Фазорезка принцип работы: Регуляторы скорости вращения вентиляторов

Регуляторы скорости вращения вентиляторов

Как выбрать Как смонтировать или подключить Как это работает Обзоры, релизы, тесты Энергосбережение в быту Это интерестно

Способы регулирования скорости вращения вентиляторных двигателей

Ступенчатые регуляторы частоты вращения с использованием автотрансформаторов

Тиристорные (симисторные) регуляторы скорости вращения

Электронный автотрансформатор

Сравнение регуляторов частоты вращения вентилятора

Способы регулирования скорости вращения вентиляторных двигателей

При использовании вентиляторов часто возникает необходимость регулирования частоты вращения. В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума, настроить необходимую производительность притока или вытяжки.

На настоящий момент широко распространены способы регулирования частоты вращения при помощи изменения электрических параметров питания вентилятора:

  • изменение напряжения питания двигателя;
  • изменение частоты питающего напряжения.

Регулирование напряжением осуществляется понижением питающего напряжения вентилятора. Преимуществом регулирования частоты вращения вентилятора изменением напряжения питания в относительно невысокой стоимости устройств, работающих по такому принципу. Известны следующие виды устройств для регулирования оборотов вентилятора при помощи понижения напряжения питания:

  • Ступенчатые регуляторы частоты вращения с использованием автотрансформаторов;
  • Тиристорные регуляторы скорости вращения;
  • Электронные автотрансформаторы.

Регулирование скорости понижением напряжения связано с изменением, так называемого, скольжения двигателя. При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя. При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности. Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

Регулирование вентилятора частотой питающего тока возможно осуществить при помощи частотного привода. У частотных приводов много преимуществ, но есть один существенный недостаток – их цена. Кроме того, они громоздки. Используемые в быту и для коммерческого использования вентиляторы обычно имеют невысокую цену. Вряд ли покупатель бытового вентилятора согласиться приобрести для него регулятор стоимостью, в десятки раз превышающую стоимость самого вентилятора. Поэтому в этой статье мы частотные приводы рассматривать не будем.

Ступенчатые регуляторы частоты вращения с использованием автотрансформаторов

Работа ступенчатых регуляторов скорости основана на использовании автотрансформаторов. Управление данными регуляторами осуществляется путем ступенчатого изменения напряжения питания. Регулирование скорости осуществляется вручную. Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков.

На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

К преимуществам использования ступенчатых автотрансформаторов можно отнести чистую синусоиду на выходе и высокую перегрузочную способность. К недостаткам  большую массу и габариты.

Примером регулятора частоты вращения со встроенным ступенчатым автотрансформатором является O’Erre RG 5 AR (на изображении выше). Данный регулятор позволяет включать вентилятор на 5-ти различных скоростях. Регулятор частоты вращения O’Erre RG 5 AR может управлять реверсивными вентиляторами. Также на него можно завести управление светом. Максимальная мощность подключаемого вентилятора 80 Вт. Регулятор RG 5 AR оснащен плавким предохранителем с номиналом 2 А-220 В.

Тиристорные (симисторные) регуляторы скорости вращения

В тиристорных регуляторах вращения используют принцип фазового управления, когда изменяется момент включения тиристоров относительно перехода сетевого напряжения через ноль. Для простоты обычно говорят, что изменяется выходное напряжение.

В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) другими словами симистор. Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения. Таким образом, изменяется среднеквадратичное значение напряжения.

Есть ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры), однако для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

  • Установлен нижний порог напряжения подаваемого на двигатель вентилятора
  • Мощность симистора выбирается так, чтобы его максимальный рабочий ток превышал рабочий ток вентилятора не менее, чем в 4 раза (при резистивной нагрузке в 2 А достаточно взять симистор также на 2 А).
  • Предохранитель подбирается исходя из мощности электродвигателя (обычно максимальный ток предохранителя должен быть на 20% больше рабочего тока двигателя).
  • Для более правильного формирования синусоиды установлен дополнительный фазосдвигающий демпфирующий конденсатор.
  • Для уменьшения сетевых помех используется дополнительный конденсатор помехоподавления

К достоинствам тиристорных регуляторов можно отнести их малую стоимость, низкую массу и размеры. К недостаткам — использование для двигателей небольшой мощности, при работе возможен шум, треск, рывки двигателя, при использовании симисторов на двигатель попадает постоянное напряжение.  

Тиристорные (симисторные) регуляторы частоты вращения применяются с вентиляторами, имеющими однофазные двигатели со встроенной автоматической термозащитой. Электродвигатель должен быть спроектирован для работы с регуляторами подобного типа.

Примером симисторого регулятора частоты вращения вентилятора служит Soler & Palau Reb-1N. Этот регулятор выпускается как для скрытой установки в стандартный подрозетник, так и для открытого монтажа. Регулятор имеет встроенный плавкий предохранитель. Возможна регулировка минимальной скорости вентилятора. Включение/выключение через колесо регулировки. Максимальная мощность подключаемого вентилятора 220 Вт.

Электронный автотрансформатор

Электронный автотрансформатор – это транзисторный регулятор напряжения. Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT). Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность. Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

Выходной каскад такой же, как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

Плюсы электронного автотрансформатора заключаются в его небольших габаритах и массе, невысокой стоимости, чистой синусоиде на выходе и отсутствием гула на низких оборотах.

Недостатком можно назвать небольшое расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора).

Электронный автотрансформатор SB033 выполнен для установки на DIN-рейку. Регулятор имеет регулировку минимальной скорости вращения вентилятора. Работой регулятора можно управлять сигналом 0-10 В. Регулятор SB033 имеет реле статуса работы регулятора для подключения привода воздушной заслонки или калорифера. Светодиод на передней панели отображает статус работы или ошибки регулятора. Возможно подключение к SB033 ручки управления, которая устанавливается в стандартный подрозетник.

Сравнение регуляторов частоты вращения вентилятора

Наименование 

O’Erre RG 5 AR

Soler & Palau Reb-1N

SB033

Принцип работы

Ступенчатый автотрансформатор

Симисторный регулятор

Электронный автотрансформатор

Регулировка оборотов

5 скоростей

Плавная

Плавная

Мощность, Вт

80

220

220

Синусоида

чистая

рваная

чистая

Способ установки

Открытая

Скрытая/открытая

На DIN-рейку

Подключаемый вентилятор

Любой асинхронный

Асинхронный, со встроенной термозащитой, должен быть спроектирован для работы с симисторными регуляторами

Любой асинхронный

Дополнительные возможности

Возможно подключение реверсивного вентилятора, возможность включения света

Регулировка минимальных оборотов, вкл/выкл через колесо регулировки оборотов

Возможность управления 0-10 В, реле статуса работы, светодиодная индикация статусов работы и ошибок, возможно подключения ручки управления для установки в стандартный подрозетник

Достоинства

Высокая перегрузочная способность, возможность подключать несколько вентиляторов к одному регулятору

Малая стоимость, малый размер

Малый размер, экономичная работа, наибольшая долговечность вентилятора при использовании с электронным автотрансформатором по сравнению с другими регуляторами

Недостатки

При регулировании греется – отсюда потери электричества на нагрев

Шум на малых оборотах

Источник: teplo-spb. ru

Ключевые слова: регуляторы частоты вращения вентилятора, вентиляторы

Отзывы

Добавить отзыв

Оцените товар

виды, принцип работы, как собрать самому

Вентилятор является одним из малозаметных, но чрезвычайно важных приборов, помогающих создавать благоприятные условия для работы, отдыха и просто приятного проведения времени.

Без него не смогут функционировать компьютеры, холодильники, кондиционеры и другая техника. Для максимально эффективной работы различных устройств используют регулятор скорости вращения вентилятора.

Из нашего материала вы узнаете о том, какие бывают регуляторы, особенностях их работы. Также мы расскажем, как своими руками собрать прибор и что для этого потребуется.

Содержание статьи:

  • Виды и особенности устройства
    • Назначение прибора для управления скоростью
    • Основные разновидности регуляторов
    • Особенности использования приборов
  • Правила подключения контроллера
  • Сборка прибора своими руками
  • Выводы и полезное видео по теме

Виды и особенности устройства

Существует множество , они задействованы в работе систем климат-контроля, компьютеров, ноутбуков, холодильников, многой другой офисной и бытовой техники.

Чтобы контролировать скорость вращения его лопастей, часто применяется небольшой элемент – регулятор. Именно он позволяет продлить срок использования оборудования, а также, значительно снизить уровень шума в помещении.

Галерея изображений

Фото из

Регуляторы скорости вращения вентиляторов предоставляют возможность контролировать работу оборудования, выбирать наиболее благоприятный для пользователей и устройств режим

Различные модели регуляторов скорости используются для контроля работы двигателей однофазных и трехфазных вентиляторов

Выбор наиболее подходящей скорости вращения лопастей вентилятора в бытовых приборах осуществляется поворотом расположенной в центре ручки

Для облегчения электромонтажных работ на корпусах устройств изображают схемы возможного подключения к оборудованию и к питающей сети

Электронными моделями управляют выносные датчики или внешние контрольные системы

Устройства, регулирующие скорость вращения вентиляторов, используются также в тепловых пушках и обогревателях с побуждающими движение тепла вентиляторами

Один регулятор скорости может обслуживать несколько вентилирующих устройств, если суммарная сила тока не превысит допустимых пределов

Регуляторы устанавливают в отапливаемом помещении с нормальным уровнем влажности открытым или скрытым способом, их также размещают в щитках на дин-рейке

Регулятор для однофазного вентилятора

Сфера использования регулирующих устройст

Ручное управление применяемых в быту приборов

Схема подключения устройств к сети

Синусоидальная электронная модель

Регулятор скорости для тепловентиляторов

Обслуживание нескольких агрегатов

Особенности установки регуляторов скорости

Назначение прибора для управления скоростью

Когда кондиционер или вентилятор постоянно работает в режиме максимальной мощности, предусмотренной производителем, это неблагоприятно сказывается на сроке эксплуатации. Отдельные детали просто не могут выдержать такой ритм и быстро ломаются.

Поэтому часто можно встретить рекомендации делать запас по мощности при выборе различного рода оборудования, чтобы оно не работало на пределе.

Для замедления скорости вращения вентилятора применяют регулятор. Причем, есть модели, обслуживающие как одно, так и несколько каналов одновременно. Например, 6-канальный

Также часто в холодильных установках, компьютерах и другой технике определенные элементы перегреваются в процессе работы. Чтобы они не расплавились, производитель предусмотрел их охлаждение за счет работающих вентиляторов.

Но не все выполняемые задачи требуют максимальной скорости движения вентилятора/кулера. При офисной работе компьютера или поддержании постоянной температуры в холодильной установке нагрузка значительно меньше, чем при выполнении сложных математических вычислений или заморозке соответственно. А вентилятор, не имеющий регулятора, будет вращаться с одинаковой скоростью.

Производители предлагают различные модели регуляторов, которые можно установить своими руками, используя рекомендации из инструкции

Скопление большого количества мощной техники, функционирующей в одном помещении, способно создавать шум на уровне 50 децибел и более за счет одновременно работающих вентиляторов на максимальных оборотах.

В такой атмосфере человеку сложно работать, он быстро утомляется. Поэтому целесообразно использовать приборы, способные снизить уровень шума вентилятора не только в производственных цехах, но и в офисных помещениях.

Помимо перегрева отдельных деталей и снижения уровня шума регуляторы позволяют рационально использовать технику, уменьшая и увеличивая при необходимости скорость вращения лопастей оборудования. Например, в системах климат-контроля, используемого во многих общественных местах и производственных помещениях.

Одной из важных деталей умных помещения являются регуляторы оборотов. Их работу обеспечивают показатели датчиков температуры, влажности, давления. Вентиляторы, используемые для перемешивания воздуха в помещении спортзала, производственного цеха или офисного кабинета, помогают экономить средства, затрачиваемые на отопление.

В мощных системах вентилирования используются трансформаторные регуляторы оборотов. Их основной недостаток – высокая стоимость

Это происходит за счет равномерного распределения нагретого воздуха, циркулирующего в помещении. Вентиляторы нагнетают верхние теплые слои вниз, перемешивая их с более холодными нижними. Ведь для комфорта человека важно, чтобы в нижней части комнаты, а не под потолком, было тепло. Регуляторы в таких системах следят за скоростью вращения, замедляя и ускоряя скорость движения лопастей.

Основные разновидности регуляторов

Контроллеры оборотов вентилятора востребованы. Рынок изобилует различными предложениями и рядовому пользователю, не знакомому с особенностями устройств, легко потеряться среди различных предложений.

Выбирать регулятор следует с учетом мощности оборудования, к которому его предстоит присоединять

Регуляторы отличаются по принципу действия.

Выделяют такие типы устройств:

  • тиристорные;
  • симисторные;
  • частотные;
  • трансформаторные.

Первый тип приборов применяется для корректировки оборотов однофазных приборов, имеющих защиту от перегрева. Изменение скорости происходит за счет влияния регулятора на мощность подаваемого напряжения.

Второй тип является разновидностью тиристорных устройств. Регулятор может одновременно управлять приборами постоянного и переменного тока. Характеризуется возможностью плавного понижения/повышения скорости оборотов при напряжении вентилятора до 220 В.

Для управления скоростью движения 2-х и более вентиляторов можно воспользоваться 5-канальным регулятором

Третий тип устройств изменяет частоту подаваемого напряжения. Основная задача – получить питающее напряжение в пределах 0-480 В. Контроллеры применяются для трехфазного оборудования в системах вентилирования помещений и в мощных кондиционерах.

Трансформаторные контроллеры могут работать с одно- и трехфазным током. Они изменяют выходное напряжение, регулируя работу вентилятора и защищая прибор от перегрева. Могут использоваться в автоматическом режиме для регулировки оборотов нескольких мощных вентиляторов, учитывая показатели датчиков давления, температуры, влажности и прочие.

Трансформаторные регуляторы надежные. Они способны работать в сложных системах, регулируя обороты вентилятора без постоянного вмешательства пользователя

Чаще всего в быту применяются симисторные регуляторы. Их относят к типу XGE. Можно обнаружить много предложений от разных производителей – они компактные и надежные. Причем диапазон цен также будет весьма широк.

Трансформаторные же устройства довольно дорогие – в зависимости от дополнительных возможностей они могут стоить 700 долларов и более. Они относятся к регуляторам типа RGE и способны регулировать обороты очень мощных вентиляторов, используемых в промышленности.

Особенности использования приборов

Регуляторы оборотов вентилятора используются в промышленном оборудовании, в офисных помещениях, спортзалах, кафе, других местах общественного пользования. Также часто можно встретить такие контролеры в системах климат-контроля для домашнего использования.

Чтобы воспользоваться прибором изменения скорости, достаточно его просто подключить к вентилятору

Системы вентилирования, используемые в фитнес-центрах, а также, в офисных помещениях, чаще всего содержат регулятор скорости вращения. Причем это не простой дешевый вариант, а дорогостоящее трансформаторное устройство, способное регулировать скорость вращения мощных приборов.

Галерея изображений

Фото из

Регулятор скорости для бытовых вентиляторов

Плюсы универсальной конструкции

Возможность установки в сложных схемах

Особенности подбора регулятора скорости

В зависимости от конструкционных особенностей контроллеры бывают:

  • механического управления;
  • автоматического.

Автотрансформаторные регуляторы чаще всего применяются в сложных системах, где командой к действию служат показатели, полученные от датчика температуры, давления, движения, влажности или фотодатчика. Замедляя скорость вращения, устройства позволяют уменьшить потребление энергии.

Регуляторы с механическим управлением подключаются согласно инструкции и схеме. Ими можно заменить привычный выключатель, вмонтировав контроллер в стену

Механическое управление контроллерами осуществляется вручную – прибор содержит колесико, позволяющее плавно или ступенчато менять скорость вращения. Это часто можно встретить в симисторных моделях.

Среди регуляторов, использующихся для оптимизации работы промышленного и бытового оборудования, можно отметить такие устройства, как Vents, СеВеР, Vortice, ЭнерджиСейвер, Delta t°, Telenordik и другие.

Наиболее распространенный вариант применения регулирующего оборудования в бытовых условиях – компьютер и ноутбук. Именно здесь чаще всего используется регулятор, контролирующий и изменяющий обороты кулера. За счет этого устройства техника создает значительно меньше шума во время работы.

Для компьютеров можно подобрать самый подходящий вариант исходя из личных предпочтений – предложений на рынке огромное количество

Контроллеры для кулера бывают как простые, так и с дополнительными возможностями. Это могут быть модели с подсветкой, с датчиком температуры, с сигналом оповещения, с аварийным отключением и др.

По внешнему виду выделяют регуляторы с дисплеем и без. Первый вариант более дорогостоящий, а второй – дешевле. Это устройство часто называют реобас.

Производители предлагают модели, контролирующие работу одного или нескольких вентиляторов. Хорошими отзывами пользуются регуляторы скорости кулеров таких компаний, как Scythe, NZXT, Reeven, AeroCool, Aqua Computer, Strike-X Advance Black, Akasa Fan Controller, Cooler Master, Innovatek, Gelid, Lian Li и др.

Регулятор для кулера, не имеющий дисплея, стоит значительно дешевле. Но дополнительных функций у него нет

Использование контроллера в работе компьютера существенно снижает уровень шума, что положительно влияет на самочувствие и настроение пользователя – ничего не гудит и не ревет. Также, что немало важно, помогает избежать перегревания самой техники, продлевая этим ее срок службы.

Правила подключения контроллера

Чтобы подключить регулятор оборотов вентилятора, можно воспользоваться услугами специалистов или попытаться справиться своими силами. Принципиальных особенностей в подключении нет – вполне реально справиться с такой задачей своими силами.

Все добросовестные производители обязательно прилагают инструкцию по использованию и монтажу своей продукции

В зависимости от конструкционных особенностей и типа обслуживаемого оборудования контролеры могут устанавливаться:

  • на стену, как накладная розетка;
  • внутрь стены;
  • внутрь корпуса оборудования;
  • в специальный шкаф, управляющий умными устройствами дома. Это, как правило, клеммная колодка;
  • подсоединяться к компьютеру.

Чтобы собственноручно подключить регулятор, предстоит сначала внимательно ознакомиться с инструкцией, предлагаемой производителем. Такой документ обычно идет в комплекте с прибором и содержит полезные рекомендации как по подключению, так по использованию и обслуживанию.

Настенные и внутристенные модели предстоит крепить шурупами и дюбелями к стене. Комплектующие чаще всего поставляются производителем вместе с основным прибором. Также в инструкции к регулятору можно увидеть схему его подключения. Это значительно облегчит дальнейшие работы по правильной его установке.

Схемы по подключению регуляторов у различных производителей могут отличаться. Поэтому следует внимательно изучить рекомендации перед монтажом

Регулятор скорости подсоединяется к кабелю, питающему вентилятор, согласно схеме производителя. Основная цель – разрезать провод фазы, ноля и земли и подсоединить провода к входному и выходному клеммникам, соблюдая рекомендации. В случае, когда вентилятор имеет свой отдельный выключатель, его предстоит заменить на регулятор, демонтировав первый по ненадобности.

Не стоит забывать, что должно соответствовать максимальному току напряжения подключаемого прибора.

Важно отыскать на подключаемом приборе входные и выходные отверстия для подведения питающего кабеля соответствующего сечения. В этом поможет схема, прилагаемая производителем

Если предстоит подключать контроллер к ПК, то сначала предстоит узнать, какая предельно допустимая температура отдельных составляющих техники. В противном случае можно безвозвратно потерять компьютер, у которого перегреются и сгорят важные детали – процессор, материнская плата, графическая карта и прочие.

Модель выбранного реобаса также имеет инструкцию и рекомендации по подключению от изготовителя. Важно придерживаться схем, приведенных на ее страницах при самостоятельной установке прибора.

Если есть потребность подключать более 1-го вентилятора, то можно купить многоканальный реобас

Бывают встроенные в корпус регуляторы и устройства, которые покупаются отдельно. Чтобы их подключить правильно, следует придерживаться инструкций.

Например, встроенный контроллер имеет кнопки включения/выключения снаружи системного блока. Провода, идущие от регулятора, соединяются с проводами кулера. В зависимости от модели реобас может контролировать обороты 2, 4 и более вентиляторов параллельно.

Для вентиляторов компьютера и других, используемых в домашних условиях, можно собственноручно изготовить регулятор

Отдельный регулятор для кулера устанавливается в 3,5 или 5,25-дюймовые отсек. Его провода также подключаются к кулерам, а дополнительные датчики, если они идут в комплекте, присоединяются к соответствующим компонентам системного блока, за состоянием которого им предстоит следить.

Сборка прибора своими руками

Регулятор оборотов вентилятора можно собрать своими силами. Для этого понадобятся простейшие составляющие, паяльник и немного свободного времени.

Чтобы изготовить своими руками контроллер, можно использовать различные комплектующие, выбрав наиболее приемлемый для себя вариант

Так, для изготовления простого контроллера предстоит взять:

  • резистор;
  • переменный резистор;
  • транзистор.

Базу транзистора предстоит припаять к центральному контакту переменного резистора, а коллектор – к его крайнему выводу. К другому краю переменного резистора нужно припаять резистор сопротивлением 1 кОм. Второй вывод резистора следует припаять к эмиттеру транзистора.

Схема изготовления регулятора, состоящего из 3-х элементов, наиболее простая и безопасная

Теперь остается припаять провод входного напряжения к коллектору транзистора, который уже скреплен с крайним выводом переменного резистора, а «плюсовой» выход – к его эмиттеру.

Для проверки самоделки в действии понадобится любой рабочий вентилятор. Чтобы оценить самодельный реобас, предстоит подсоединить провод, идущий от эмиттера, к проводу вентилятора со знаком «+». Провод выходного напряжения самоделки, идущий от коллектора, присоединяется к блоку питания.

Окончив собирать самодельный прибор для регулировки оборотов, обязательно его нужно проверить в работе

Провод со знаком «–» подсоединяется напрямую, минуя самодельный регулятор. Теперь остается проверить в действии спаянный прибор.

Для уменьшения/увеличения скорости вращения лопастей кулера нужно крутить колесо переменного резистора и наблюдать изменение количества оборотов.

При желании можно своими руками создать контроллер, управляющий сразу 2-мя вентиляторами

Это самодельное устройство безопасно для использования, ведь провод со знаком «–» идет напрямую. Поэтому вентилятору не страшно, если в спаянном регуляторе вдруг что-то замкнет.

Такой контролер можно использовать для регулировки оборотов кулера, и других.

Выводы и полезное видео по теме

Ролик об особенностях подключения и использования регулятора оборотов вентилятора от компании Vents:

Подробное видео о типах регуляторов, принципах их работы и особенностях подключения:

Видео инструкция с пояснениями каждого шага при выполнении работ по сборке контроллера оборотов кулера своими руками. Причем для выполнения этих действий не требуется быть специалистом – все достаточно просто:

Видео информация о создании контроллера скорости вентилятора:

Обзор электронного автотрансформаторного регулятора оборотов вентилятора:

Ознакомившись с видами регуляторов оборотов вентилятора и правилами их подключения, можно подобрать наиболее оптимальный вариант, способный удовлетворить потребности пользователя. При желании можно доверить вопросы монтажа специалистам. Если же хочется испытать свои силы, то простой прибор несложно собрать самостоятельно.

Остались вопросы по теме статьи, нашли недочеты или есть информация, которой вы хотите поделиться с нашими читателями? Пожалуйста, оставляйте комментарии внизу статьи.

Что такое плазменная резка? Принцип работы и его преимущества

Существует несколько преимуществ плазменной резки как метода изготовления металла по сравнению с другими. Эти преимущества включают экономическую эффективность, более широкий диапазон резки металла, высокую точность и повторяемость.

Что такое плазменная резка? Как работает этот процесс? Какой газ идеально подходит для использования в этом процессе? С какими материалами работают плазменные резаки? Мы подробно ответим на эти вопросы и предоставим вам другую важную информацию о плазменной резке.

Обзор плазменной резки

Плазменная резка — это процесс изготовления металла, в котором для плавления металлических материалов используются ионизированные газы, нагретые до температуры выше 20 000 0 C. Этот газ, выбрасываемый под высоким давлением, расплавляет материал и удаляет его из разреза.

Важно отметить, что этот процесс работает только с электропроводящими материалами, такими как нержавеющая сталь, медь, алюминий и другие металлы. Другими словами, плазменная резка не может резать камень, бумагу, стекло и другие плохие проводники электричества.

Этот метод не имеет себе равных по экономичности, когда речь идет о резке толстых металлов. Кроме того, он универсален и требует низких затрат на обслуживание инструмента. Он также обладает высокой точностью резки, что делает его идеальным для резки деталей со сложной геометрией.

Кратко познакомившись с тем, что такое плазменная резка, давайте узнаем немного об ее истории.

История плазменной резки

Процесс плазменной резки существует с 1957 года. Он начался как расширение процесса GTAW (дуговая сварка вольфрамовым электродом). Первоначально его основным применением была резка стальных и алюминиевых пластин толщиной от половины дюйма до шести дюймов.

Плазменные резаки, использовавшиеся в ту эпоху, были непредсказуемы и не обладали точностью, присущей современным резакам. Кроме того, используемые электроды и сопла быстро выходили из строя из-за воздействия тепла во время процесса. Замена сопла и электродов часто делала плазменную резку в то время дорогой.

Конец 1960-х

Однако в конце 1960-х и начале 1970-х годов в этой технике произошел прорыв, когда инженеры создали двухпоточную горелку. Этот резак помог увеличить срок службы электродов и сопел, а также повысить качество и точность резки.

1970-е годы

Инженеры использовали 1970-е годы для контроля паров и дыма, первоначально возникающих в процессе резки, с помощью водяного глушителя и стола. Они также разработали более совершенные сопла, которые помогли повысить точность дуги, предоставив операторам и машинистам возможность тонкой настройки.

1980-е

1980-е годы были периодом экспериментов для инженеров, когда они разработали и внедрили несколько новых функций. Эти функции включают плазменные резаки на основе кислорода и обеспечивают лучший контроль резки за счет различных уровней мощности. Они также сосредоточились на портативности блока плазменной резки, сделав его более эргономичным.

С 1990-х годов по настоящее время

К 1990-м годам плазменные резаки высокого разрешения появились на рынке благодаря использованию долговечных кислородных процессов. Эти долговечные кислородные процессы в сочетании с новой системой сопел дали плазменным резакам той эпохи возможность в четыре раза увеличить плотность энергии по сравнению с предыдущими периодами.

С 1990-х годов по сегодняшний день в центре внимания инженеров находятся варианты питания и управления, а также повышение эффективности. Они также повысили точность плазменных резаков: сегодня модели предлагают более острые края и точные разрезы. Портативность и автоматизация — другие аспекты плазменного резака, которые инженеры значительно улучшили по мере того, как в обращении появилось больше портативных устройств.

Теперь, когда мы знаем, как развивалась плазменная резка, как она работает?

Как работает плазменная резка

Процесс плазменной резки включает использование тепла для плавления металла вместо механической резки. Плазменные резаки работают, посылая электрическую дугу через газ. Затем этот газ проходит через суженное отверстие (сопло). Ограниченное отверстие заставляет газы проталкиваться через него с высокой скоростью, образуя плазму. Резка заготовки влечет за собой контакт режущего наконечника плазменного резака с заготовкой. Также обратите внимание, что из-за проводимости плазмы необходимо соединить заготовку с землей через режущий стол.

Не все системы плазменной резки работают одинаково. Однако существует три типа процессов резки.

Три типа процесса резки
  • Высокочастотный контакт : Это малобюджетная форма. Также из-за риска помех современному оборудованию из-за его высокой частоты этот процесс недоступен для плазменных резаков с ЧПУ. Высокочастотная контактная резка включает использование высокочастотной искры и высокого напряжения — искра образуется, когда плазменная горелка соприкасается с разрезаемым металлом. Контакт замыкает цепь, инициирует искру и создает плазму, используемую для резки.
  • Пилотная дуга:  В этом процессе резки искра возникает внутри резака за счет комбинации слаботочной цепи и высокого напряжения. Эта искра способствует созданию вспомогательной дуги, небольшого количества плазмы. При соприкосновении с заготовкой плазменный резак создает режущую дугу, которая позволяет машинисту или оператору начать процесс резки.
  • Подпружиненная головка плазменной горелки:  Чтобы создать короткое замыкание, операторы прижимают резак к заготовке. При возникновении короткого замыкания начинает течь ток. Для создания вспомогательной дуги операторы сбрасывают давление.

Газ, используемый в процессе

Тип газа, используемого в процессе, зависит от метода резки, режущего материала и толщины. Помимо обеспечения формирования плазменной струи, используемый газ также должен способствовать удалению расплавленного материала и оксида из реза. Наиболее распространенные газы, используемые для плазменной резки, включают:

Аргон

Аргон — инертный газ, и его плазменная дуга стабильна. Стабильность означает, что этот газ почти не реагирует с любым металлом при высоких температурах. Электроды и сопла, используемые для резки аргоном, часто имеют более длительный срок службы, чем те, которые используются с другими газами.

Газ аргон имеет ограничения при резке из-за его низкой плазменной дуги и энтальпии. Кроме того, при резке с использованием аргона в среде с защитой от аргона неизбежно возникнут проблемы со шлаком. Это в первую очередь связано с тем, что поверхностное натяжение расплавленного металла примерно на 30% выше, чем в азотной среде. Эти проблемы являются одной из причин, по которой аргон редко используется для плазменной резки.

Азот

Азот имеет лучшую стабильность плазменной дуги и более высокую энергию струи, чем аргон, особенно при более высоком напряжении питания. Кроме того, он образует минимальное количество шлака на нижних краях разреза даже при резке таких металлов, как сплавы на основе никеля и нержавеющая сталь с высокой вязкостью.

Газообразный азот работает как самостоятельный газ или в сочетании с другими газами. Это также облегчает высокоскоростную резку углеродистой стали.

Воздух

Воздух содержит 78 % азота и 21 % кислорода по объему, что делает его подходящим газом для плазменной резки. Кислородная составляющая воздуха делает его одним из самых быстрых газов, используемых при резке низкоуглеродистой стали. Кроме того, поскольку воздух повсюду, это экономичный газ для работы.

С другой стороны, электрод и сопло, используемые для этого процесса, обычно имеют короткий срок службы, что увеличивает затраты на резку и снижает эффективность. Кроме того, использование воздуха в качестве автономного газа проблематично, так как это приводит к зависанию шлака и снижению окисления.

Кислород

Как и воздух, кислород увеличивает скорость резки низкоуглеродистой стали. Использование высокоэнергетической плазменной дуговой резки и высокой температуры кислорода увеличивает ее скорость. Однако для использования кислорода лучше всего сочетать его с электродами, устойчивыми к высоким температурам и окислению.

Водород

Водород часто используется в качестве вспомогательного газа для смешивания с другими газами для плазменной резки. Одной из наиболее распространенных комбинаций является водород и аргон, который производит один из самых мощных газов при плазменной резке.

Смешивание аргона с водородом значительно увеличивает напряжение дуги, энтальпию и режущую способность струи аргоновой плазмы. Режущая эффективность этой комбинации также увеличивается при сжатии струей воды.

При плазменной резке обычно используются несколько газов. В таблице ниже показаны эти газы, разрезаемые материалы и преимущества газа по отношению к материалу.

Толщина материала Плазменный газ Вторичный газ Примечание
Конструкционная сталь от 0,5 до 8 мм Кислород Кислород или кислород/азот или азот Кромки без заусенцев могут выдерживать прямоугольность, с гладкостью, похожей на лазерную резку 90 146
Конструкционная сталь от 4 до 50 мм Кислород Кислород/азот или азот или воздух Без заусенцев до 20 мм, поверхность разреза выглядит гладкой, допуск на прямоугольность до 25 мм, аналогично лазерной резке
Высоколегированная сталь от 5 до 45 мм Аргон/водород/азот Азот или азот/водород Без заусенцев до 20 мм, гладкие резы, плохая устойчивость к прямоугольности
Алюминий от 1 до 6 мм Сжатый воздух Азот или азот/водород Резка без заусенцев, поверхность может быть шероховатой или зернистой, что позволяет выполнять почти вертикальную резку
Алюминий от 5 до 40 мм Аргон/водород/азот Азот или азот/водород Без заусенцев до 20 мм, зернистая или шероховатая поверхность, позволяет резать почти вертикально 2 Существует множество материалов, используемых для плазменной резки. Это в первую очередь потому, что этот процесс может разрезать любой проводящий материал. Ниже представлены наиболее распространенные материалы для этой техники.

Алюминий

Алюминий обладает электропроводностью, что делает плазменную резку идеальным процессом для его изготовления. Кроме того, этот процесс дает преимущества при работе с более толстыми металлами по сравнению с другими методами изготовления алюминия, такими как лазерная резка. Он может резать алюминий толщиной до 160 мм.

Кроме того, производство алюминия с помощью плазменной резки более рентабельно из-за более низких эксплуатационных расходов и затрат на оборудование.

Мягкая сталь

Мягкая сталь — это тип стали с низким содержанием углерода, обычно не более 2,1%. Это одна из наиболее часто используемых форм стали из-за ее свойств, которые подходят для многих целей. Кроме того, мягкая сталь недорога в приобретении, и ее свойства, такие как высокая ударная вязкость, свариваемость и пластичность.

Нержавеющая сталь

Нержавеющая сталь представляет собой сплав железа, устойчивый к коррозии и ржавчине. Плазменная резка является одним из наиболее эффективных способов изготовления этого металла, так как позволяет получить толщину реза до 30 мм. Марки нержавеющей стали, идеально подходящие для резки, включают: 304, 304L, 316, 316L, 321, 310S, 317 и т. д.

Латунь

Латунь — еще один металл, который легко изготавливается с помощью плазменной резки. Это связано с его высокой проводимостью. Однако при изготовлении латуни этим методом лучше всего это делать в хорошо проветриваемых помещениях. Это связано с тем, что латунь содержит цинк, а вдыхание паров, содержащих горящий цинк, вредно для здоровья.

Медь

Медь обладает тепло- и электропроводностью всех материалов, кроме драгоценных металлов. Важные качества этого металла включают в себя; коррозионная стойкость, высокая пластичность и свариваемость. Эти свойства, в том числе высокая проводимость, делают медь идеальным металлом для плазменной резки. Однако, как и латунь, этот металл важно резать в местах с хорошей вентиляцией.

Чугун

Этот металл популярен благодаря своей низкой стоимости и пластичности. В незначительных количествах он содержит такие элементы, как марганец, сера, фосфор и кремний. Чугун обладает высокой электропроводностью, высокой прочностью на сжатие и низкой температурой плавления, что делает его идеальным для плазменной резки.

Преимущества плазменной резки

Существует несколько преимуществ использования плазменной резки для изготовления металлов по сравнению с другими методами, начиная от экономической эффективности и заканчивая более высокой производительностью и лучшим качеством резки. Вот некоторые другие преимущества.

Высокое качество резки

По сравнению с другими процессами обработки металлов, такими как газовая резка или гидроабразивная резка , резка плазменными резаками обеспечивает более высокое качество резки металлов. Это связано с отсутствием остаточной накипи на кромке реза металла и меньшей площадью околошовной зоны.

Универсальность и гибкость

Этот процесс позволяет резать любой проводящий электричество металл, что делает его очень универсальным. Он может легко резать такие металлы, как алюминий и высоколегированную сталь средней и большой толщины. Он отлично подходит для нарезания канавок, строгания или маркировки металлов. Кроме того, этот процесс позволяет резать металлы в воде с пониженным уровнем шума.

Высокая скорость

Плазменная резка в 100 раз быстрее лазерной и примерно в 10 раз быстрее кислородной. Другими словами, он повышает производительность и сокращает время, затрачиваемое на изготовление металла, по сравнению с другими методами.

Более высокая точность и повторяемость

Вырезанные детали имеют более высокую точность и качество поверхности благодаря нагреву в процессе. Кроме того, скорость изготовления улучшает воспроизводимость при одновременном сокращении времени, затрачиваемого на механическую обработку металлов.

Вы хотите производить металл с помощью плазменной резки? Зачем подвергать себя риску, связанному с процессом, если вы можете передать его более умелым рукам, таким как RapidDirect? RapidDirect — одна из лучших компаний по плазменной резке в мире, предлагающая широкий спектр Услуги по плазменной резке . Наши передовые плазменные резаки могут резать широкий спектр металлов толщиной до 15 мм.

Компания RapidDirect гордится тем, что производит детали для плазменной резки с высокой точностью и постоянством, используемые в различных отраслях промышленности. Итак, зачем ждать? Свяжитесь с RapidDirect, чтобы получить детали для плазменной резки уже сегодня.

Попробуйте RapidDirect прямо сейчас!

Вся информация и загрузки защищены и конфиденциальны.

Недостатки плазменной резки

Несмотря на то, что обработка металлов с помощью плазменной резки имеет множество преимуществ, существуют и недостатки.

  • Режет только токопроводящие материалы
  • Не идеально подходит для толщины более 150 мм
  • Яркие вспышки, возникающие во время процесса, могут отрицательно повлиять на глаза человека
  • Иногда при работе возникает шум
  • Выделяет дым при резке в воздухе
  • 900 77 Это может быть дорого с расходными материалами с малым сроком службы, такими как сопло и электрод

Заключение

Плазменная резка — это процесс, который включает использование четвертой стадии материала для резки проводящих металлов. Этот процесс предлагает множество преимуществ, включая более высокую производительность, универсальность, точность и качество поверхности.

Чтобы получить максимальную отдачу от плазменной резки как процесса производства металла, вам нужен RapidDirect. Мы предлагаем одну из лучших услуг плазменной резки в мире, а также предоставляем другие услуги по резке, такие как гидроабразивная резка и лазерная резка.  Кроме того, у нас одни из самых быстрых сроков поставки при конкурентоспособных ценах. Хотите работать с нами? Просто загрузите свой дизайн на нашу онлайн-платформу , чтобы мгновенно рассчитать стоимость!

Как работает плазменный резак

Что такое плазма?

Чтобы правильно объяснить, как работает плазменный резак, мы должны начать с ответа на основной вопрос «Что такое плазма? Проще говоря, плазма — это четвертое состояние вещества. Мы обычно думаем, что материя имеет три состояния: твердое, жидкое и газообразное. Материя переходит из одного состояния в другое за счет введения энергии, например тепла. Например, вода переходит из твердого состояния (льда) в жидкое состояние при приложении определенного количества тепла. Если уровень тепла увеличится, он снова превратится из жидкости в газ (пар). Теперь, если уровень тепла снова увеличится, газы, составляющие пар, станут ионизированными и электропроводными, превратившись в плазму. Плазменная резка будет использовать этот электропроводящий газ для передачи энергии от источника питания к любому проводящему материалу, что приведет к более чистому и быстрому процессу резки, чем при кислородном топливе.

Формирование плазменной дуги начинается, когда газ, такой как кислород, азот, аргон или даже воздух из цеха, нагнетается через небольшое отверстие сопла внутри горелки. Затем в этот поток газа под высоким давлением вводится электрическая дуга, генерируемая внешним источником питания, что приводит к тому, что обычно называют «струей плазмы». Плазменная струя сразу же достигает температуры до 40 000°F, быстро прокалывая заготовку и сдувая расплавленный материал.

Компоненты плазменной системы

  • Источник питания. Плазменный источник питания преобразует однофазное или трехфазное сетевое напряжение переменного тока в плавное постоянное напряжение постоянного тока в диапазоне от 200 до 400 В постоянного тока. Это постоянное напряжение отвечает за поддержание плазменной дуги на протяжении всего разреза. Он также регулирует выходной ток, необходимый в зависимости от типа и толщины обрабатываемого материала.
  • Консоль запуска дуги — схема ASC вырабатывает переменное напряжение примерно 5000 В переменного тока на частоте 2 МГц, что создает искру внутри плазменной горелки для создания плазменной дуги.
  • Плазменный резак. Функция плазменного резака заключается в правильном выравнивании и охлаждении расходных материалов. Основными расходными деталями, необходимыми для создания плазменной дуги, являются электрод, завихритель и сопло. Для дальнейшего улучшения качества резки можно использовать дополнительный защитный колпачок, а все детали удерживаются вместе внутренним и внешним удерживающими колпачками.

Подавляющее большинство современных систем плазменной резки можно разделить на обычные или прецизионные.

В обычных плазменных системах в качестве плазменного газа обычно используется воздух цеха, а форма плазменной дуги в основном определяется отверстием сопла. Приблизительная сила тока плазменной дуги этого типа составляет 12-20К ампер на квадратный дюйм. Во всех портативных системах используется обычная плазма, и она до сих пор используется в некоторых механизированных приложениях, где допуски деталей менее строгие.

Прецизионные плазменные системы (высокая плотность тока) спроектированы и спроектированы для получения самых четких и качественных резов, которые достижимы с помощью плазмы. Конструкция горелки и расходных материалов более сложна, и в комплект входят дополнительные детали для дальнейшего сужения и придания формы дуге. Прецизионная плазменная дуга составляет приблизительно 40-50К ампер на квадратный дюйм. Несколько газов, таких как кислород, воздух высокой чистоты, азот и смесь водорода/аргона/азота, используются в качестве плазменного газа для получения оптимальных результатов на множестве проводящих материалов.

Работа в ручном режиме

В типичной портативной системе плазменной резки, такой как наша воздушно-плазменная система Tomahawk®, расходуемые части электрода и сопла находятся в контакте друг с другом внутри резака, когда он находится в выключенном состоянии. При нажатии на спусковой крючок источник питания вырабатывает постоянный ток, протекающий через это соединение, а также инициирует поток плазмообразующего газа. Как только плазменный газ (сжатый воздух) создает достаточное давление, электрод и сопло расходятся, что вызывает электрическую искру, которая превращает воздух в струю плазмы. Затем поток постоянного тока переключается с электрода на сопло, на путь между электродом и заготовкой. Этот ток и воздушный поток продолжаются до тех пор, пока не будет отпущен курок.

Прецизионная плазменная операция

Внутри прецизионной плазменной горелки электрод и сопло не соприкасаются, а изолированы друг от друга завихряющим кольцом с небольшими вентиляционными отверстиями, которые превращают предварительный поток/плазменный газ в завихряющийся вихрь. Когда на источник питания подается команда пуска, он создает напряжение холостого хода до 400 В постоянного тока и инициирует подачу газа предварительной подачи через шланг, подключенный к горелке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *