Принцип работы реле регулятора генератора: строение, функции и проверка |

Содержание

Реле Регулятора Напряжения Генератора, Где Находится, Схема Замены и Подключения Своими Руками, Устройство и Принцип Работы

Содержание

Создано реле регулятор напряжения генератора для корректировки выдаваемого в бортовую сеть и на клеммы аккумулятора «вольтажа» в заданном диапазоне 13,8 – 14,5 В (реже до 14,8 В). Кроме того, регулятор корректирует напряжение на обмотке самовозбуждения генератора.

Рис. 1 Реле регулятор напряжения генератора

Назначение реле регулятора напряжения

Независимо от стажа и стиля вождения владелец авто не может обеспечить одинаковые обороты двигателя в разные моменты времени. То есть, коленвал ДВС, передающий крутящий момент генератору, вращается с разной скоростью. Соответственно, генератор вырабатывает разное напряжение, что крайне опасно для АКБ и прочих потребителей бортовой сети.

Поэтому замена реле регулятора генератора должна производится при недозаряде и перезаряде аккумулятора, горящей лампочке, мигании фар и прочих перебоях электроснабжения бортовой сети.

Взаимосвязь источников тока авто

В транспортном средстве находится минимум два источника электроэнергии:

  • аккумулятор – необходим в момент запуска ДВС и первичного возбуждения обмотки генератора, энергию не создает, а только расходует и накапливает в момент подзарядки
  • генератор – питает бортовую сеть на любых оборотах и подпитывает АКБ только на высоких оборотах

Рис. 2 В машине генератор и аккумулятор объединены в общую сеть

В бортовую сеть необходимо подключение обоих указанных источников для корректной работы двигателя и прочих потребителей электричества. При поломке генератора АКБ «протянет» максимум 2 часа, а без аккумулятора не заведется двигатель, приводящий в движение ротор генератора.

Существуют исключения – например, а счет остаточной намагниченности обмотки возбуждения штатный генератор ГАЗ-21 запускается самостоятельно при условии постоянной эксплуатации машины.

Можно завести авто « с толкача», если в нем установлен генератор постоянного тока, с прибором переменного тока такой трюк невозможен.

Рис. 3 Заводка ДВС с толкача

Задачи регулятора напряжения

Из школьного курса физики каждый автолюбитель должен помнить принцип работы генератора:

  • при взаимном перемещении рамки и окружающего ее магнитного поля в ней возникает электродвижущая сила
  • электромагнитом генераторов постоянного тока служат статоры, ЭДС, соответственно возникает в якоре, ток снимается с коллекторных колец
  • в генераторе переменного тока намагничивается якорь, электроэнергия возникает в обмотках статора

Рис. 4 Принцип действия генератора авто

Упрощенно можно представить, что на величину выходящего с генератора напряжения влияет значение магнитной силы и скорость вращения поля. Основная проблема генераторов постоянного тока – пригорание и залипание щеток при съеме с якоря токов большой величины – решена переходом на генераторы переменного тока.

Ток возбуждения, подающийся на ротор для возбуждения магнитной индукции, на порядок ниже, снимать электроэнергию с неподвижного статора гораздо легче.

Однако вместо постоянно расположенных в пространстве клемм «–» и «+» производители авто получили постоянное изменение плюса и минуса. Подзарядка аккумулятора переменным током не возможна в принципе, поэтому диодным мостиком его предварительно выпрямляют.

Рис. 5 Выпрямитель генератора

Из этих нюансов плавно вытекают задачи, решаемые реле генератора:

  • подстройка тока в обмотке возбуждения
  • выдерживание диапазона 13,5 – 14,5 В в бортовой сети и на клеммах аккумулятора
  • отсечение питания обмотки возбуждения от АКБ при заглушенном двигателе

Рис. 6 Назначение реле регулятора напряжения

Поэтому называют регулятор напряжения еще и реле зарядки, а на панель выведена сигнальная лампа процесса подзарядки АКБ. В конструкцию генераторов переменного тока функция отсечения обратного тока заложена по умолчанию.

Разновидности реле регуляторов

Прежде, чем произвести самостоятельный ремонт устройства регулирования напряжения, необходимо учесть, что существует несколько типов регуляторов:

  • внешние – повышают ремонтопригодность генератора
  • встраиваемые – в пластину выпрямителя или щеточный узел
  • регулирующие по минусу – появляется дополнительный провод
  • регулирующие по плюсу – экономичная схема подключения
  • для генераторов переменного тока – нет функции ограничения напряжения на обмотку возбуждения, так как она заложена в самом генераторе
  • для генераторов постоянного тока – дополнительная опция отсечения АКБ при неработающем ДВС
  • двухуровневые – морально устарели, применяются редко, регулировка пружинами и небольшим рычагом
  • трехуровневые – дополнены специальной платой сравнивающего устройства и сигнализатором согласования
  • многоуровневые – в схеме имеются 3 – 5 добавочных резисторов и система слежения
  • транзисторные – в современных авто не используются
  • релейные – улучшенная обратная связь
  • релейно-транзисторные – универсальная схема
  • микропроцессорные – небольшие габариты, плавные регулировки нижнего/верхнего порога срабатывания
  • интегральные – встраиваются в щеткодержатели, поэтому заменяются после истирания щеток

Рис. 7 Выносное реле

Рис. 8 Реле встроено в щеточный узел

Рис. 9 Регулятор двухуровневый

Рис. 10 Реле трехуровневое

Рис. 11 Регулятор транзисторно-релейный

Рис. 12 Схема реле микроконтроллерного

Рис. 13 Регулятор интегральный

Внимание: Без доработки схемы «плюсовой» и «минусовой» регулятор напряжения являются не взаимозаменяемыми приборами.

Реле генераторов постоянного тока

Таким образом, схема подключения регулятора напряжения при эксплуатации генератора постоянного тока сложнее. Поскольку в стояночном режиме авто, когда ДВС заглушен, необходимо отключить генератор от АКБ.

При диагностике проверка реле происходит на выполнение трех его функций:

  • отсечка аккумулятора во время стоянки машины
  • ограничение максимального тока на выходе генератора
  • регулировка напряжения для обмотки возбуждения

Рис. 14 Регулятор напряжения генератора постоянного тока

При любой неисправности требуется ремонт.

Реле генераторов переменного тока

В отличие от предыдущего случая диагностика своими руками регулятора генератора переменного тока немного проще. В конструкцию «автомобильной электростанции» уже заложена функция отсечки питания во время стоянки от АКБ. Остается проверить лишь напряжение на обмотке возбуждения и на выходе с генератора.

Рис. 15 Реле для генератора переменного тока

Если в машине стоит генератор тока переменного, его невозможно завести разгоном с горки. Так как остаточного намагничивания на возбуждающей обмотке здесь нет по умолчанию.

Встроенные и внешние регуляторы

Для автолюбителя важно знать, что измеряют и начинают регулировать напряжение реле в конкретном месте их установки. Поэтому встроенные модификации воздействуют непосредственно на генератор, а выносные «не знают» о его наличии в машине.

Например, если выносное реле подключено к катушке зажигания, его работа будет направлена на регулировку напряжения лишь на этом участке бортовой сети.

Поэтому, прежде чем узнать, как проверить реле выносного типа, следует убедиться, что оно подключено правильно.

Управление по «+» и «–»

В принципе схемы управления по «минусу» и «плюсу» отличаются лишь схемой подключения:

  • при монтаже реле в разрыв «+» одна щетка подключается к «массе», другая к клемме регулятора
  • если же подключить реле в разрыв «–», то одну щетку нужно подключить к «плюсу», другую к регулятору

Рис. 16 Схема включения регулятора в разрыв плюсового провода

Однако в последнем случае появится еще один провод, поскольку реле напряжения является устройством активного типа. Для него необходимо индивидуальное питание, поэтому «+» нужно подвести отдельно.

Двухуровневые

На начальном этапе в машинах устанавливались механические двухуровневые регуляторы напряжения с простым принципом действия:

  • через реле проходит электрический ток
  • возникающее магнитное поле притягивает рычаг
  • сравнивающим устройством служит пружина с заданным усилием
  • при увеличении напряжения контакты размыкаются
  • на возбуждающую обмотку поступает меньший ток

Рис. 17 Механический регулятор напряжения

Использовались механические двухуровневые реле в автомобилях ВАЗ 21099. Основным минусом являлась работа с повышенным износом механических элементов. Поэтому на смену этим приборам пришли электронные (бесконтактные) реле напряжения:

  • делитель напряжения собран из резисторов
  • стабилитрон является задающим устройством

Сложная схема соединения и недостаточно эффективный контроль напряжения привели к снижению спроса на эти приборы.

Трехуровневые

Однако двухуровневые регуляторы, в свою очередь, так же уступили позиции более совершенным трехуровневым и многоуровневым приборам:

  • напряжение выходит с генератора на специальную схему через делитель
  • информация обрабатывается, действительное напряжение сравнивается с минимальным и максимальным пороговым значением
  • сигнал рассогласования регулирует силу тока, поступающего на возбуждающую обмотку

Рис. 18 Трехуровневый регулятор

Более совершенными считаются реле с частотной модуляцией – в них нет привычных сопротивлений, зато увеличена частота срабатывания ключа электронного. Управление осуществляется логическими схемами.

Принцип работы реле регулятора

Благодаря встроенным резисторам и специальным схемам реле получает возможность сравнивать величину вырабатываемого генератором напряжения. После чего, слишком высокое значение приводит к отключению реле, чтобы не перезарядить аккумулятор и не испортить электроприборы, подключенные в бортовую сеть.

Любые неисправности приводят именно к этим последствиям, приходит в неисправность батарея АКБ или резко увеличивается эксплуатационный бюджет.

Переключатель лето/зима

Вне зависимости от сезона и температуры воздуха работа генератора всегда стабильна. Как только его шкив начинает вращаться, электроток вырабатывается по умолчанию. Однако зимой внутренности аккумулятора замерзают, он восполняет заряд значительно хуже, чем летом.

Переключатели лето/зима находятся либо на корпусе регулятора напряжения, либо этим обозначением подписаны соответствующие разъемы, которые нужно найти и подсоединить к ним проводку в зависимости от сезона.

Рис. 19 Регулятор напряжения с зимними и летними клеммами

Ничего необычного в этом переключателе нет, это лишь грубые настройки реле регулятора, позволяющие повысить до 15 В напряжение на клеммах аккумулятора.

Подключение в бортовую сеть генератора

Если при замене генератора вы подключаете новый прибор самостоятельно, необходимо учесть нюансы:

  • вначале следует проверить целостность и надежность контакта провода от кузова машины к корпусу генератора
  • затем можно подсоединять клемму Б реле регулятора с «+» генератора
  • вместо «скруток», начинающих греться через 1 – 2 года эксплуатации, лучше использовать пайку проводов
  • заводской провод нужно заменить кабелем сечения 6 мм2 минимум, если вместо штатного генератора монтируется электроприбор, рассчитанный на ток больше 60 А
  • амперметр в цепи генератор/аккумулятор показывает, мощность какого источника электроснабжения в данный момент выше в бортовой сети

Рис. 20 Подключение генератора на примере ВАЗ

Амперметры – нужные приборы, с помощью которых можно определить заряд АКБ и работоспособность генератора. Без особых причин не рекомендуется убирать их из схемы.

Схемы подключения регулятора выносного

Монтируется выносное реле регулятора напряжения генератора только после выяснения, в разрыв какого провода оно должно быть подключено. Например:

  • на старых РАФ, Газелях и «Бычках» используются реле 13.3702 в полимерном или стальном корпусе с двумя контактами и двумя щетками, монтируются в «–» разрыв цепи, клеммы всегда промаркированы, «+» обычно берется с катушки зажигания (Б-ВК клемма), контакт Ш регулятора соединяется со свободной клеммой щеточного узла
  • в «жигулях» применяются реле регуляторы 121.3702 белого и черного цвета, существуют двойные модификации, в которых при выходе из строя одного прибора работа второго устройства продолжается простым переключением на него, монтируется в разрыв «+» клеммой 15 к выводу катушки зажигания Б-ВК, к щеточному узлу крепится проводом клемма 67

Встраиваемые реле-регуляторы автолюбители называют «шоколадками», маркированными Я112. Они монтируются в специальные щеткодержатели, прижимаются винтами и защищаются дополнительно крышкой.

На автомобилях ВАЗ реле обычно встроены в щеточный узел, полная маркировка Я212А11, подключаются к замку зажигания.
Если владелец меняет штатный генератор на старом отечественном ВАЗ на устройство переменного тока от иномарки или современной Лады, подключение производится по другой схеме:

  • вопрос крепления корпуса автолюбитель решает самостоятельно
  • аналогом клеммы «плюс» здесь служит контакт В или В+, его включают в бортовую сеть через амперметр
  • выносные реле регуляторы здесь обычно не используются, а встраиваемые уже интегрированы в щеточный узел, из них выходит единственный провод с маркировкой D либо D+, который подсоединяется к замку зажигания (к клемме катушки Б-ВК)

Рис. 21 Замена штатного реле трехуровневым регулятором

Для дизельных ДВС в генераторах может присутствовать клемма W, которая присоединяется к тахометру, ее игнорируют при установке на авто с бензиновым мотором.

Проверка подключения

После установки трехуровневого или иного реле-регулятора необходима проверка работоспособности:

  • двигатель заводится
  • напряжение в бортовой сети контролируется на разных оборотах

После установки генератора переменного тока и подключения его по вышеприведенной схеме владельца может ожидать «сюрприз»:

  • при включении ДВС запускается генератор, измеряется напряжение на средних, больших и малых оборотах
  • после выключения зажигания ключом …. двигатель продолжает работать

В этом случае заглушить ДВС можно либо сняв провод возбуждения, либо отпустив сцепление с одновременным нажатием тормоза. Все дело в наличии остаточной намагниченности и постоянном самовозбуждении обмотки генератора. Проблема решается установкой в разрыв возбуждающего провода лампочки:

  • она горит при незапущенном генераторе
  • гаснет после его запуска
  • проходящий через лампу ток недостаточен, чтобы возбудить обмотку генератора

Эта лампа автоматически становится индикатором наличия зарядки АКБ.

Диагностика реле регулятора

Определить поломки регулятора напряжения можно по признакам косвенным. Прежде всего, это некорректная зарядка АКБ:

  • перезаряд – выкипает электролит, раствор кислоты попадает на детали кузова
  • недозаряд – ДВС не запускается, лампы горят в пол накала

Однако предпочтительнее диагностика приборами – вольтметром или тестером. Любое отклонение от максимального значения напряжения 14,5 В (в некоторых авто бортовая сеть рассчитана на 14,8 В) на больших оборотах или минимального значения 12,8 В на малых оборотах становится причиной замены/ремонта реле регулятора.

Встроенного

Чаще всего регулятор напряжения интегрирован в щетки генератора, поэтому необходимо уровневое обследование этого узла:

  • после снятия защитной крышки и ослабления винтов щеточный узел извлекается наружу
  • при износе щеток (осталось меньше 5 мм их длины) замена должна производится в обязательном порядке
  • диагностика генератора мультиметром производится в комплекте с аккумулятором или зарядным устройством
  • «минусовой» провод от источника тока замыкается на соответствующую пластину регулятора
  • «плюсовой» провод от ЗУ или АКБ подключается к аналогичному разъему реле
  • тестер устанавливается в режим вольтметра 0 – 20 В, щупы накладываются на щетки
  • в диапазоне 12,8 – 14,5 В между щетками должно быть напряжение
  • при увеличении напряжения больше 14,5 В стрелка вольтметра должна быть на нуле

Рис. 22 Диагностика реле встроенного

В данном случае вместо вольтметра можно использовать лампу, которая должна гореть в указанном интервале напряжения, гаснуть при увеличении этой характеристики больше этого значения.

Провод, управляющий тахометром (маркировка W только на реле для дизелей) прозванивается мультиметром в режиме тестера. На нем должно быть сопротивление около 10 Ом. При снижении этого значения провод «пробит», его следует заменить новым.

Выносного

Никаких отличий в диагностике для выносного реле не существует, зато его не нужно демонтировать из корпуса генератора. Проверить реле регулятор напряжения генератора можно при работающем двигателе, изменяя обороты с низких на средние, затем высокие. Одновременно с увеличением оборотов нужно включить дальний свет (как минимум), кондиционер, монитор и прочие потребители (как максимум).

Рис. 23 Диагностика выносного регулятора напряжения

Таким образом, при необходимости владелец транспортного средства может заменить штатное реле регулятор напряжения на более современную модификацию встраиваемого или выносного типа. Диагностика работоспособности доступна собственными силами при наличии обычной автомобильной лампы.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Реле-регулятор. Устройство реле-регулятора

Рассмотрим устройство и принцип действия реле-регулятора ⭐ контактно-вибрационного типа, регулирующего работу генератора постоянного тока и состоящего из РОТ, РН и ОТ.

Реле обратного тока включает в себя последовательную 1 и параллельную 4 обмотки. Если напряжение генератора 13 ниже напряжения аккумуляторной батареи 16, то магнитный поток, создаваемый параллельной обмоткой, мал. Поэтому якорь 5 не может притянуться к сердечнику и замкнуть контакты 6 РОТ. По мере увеличения частоты вращения коленчатого вала двигателя повышается напряжение, вырабатываемое генератором. Когда напряжение превысит напряжение включения РОТ (достигнет 12,5 В в 12-вольтной системе или 25 В в 24-вольтной системе электрооборудования), якорь притянется к сердечнику, и контакты 6 замкнутся. Ток пойдет по обмоткам 1 и 4 в таком направлении, что их магнитные поля совпадут. В результате магнитное поле последовательной обмотки 1 усилит эффект прижатия контактов 6. Генератор будет обеспечивать питание потребителей, а излишек его мощности будет использован для подзарядки аккумуляторной батареи.

С уменьшением частоты вращения вала двигателя или при его остановке напряжение генератора становится меньше напряжения на клеммах батареи. Электрический ток при этом стремится течь от нее к якорю 15 генератора, что может привести к перегрузке последнего. Магнитный поток последовательной обмотки 1 сразу изменит направление и размагнитит сердечник 2, контакты 6 разомкнутся и генератор отключится от батареи. Пружина 3 способствует быстрому размыканию контактов РОТ.

Регулятор напряжения представляет собой прибор, аналогичный РОТ. Контакты РН 10 в отличие от контактов РОТ под воздействием пружины стремятся быть замкнутыми. Они остаются в этом положении, если напряжение Ur генератора 13 ниже напряжения Uрh, на которое отрегулирован РН. Ток возбуждения генератора проходит по цепи вывод Я генератора — обмотки 7 и 8 ОТ — замкнутые контакты 10 — вывод Ш обмотки возбуждения 14 генератора — «масса» (корпус) генератора.

Рис. Схема реле-регулятора:
1 — последовательная обмотка РОТ; 2 — сердечник РОТ; 3 пружина; 4 — параллельная обмотка РОТ; 5 — якорь; 6 — контакт РОТ; 7 — последовательная обмотка ОТ; 8 — ускоряющая обмотка ОТ; 9 — контакт ОТ; 10 — контакт РН; 11 — выравнивающая обмотка РН; 12 — параллельная обмотка РН; 13 — генератор; 14 — обмотка возбуждения генератора; 15 — якорь генератора; 16 — аккумуляторная батарея; 17 — стартер; 18 — выключатели зажигания; 19 — контрольная лампа; 20—22 — резисторы; А, Б, Ш, Я — маркировка выводов реле-регулятора

В момент, когда Ur > Uph, контакты 10 разомкнутся и ток возбуждения, минуя контакты 9 ОТ, пойдет через резисторы 20 и 21. Это произойдет при напряжении 14,5… 15 В в 12-вольтной системе и 29… 30 В в 24-вольтной. В результате сила тока в обмотках возбуждения уменьшится, а напряженность магнитного силового поля генератора снизится. Значение ЭДС в обмотке якоря и напряжение на выходных клеммах генератора также понизятся.

При снижении напряжения генератора уменьшится сила притяжения якоря параллельной обмоткой 12 РН, контакты 10 вновь замкнутся, и сила тока возбуждения увеличится.

Рассмотренный процесс повторяется периодически при частоте размыкания и замыкания контактов 10 в пределах 30… 200 с-1. Однако колебание напряжения на выводах генератора при этом не превышает 0,2 В. Напряжение, поддерживаемое РН, остается примерно постоянным и не сказывается на изменении силы света ламп освещения.

Ограничитель тока работает аналогично РН, но его последовательная обмотка 7 реагирует не на напряжение, а на силу отдаваемого генератором 13 тока. До тех пор пока мощность включенных потребителей не превышает номинальной мощности генератора, сердечник ОТ намагничен слабо и пружина подвижных контактов 9 удерживает их в замкнутом положении. Если мощность включенных потребителей превысит номинальную мощность генератора, то сердечник ОТ намагнитится настолько, что разомкнет контакты 9. В этом случае ток возбуждения пойдет двумя путями:

  1. через резистор 22, замкнутые контакты 10 Ph и далее к выводу Ш генератора 13
  2. через ускоряющую обмотку 8 ОТ, резисторы 20 и 21 и далее также к выводу Ш

Обмотка 8 способствует ускорению замыкания контактов 9, поскольку включена последовательно в цепь обмотки возбуждения генератора и создает магнитный поток, совпадающий по направлению с магнитным потоком основной обмотки ОТ.

Что такое реле регулятор?

Реле регулятор напряжения (или просто реле напряжения) – это устройство, предназначенное для сохранения бортового напряжения сети, получаемого с генератора.

Как работает реле регулятор напряжения?

Регулятор содержит 3 элемента: измерительный, сравнения и регулирующий. Измерительный элемент воспринимает напряжение генератора и преобразует его в сигнал, который в элементе сравнения сравнивается с эталонным значением. Если измеренная величина отличается от эталонной величины, на выходе измерительного элемента появляется сигнал, который активизирует регулирующий элемент, изменяющий ток в обмотке возбуждения так, чтобы напряжение генератора вернулось в заданные пределы.

Управление генератором — электрическая система самолета

Теория управления генератором

Все самолеты рассчитаны на работу в определенном диапазоне напряжений (например, 13,5–14,5 вольт). А поскольку самолеты работают с различными скоростями двигателя (помните, двигатель приводит в действие генератор) и с различными электрическими требованиями, все генераторы должны регулироваться какой-то системой управления. Система управления генератором предназначена для поддержания выходной мощности генератора в пределах ограничений для всех параметров полета. Системы управления генератором часто называют регуляторами напряжения или блоками управления генераторами (GCU).

Мощность генератора самолета можно легко отрегулировать, контролируя силу магнитного поля генератора. Помните, что сила магнитного поля напрямую влияет на выходную мощность генератора. Чем больше ток возбуждения, тем больше выходная мощность генератора, и наоборот. На рис. 1 показано простое управление генератором, используемое для регулировки тока возбуждения. Когда управляется ток возбуждения, управляется выход генератора. Имейте в виду, что эта система настраивается вручную и не подходит для самолетов. Системы самолета должны быть автоматическими и поэтому немного сложнее.

Рисунок 1. Регулирование напряжения генератора реостатом возбуждения

Существует два основных типа управления генератором: электромеханическое и полупроводниковое. Элементы управления электромеханического типа используются на старых самолетах и, как правило, требуют регулярного осмотра и обслуживания. Твердотельные системы более современны и, как правило, считаются более надежными и более точными в управлении мощностью генератора.


Функции систем управления генераторами

Большинство систем управления генераторами выполняют ряд функций, связанных с регулированием, определением и защитой системы генерации постоянного тока. Для легких самолетов обычно требуется менее сложная система управления генератором, чем для более крупных многодвигательных самолетов. Некоторые из перечисленных ниже функций отсутствуют на легких самолетах.

Регулирование напряжения

Самая основная функция GCU — регулирование напряжения. Регулирование любого типа требует, чтобы блок регулирования взял образец выходного сигнала генератора и сравнил этот образец с известным эталоном. Если выходное напряжение генератора выходит за установленные пределы, то блок регулирования должен обеспечить регулировку тока возбуждения генератора. Регулировка тока возбуждения управляет выходом генератора.

Защита от перенапряжения

Система защиты от перенапряжения сравнивает измеренное напряжение с эталонным напряжением. Схема защиты от перенапряжения используется для размыкания реле, управляющего током возбуждения возбуждения. Обычно он встречается в более сложных системах управления генератором.


Параллельная работа генераторов

На многодвигательных самолетах необходимо использовать функцию параллельной работы, чтобы все генераторы работали в установленных пределах. Как правило, параллельные системы сравнивают напряжения между двумя или более генераторами и соответствующим образом регулируют схему регулирования напряжения.

Защита от перевозбуждения

При выходе из строя одного генератора в параллельной системе один из генераторов может перевозбуждаться и брать на себя большую часть нагрузки, если не всю нагрузку. По сути, это условие заставляет генератор производить слишком большой ток. Если это состояние обнаружено, возбужденный генератор должен быть возвращен в допустимые пределы, иначе произойдет повреждение. Цепь перевозбуждения часто работает вместе с цепью перенапряжения для управления генератором.

Дифференциальное напряжение

Эта функция системы управления предназначена для обеспечения того, чтобы все значения напряжения генератора находились в пределах допусков перед подключением к шине нагрузки. Если выход не находится в пределах указанного допуска, контактор генератора не может подключать генератор к шине нагрузки.


Измерение обратного тока

Если генератор не может поддерживать требуемый уровень напряжения, он в конечном итоге начинает потреблять ток, а не обеспечивать его. Такая ситуация возникает, например, при выходе из строя генератора. Когда генератор выходит из строя, он становится нагрузкой для других работающих генераторов или аккумулятора. Неисправный генератор необходимо снять с автобуса. Функция измерения обратного тока контролирует систему на наличие обратного тока. Обратный ток указывает на то, что ток течет к генератору, а не от генератора. В этом случае система размыкает реле генератора и отключает генератор от шины.

Органы управления генераторами высокой мощности

Большинство современных генераторов высокой мощности устанавливаются на самолеты корпоративного типа с турбинными двигателями. В этих небольших бизнес-джетах и ​​турбовинтовых самолетах используется генератор и стартер, объединенные в один блок. Этот агрегат называется стартер-генератором. Преимущество стартер-генератора заключается в объединении двух блоков в одном корпусе, что экономит место и вес. Поскольку стартер-генератор выполняет две задачи: запуск двигателя и выработку электроэнергии, система управления для этого агрегата относительно сложна. Простое объяснение стартер-генератора показывает, что устройство содержит два набора обмоток возбуждения. Одно поле используется для запуска двигателя, а другое используется для выработки электроэнергии. [Рисунок 2]

Рисунок 2. Стартер-генератор

В режиме генерации GCU должен отключать последовательное поле, запитывать параллельное поле и контролировать ток, создаваемый якорем. В это время стартер-генератор работает как обычный генератор. Конечно, GCU должен выполнять все функции, описанные ранее, для управления напряжением и защиты системы. Эти функции включают регулирование напряжения, определение обратного тока, дифференциальное напряжение, защиту от перевозбуждения, защиту от перенапряжения и параллельную работу генератора. Типичный GCU показан на рис. 3.9.0005

стартер-генератор. Затем схема управляет серией реле и/или соленоидов для подключения и отключения блока к различным распределительным шинам. Практически во всех схемах регулирования напряжения используется стабилитрон. Стабилитрон — это чувствительное к напряжению устройство, которое используется для контроля напряжения в системе. Стабилитрон, соединенный со схемой GCU, затем управляет током возбуждения, который, в свою очередь, управляет выходом генератора.


Средства управления генератором для маломощных генераторов

Типичная схема управления генератором для маломощных генераторов изменяет поток тока на поле генератора для управления выходной мощностью генератора. По мере изменения параметров полета и электрических нагрузок блок GCU должен контролировать электрическую систему и вносить соответствующие коррективы, чтобы обеспечить надлежащее напряжение и ток в системе. Типичное управление генератором называется регулятором напряжения или GCU.

Поскольку большинство маломощных генераторов установлены на старых самолетах, системы управления этими системами представляют собой электромеханические устройства. (Твердотельные блоки используются на более современных самолетах, в которых используются генераторы постоянного тока, а не генераторы постоянного тока.) Двумя наиболее распространенными типами регуляторов напряжения являются регулятор с угольной кучкой и регулятор с тремя блоками. Каждый из этих блоков управляет током возбуждения с помощью переменного резистора. Управление током возбуждения затем управляет выходом генератора. Упрощенная схема управления генератором показана на рис. 4.9.0005

Рисунок 4. Регулятор напряжения для маломощного генератора через стопку углерода диски (угольная свая). Углеродные диски включены последовательно с генератором поля. Если сопротивление дисков увеличивается, ток возбуждения уменьшается, и мощность генератора падает. Если сопротивление дисков уменьшается, ток возбуждения увеличивается, и выходная мощность генератора увеличивается. Как видно на рисунке 5, катушка напряжения установлена ​​параллельно выходным проводам генератора. Катушка напряжения действует как электромагнит, сила которого увеличивается или уменьшается при изменении выходного напряжения генератора. Магнетизм катушки напряжения контролирует давление на углеродный пакет. Давление на угольный пакет контролирует сопротивление углерода; сопротивление углерода управляет током возбуждения, а ток возбуждения управляет выходом генератора.

Рисунок 5. Регулятор угольной сваи

Регуляторы с угольной сваей требуют регулярного обслуживания для обеспечения точной регулировки напряжения; поэтому большинство из них было заменено на самолетах более современными системами.


Регуляторы с тремя звеньями

Регуляторы с тремя звеньями, используемые с системами генераторов постоянного тока, состоят из трех отдельных звеньев. Каждый из этих блоков выполняет определенную функцию, необходимую для правильной работы электрической системы. Типовой трехблочный регулятор состоит из трех реле, установленных в одном корпусе. Каждое из трех реле контролирует выходы генератора и размыкает или замыкает контакты реле в соответствии с потребностями системы. Типичный трехсекционный регулятор показан на рис. 6.9.0005
Рисунок 6. Три реле этого регулятора используются для регулирования напряжения, ограничения тока и предотвращения обратного тока трехзвенный регулятор используется для управления выходным напряжением генератора. Регулятор напряжения контролирует выход генератора и при необходимости регулирует ток возбуждения генератора. Если регулятор определяет, что напряжение в системе слишком высокое, контакты реле размыкаются, и ток в цепи возбуждения должен проходить через резистор. Этот резистор снижает ток возбуждения и, следовательно, снижает выходную мощность генератора. Помните, что выходная мощность генератора падает всякий раз, когда падает ток возбуждения генератора. 9Рисунок 7. Регулятор напряжения Если напряжение выходит за пределы заданного предела, катушка напряжения становится сильным магнитом и размыкает точки контакта. Если точки контакта разомкнуты, ток возбуждения должен проходить через резистор, и поэтому ток возбуждения падает. Пунктирная стрелка показывает ток, протекающий через регулятор напряжения, когда точки реле разомкнуты.

Поскольку этот регулятор напряжения имеет только два положения (контакты открыты и контакты закрыты), устройство должно постоянно регулироваться для обеспечения точного контроля напряжения. Во время нормальной работы системы точки открываются и закрываются через равные промежутки времени. Точки действительно вибрируют. Этот тип регулятора иногда называют регулятором вибрационного типа. Когда точки вибрируют, ток поля повышается и понижается, а магнетизм поля усредняется до уровня, который поддерживает правильное выходное напряжение генератора. Если системе требуется большая мощность генератора, точки остаются закрытыми дольше, и наоборот.


Ограничитель тока

Секция ограничения тока трехсекционного регулятора предназначена для ограничения выходного тока генератора. Этот блок содержит реле с катушкой, соединенной последовательно с выходом генератора. Как видно на рисунке 8, весь выходной ток генератора должен проходить через токовую катушку реле. Это создает реле, чувствительное к выходному току генератора. То есть, если выходной ток генератора увеличивается, реле размыкается и наоборот. Пунктирная линия показывает поток тока на поле генератора при разомкнутых точках ограничения тока. Следует отметить, что, в отличие от реле регулятора напряжения, ограничитель тока обычно замкнут во время нормального полета. Только при экстремальных токовых нагрузках точки ограничения тока должны открываться; в это время ток возбуждения снижается, а выходная мощность генератора поддерживается в определенных пределах.

Рисунок 8. Ограничитель тока генератор. Этот тип протекания тока разряжает батарею и противоречит нормальной работе. Это можно рассматривать как ситуацию с обратным током и известно как реле обратного тока. Простое реле обратного тока, показанное на рисунке 9.содержит как катушку напряжения, так и катушку тока.

Рис. 9. Реле обратного тока. Когда на катушку подается напряжение, точки контакта замыкаются, и ток начинает течь к электрическим нагрузкам самолета, как показано пунктирными линиями. На схеме показано реле обратного тока в нормальном рабочем положении; точки замкнуты, и ток течет от генератора к электрическим нагрузкам самолета. Когда ток течет к нагрузкам, на токовую катушку подается напряжение, а точки остаются закрытыми. Если выход генератора отсутствует из-за сбоя системы, контакты размыкаются, потому что магнитное поле в реле теряется. При размыкании контактов генератор автоматически отключается от бортовой сети, что предотвращает обратный поток от шины нагрузки к генератору. Типовой трехсекционный регулятор для авиационных генераторов показан на рисунке 10.

Рисунок 10. Регулятор с тремя блоками для генераторов с регулируемой скоростью

Как видно на рисунке 10, все три блока регулятора мощности работают вместе для управления выходным регулятором генератора. Регулятор контролирует выходную мощность генератора и регулирует мощность нагрузки самолета в зависимости от параметров полета. Обратите внимание, что только что описанный вибрационный регулятор был упрощен в целях пояснения. Типичный регулятор вибрации, установленный на самолете, вероятно, будет более сложным.

СВЯЗАННЫЕ ПУБЛИКИ

  • Противодействие току переменного тока
  • Аккумуляторы самолетов
  • Техническое обслуживание аккумуляторов самолетов, проверка, практика установки и устранение неисправностей
  • Генераторы постоянного тока и элементы управления 237
  • Системы питания и генераторы переменного тока
  • Привод генератора переменного тока и системы управления генераторами переменного тока
  • Компоненты электрической системы

Конструкция и принцип действия классических автомобильных регуляторов напряжения

ТЕОРИЯ АВТОМОБИЛЕЙ

Регуляторы напряжения

Как вы помните из прошлогодней статьи о функционировании генераторов в вашем классическом автомобиле, нет никаких средств внутреннего контроля выходной мощности одного из них. Другими словами, чем быстрее он вращается, тем больше напряжения поступает в электрическую систему автомобиля. Если бы это не контролировалось, генератор повредил бы аккумулятор и сжег бы фары автомобиля. Кроме того, если бы генератор не был отключен от схемы автомобиля, когда он не работал, аккумулятор разрядился бы через его корпус.



Здесь на помощь приходит РЕГУЛЯТОР (обычно называемый регулятором напряжения, но это только один из компонентов системы). За десятилетия конструкция регуляторов претерпела множество усовершенствований, но наиболее часто используемый электромеханический регулятор — это трехфазный регулятор. блоки управления в одном типе коробки. Давайте посмотрим, как эти штуки работают…

Реле отключения

Иногда называемое автоматическим выключателем, это устройство является магнитным переключателем. Он подключает генератор к цепи аккумулятора (и, следовательно, к остальной части автомобиля), когда напряжение генератора достигает желаемого значения. Он отключает генератор, когда он замедляется или останавливается.

Реле имеет железный сердечник, который намагничивается и тянет вниз шарнирный якорь. Когда якорь опускается, набор контактных точек замыкается, и цепь замыкается. Когда магнитное поле нарушается (например, когда генератор замедляется или останавливается), пружина тянет якорь вверх, разрывая точки контакта.



Очевидный вид отказа — это точки контакта. Когда они открываются и закрываются, генерируется небольшая искра, которая в конечном итоге разрушает материал на точках, пока они либо не «сварятся» друг с другом, либо не станут настолько высокими по сопротивлению, что не будут проводить ток в закрытом состоянии. В первом случае батарея будет разряжаться через генератор за ночь, а во втором случае система не будет заряжаться.

Регулятор напряжения

Другой набор контактных точек с железным сердечником используется для постоянной регулировки максимального и минимального напряжения. Эта схема также имеет шунтирующую цепь (шунт перенаправляет электрический поток), идущую на землю через резистор и расположенную непосредственно перед (электрически) точками. Когда точки замкнуты, цепь возбуждения выбирает «легкий» путь к земле, но когда точки разомкнуты, цепь возбуждения должна пройти через резистор, чтобы добраться до земли.

Катушка возбуждения на генераторе подключена к одной из контактных точек регулятора напряжения. Другая точка ведет прямо к земле.

При работе генератора (разряженная батарея или несколько работающих устройств) его напряжение может оставаться ниже того, на которое настроено управление. Поскольку поток тока будет слишком слабым, чтобы тянуть якорь вниз, поле генератора уйдет на землю через точки. Однако, если система полностью заряжена, напряжение генератора будет увеличиваться до тех пор, пока не достигнет максимального предела, а ток, протекающий через шунтирующую катушку, будет достаточно высоким, чтобы опустить якорь и разделить точки.

Этот цикл повторяется снова и снова в режиме реального времени. Точки открываются и закрываются примерно от 50 до 200 раз в секунду, поддерживая постоянное напряжение в системе.

Регулятор тока

Несмотря на то, что напряжение генератора контролируется, его ток может быть слишком высоким. Это приведет к перегреву генератора, поэтому для предотвращения преждевременного выхода из строя предусмотрен регулятор тока.

Внешне похожий на железный сердечник регулятора напряжения, сердечник регулятора тока намотан несколькими витками толстого провода и соединен последовательно с якорем генератора.



Во время работы ток увеличивается до заданной настройки устройства. В это время ток, протекающий через обмотки из толстой проволоки, заставит сердечник тянуть якорь вниз, открывая точки регулятора тока. Чтобы замкнуть цепь, цепь возбуждения должна проходить через резистор. Это снижает текущий выход, точки закрываются, выход увеличивается, точки открываются, выход вниз, точки закрываются и так далее. Таким образом, точки вибрируют при открытии и закрытии, как и точки регулятора напряжения, много раз в секунду.

Хорошие и плохие новости

Регуляторы напряжения механические, поэтому их легко устранить. Если вы изучите функцию каждой из трех частей и то, как они взаимосвязаны, станет очевидным, какая часть работает со сбоями, в зависимости от симптомов. Это означает, что любой, кто понимает, как все работает, может легко устранять проблемы. Это хорошая новость.

Плохая новость заключается в том, что зазор между точками и давление пружины определяют пределы напряжения/тока, и их чрезвычайно трудно настроить. Иногда это можно сделать на автомобиле с помощью вольтметра, но обычно лучше заменить весь узел регулятора при выходе из строя определенной его части. Заводская сборка регуляторов требовала относительно сложных измерительных приборов. Регулировка их «на ощупь» — вопрос удачи, и часто это может привести к повреждению.

В целом хорошая новость заключается в том, что регуляторы стоят недорого и их относительно легко найти. Замена всегда хорошая идея.

Как насчет регуляторов генератора?

Регулятор того же типа изначально использовался в автомобилях с генератором переменного тока, и они работают примерно одинаково. Однако, поскольку в некоторых автомобилях использовались амперметры, регулятор тока не требовался. Поэтому для включения обмоток статора генератора использовался «единичный» регулятор. Это был просто регулятор без секции регулятора тока.

Вскоре после этого автомобильные компании перешли на транзисторные регуляторы напряжения. Используя диоды Зенера, транзисторы, резисторы, конденсатор и термистор, эти регуляторы поддерживают надлежащее напряжение и ток во всей системе. Их схемы работают со скоростью 2000 раз в секунду, и они чрезвычайно надежны. С другой стороны, эти регуляторы не так просто ремонтировать. Они предназначены для того, чтобы их выбрасывали и заменяли.

Многие «полупроводниковые» регуляторы устанавливаются внутри генератора переменного тока и не подлежат обслуживанию, за исключением возможности установки пределов напряжения. Это нормально, потому что они очень хорошо работают в течение длительного периода времени. Для проверки их работы достаточно измерить напряжение аккумуляторной батареи при выключенном двигателе, затем при работающем. Вы должны увидеть что-то между 13 и 15 вольт при работе. Отсутствие изменения напряжения означает, что либо регулятор, либо генератор не работают, а более высокое напряжение означает, что регулятор не «регулирует» должным образом.

Как насчет преобразования генераторов в генераторы переменного тока?

Ну, это двусторонний вопрос. Мы считаем, что такие переделки следует делать, если при реставрации или капитальном обновлении автомобиля были установлены дополнительные электроприборы. Кондиционеры, электрические вентиляторы охлаждения и т. д. поглощают много тока, с которым не могут легко справиться старые генераторы. Генераторы обеспечивают в три раза больший ток и весят намного меньше, чем их старые аналоги.

С другой стороны, переход на генератор переменного тока повлияет на внешний вид автомобиля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *