпуса и в корпусе:
Вот собственно и всё. Зарядка была испытана на разных аккумуляторах, адекватно заряжает и автомобильный, и от UPS (хотя все мои зарядки заряжают любые на 12В нормально, потому что напряжение стабилизировано J). Но это побыстрее и ничего не боится, ни КЗ, ни переполюсовки. Правда, в отличие от предыдущих, в качестве БП использовать не получится (очень оно стремится управлять процессом и не хочет включаться при отсутствии напряжения на входе). Зато, его можно использовать в качестве зарядного для аккумуляторов резервного питания, вообще не отключая никогда. Заряжать будет в зависимости от степени разряда автоматически, а из-за малого напряжения в режиме дозаряда существенного вреда аккумулятору не принесет даже при постоянном включении. При работе, когда аккумулятор уже почти заряжен, возможен переход зарядного в импульсный режим заряда. Т.е. ток зарядки колеблется от 0 до 2А с интервалом от 1 до 6 секунд. Сначала, хотел было устранить это явление, но, почитав литературу – понял, что это даже хорошо. Электролит лучше перемешивается, и даже иногда способствует восстановлению потерянной емкости. Поэтому решил оставить так как есть.
Ну вот, попалось что-то новенькое. На этот раз LPK2-30 с ШИМ на SG6105. Такого «зверя» мне для переделки раньше мне ещё не попадалось. Но я вспомнил многочисленные вопросы на форуме и жалобы пользователей на проблемы по переделке блоков на этой м/с. И принял решение, хоть зарядка мне больше и не нужна, нужно победить эту м/с из спортивного интереса и на радость людям. А заодно и опробовать на практике, возникшую в моей голове идею оригинального способа индикации режима заряда.
Вот он, собственной персоной:
Начал, как обычно, с изучения описания. Обнаружил, что она похожа на LPG-899, но есть и некоторые отличия. Наличие 2-х встроенных TL431 на борту, вещь конечно интересная, но… для нас — несущественная. А вот отличия в цепи контроля напряжения 12В, и появление входа для контроля отрицательных напряжений, несколько усложняет нашу задачу, но в разумных пределах.
В результате раздумий и непродолжительных плясок с бубном (куда уж без них) возник вот такой проект:
Вот фото этого блока уже переделанного на один канал 14,4В, пока без платы индикации и управления. На втором его обратная сторона:
А это внутренности блока в сборе и внешний вид:
Обратите внимание, что основная плата была развернута на 180 градусов, от своего первоначального расположения, для того чтобы радиаторы не мешали монтажу элементов передней панели.
В целом это немного упрощённый вариант 4. Разница заключается в следующем:
- В качестве источника для формирования «обманных» напряжений на входах контроля было взято 15В с питания транзисторов раскачки. Оно в комплекте с R2-R4 делает всё необходимое. И R26 для входа контроля отрицательных напряжений.
- Источником опорного напряжения для уровней компаратора было взято напряжение дежурки, оно же питание SG6105. Ибо, большая точность, в данном случае, нам не нужна.
- Регулировка оборотов вентилятора тоже была упрощена.
А вот индикация была немного модернизирована (для разнообразия и оригинальности). Решил сделать по принципу мобильного телефона: банка наполняющаяся содержимым. Для этого я взял двухсегментный светодиодный индикатор с общим анодом (схеме верить не надо – не нашёл в библиотеке подходящего элемента, а рисовать было лень L), и подключил как показано на схеме. Получилось немного не так как задумывал, вместо того чтобы средние полоски «g» при режиме ограничения тока заряда гасли, вышло, что они — мерцают. В остальном — всё нормально.
Индикация выглядит так:
На первом фото режим заряда стабильным напряжением 14,7В, на втором – блок в режиме ограничения тока. Когда ток станет достаточно низким, у индикатора загорятся верхние сегменты, и напряжение на выходе зарядного упадёт до 13,9В. Это можно увидеть на фото приведённом немного выше.
Так как напряжение на последней стадии всего 13,9В можно спокойно дозаряжать аккумулятор сколь угодно долго, вреда ему это не принесёт, потому что генератор автомобиля обычно даёт большее напряжение.
Естественно, в этом варианте можно использовать и плату управления из варианта 4. Обвязку GS6105 только нужно сделать так, как здесь.
Да, чуть не забыл. Резистор R30 устанавливать именно так — совсем не обязательно. Просто, у меня никак не выходило подобрать номинал впараллель к R5 или R22 чтобы получить на выходе нужное напряжение. Вот и вывернулся таким… нетрадиционным образом. Можно просто подобрать номиналы R5 или R22, как я делал в других вариантах.
Как видите, при правильном подходе, почти любой БП АТХ можно переделать в то, что вам нужно. Если будут новые модели БП и нужда в зарядках, то возможно будет и продолжение.
Кота от всего сердца поздравляю с юбиелеем! В его честь, кроме статьи, ещё был заведён новый жилец — очаровательная серая киска Маркиза.
www.radiokot.ru